Chapter 22: Current and Resistance Solutions

Size: px
Start display at page:

Download "Chapter 22: Current and Resistance Solutions"

Transcription

1 Chapter 22: Current and esistance Solutions Questions: 4, 7, 17, 21 Exercises & Problems: 1, 16, 22, 28, 36, 38, 51, 53, 55 Q22.4: A lightbulb is connected to a battery by two copper wires of equal lengths but different thicknesses. A thick wire connects one side of the lightbulb to the positive terminal of the battery and a thin wire connects the other side of the bulb to the negative terminal. a) Which wire carries a greater current? Or is the current the same in both? Explain. b) If the two wires are switched, will the bulb get brighter, dimmer, or stay the same? Explain. Q22.4. eason: (a) Because there are no junctions or branching of the wires, they must carry the same current. This is because of conservation of charge. Charges can t appear or disappear. The current is the same everywhere in a single-loop circuit, including in the filament itself. (b) Because of the answer to part (a) the brightness of the bulb will stay the same. The current will be the same if the wires are switched. Assess: This question is asked because many students have difficulty with this concept. Concentrate on this idea until it makes complete sense. Q22.7: Metal 1 and metal 2 are each formed into 1-mm-diameter wires. The electric field needed to cause a 1 A current in metal 1 is larger than the electric field needed to cause a 1 A current in metal 2. Which metal has the larger resistivity? Explain. Q22.7. eason: The wire with the greater resistivity will have a greater resistance ( = ρla / ). The wire with the greater resistance will require a greater electric potential difference to maintain the same current as the wire with less resistance ( V = I). This larger electric potential difference will result in a larger electric field ( E= Vd / ). This allows us to conclude that the wire with the greater resistivity will require a greater electric field in order to sustain the same current as the wire with the smaller resistivity. Since the field required for metal 1 is greater, the resistivity of metal 1 is greater. Assess: In the electricity chapters it is important to know the basic concepts and how they are related. Q22.17: When lightning strikes the ground, it generates a large electric field along the surface of the ground directed toward the point of the strike. People near a lightning strike are often injured not by the lightning itself but by a large current that flows up on leg and down the other due to this electric field. To minimize this possibility, you are advised to stand with your feet close together if you are trapped outside during a lightning storm. Explain why this is beneficial.

2 Hint: The current path through your body, up one leg and down the other, has a certain resistance. The larger the current along this path, the greater the damage Q eason: After the lightning strike, you are standing in the electric field along the ground. There is an electric potential at every point in an electric field. If you stand with your feet close together, the electric potential difference between your feet is decreased. Since your body has a fixed resistance (from one foot to the other) the smaller the electric potential difference across your feet, the smaller the current you will experience. Assess: This question requires us to combine our knowledge of electric fields and Ohm s law. Q22.21: We can model the rear window defroster in a car as a resistor that is connected to the car s 12V battery. The defroster is made of a material whose resistance increases rapidly as the temperature increases. When the defroster is cold, its resistance is low; when the defroster is warm, it resistance is high. Why is it better to make a defroster with a material like this than with a material whose resistance is independent of temperature? Think about how the resistance, the current, and the power will change as the window warms. Q eason: If the material has a positive temperature coefficient, then as the window gets warmer (and the frost disappears), the resistance increases, which limits the current. When the defroster is cold, more current would flow, just as it is needed. It is kind of self-regulating, giving more current when the window is cold and less when it is warm (already having done its job). Assess: If the resistance were independent of the temperature, then the same current would be delivered to the defroster whenever it is on, whether the window is cold or warm, and that would waste energy. P22.1: The current in an electric hair dryer is 10 A. How much charge and how many electrons flow through the hair dryer in 5.0 min? P22.1. Prepare: We will find the total charge that flows through the hair dryer and then divide it by the electron charge to find the number of electrons. Solve: Equation 22.2 is Q = I t. The amount of charge delivered is 60 s Q = (10.0 A) 5.0 min = 3000 C 1min The number of electrons that flow through the hair dryer is Q 3000 C N = = = e C Assess: This is an enormous amount of charge and is typical of such devices. 22 P22.16: A 9.0V battery supplies a 2.5 ma current to a circuit for 5.0 hr. a) How much charge has been transferred from the negative to the positive terminal? b) How much work has been done on the charges that passed through the battery?

3 P Prepare: Charge, electric current, and time are related by W = q V. electric potential difference, and charge are related by Solve: The charge transferred is The work done on these charges by the battery is Assess: These values are reasonable for this case. q= I t = = I Q/ t. 3 3 ( A)(5.0 hr)( s/hr) 45 C W = q V = = = Work, 2 (45 C)(9.0 V) J. P22.22: esistivity measurements on the leaves of corn plants are a good way to assess stress and overall health. The leaf of a corn plant has a resistance of 2.0 MΩ measured between two electrodes placed 20 cm apart along the leaf. The leaf has a width of 2.5 cm and is 0.20 mm thick. What is the resistivity of the leaf tissue? Is this greater than or less than the resistivity of muscle tissue in the human body? (Hint: ρ muscle = 13 Ω m) P Prepare: esistivity is related to resistance, length, and cross-sectional area by = ρl/ A, and the area is related to the width and thickness of the leaf by A = WT. Solve: Combining these two expressions and solving for the resistivity, we obtain ρ = A L = WT L = = / / ( Ω)( m)( m) / (0.20 m) 50 Ω m Assess: This value for the resistivity is the same order of magnitude as other organic materials listed in Table P22.28: The relatively high resistivity of dry skin, about Ω m, can safely limit the flow of current into deeper tissues of the body. Suppose an electrical worker places his palm on an instrument whose metal case is accidently connected to a high voltage. The skin of the palm is about 1.5 mm thick. (i) Estimate the area of skin on the work s palm that would contact a flat panel, then (ii) calculate the approximate resistance of the skin of the palm. P Prepare: esistance is related to resistivity, length, and cross-sectional area = ρl A An electrical worker could have palms that are 10 cm by 12 cm or by /. m / ( Ω m)( m) / ( m ) Ω = ρl A= = Solve: The resistance is Assess: This built-in safety factor is a good thing and a reasonable value. P22.36: a) What is the resistance of a 1500 W (120 V) hair dryer? b) What is the current in the hair dryer when it is used? P Prepare: The 1500 W rating is for operating at 120 V. That is, the hair dryer dissipates 1500 W at V = 120 V. We will use Equation and Ohm s law. Solve: (a) The hair dryer s resistance using Equation is ( V ) (120 V) P 1500 W 2 2 = = = Ω (b) The current in the hair dryer when it is used is given by Ohm s law: 9.6

4 V 120 V I = = = 12.5 A 13 A 9.6 Ω Assess: Devices such as a hair dryer that operate at 120 V usually have relatively small resistance but large current. P22.38: A 70 W electric blanket runs at 18 V. a) What is the resistance of the wire in the blanket? b) How much current does the wire carry? P Prepare: Electric power, potential, and resistance are related by Electric potential, current, and resistance are related by Ohm s Law = V / I. Solve: (a) The resistance of the wire in the blanket is the electric blanket is I = V / = 3.9A Assess: These are reasonable values for an electric blanket. P= V 2 /. = V 2 / P= 4.6 Ω (b) The current in P22.51: The total charge a battery can supply is rated in ma hr, the product of the current (in ma) and the time (in hr) that the battery can provide this current. A battery rated at 1000 ma hr can supply a current of 1000 ma for 1.0 hr, 500 ma current for 2.0 hr, and so on. A typical AA rechargeable battery has a voltage of 1.2 V and a rating of 1800 ma hr. For how long could this battery drive current through a long, thin wire of resistance 22Ω? P Prepare: The electric potential difference, current, and resistance are related by Ohm s law I = V /. The amount of charge, the current, and the time it takes the charge to Q= I t. flow are related by Solve: The current is obtained by I = V / = 1.2 V / 22 Ω = 54.5 ma The amount of time the t = Q/ I = 1800 ma hr / 54.5 ma = 33 hr. battery can deliver this current is Assess: Since the current is very small (54.5 ma) we expect the battery to able to deliver this current for a long time. P22.53: Variations in the resistivity of blood can give valuable clues to changes in the blood s viscosity and other properties. The resistivity is measure by applying a small potential difference and measuring the current. Suppose a medical device attaches electrodes into a 1.5-mm-diameter vein at two points 5.0 cm apart. What is the blood resistivity if a 9.0 V potential difference causes a 230 μa current through the blood in the vein? P Prepare: We assume that Ohm s law applies to the situation. V I = We also use Equation 22.8 which gives in terms of ρ, L, and A. We are given that m. ρl = A V = 9. 0 V, L = m, I 230 µ A, = and A r d = π = π( /2) = π(1. 5 mm/2) =

5 Solve: Combine the two previous equations. 6 2 A V A (9. 0 V)( m ) ρ = = = = 1.4 Ω m 6 L I L ( A)( m) Assess: This resistivity is reasonably close to the value for blood (1.6 Ω m) given in Table One of the m s cancels and V/A = Ω. P22.55: Wires aren t really ideal. The voltage drop across a current-carrying wire can be significant unless the resistance of the wire is quite low. Suppose a 50 ft extension cord is being used to provide power to an electric lawn mower. The cord carries a 10 A current. The copper wire in a typical extension cord has a 1.3 mm diameter. What is the voltage drop across a 50 ft length of wire at this current? Hint: ρcu = Ω m P Prepare: We assume the extension cord is ohmic so we can use V I. also use = ρ LA /. We are given L = 50 ft = m, I = 10 A, and also look up the resistivity of copper in Table 22.1: Solve: Combine the two equations. ρl A= πr = π d = π. =. = We ( /2) (1 3 mm/2) m. 8 ρ Cu m. =. Ω 8 ( Ω m)(15. 2 m) V = I = I (10A) 19V 6 2 A = = m Assess: 1.9 V is less than 2 percent of 120 V, but in some situations it can be important. The longer the extension cord the greater the resistances (if the diameter stays the same); the greater the voltage drop across the cord, the more power is dissipated as thermal energy in the cord. If your extension cord gets hot to the touch, then you are dissipating too much power in the cord. Get a shorter or fatter extension cord. If you buy a long extension cord, make sure it has a low-gauge wire (large diameter) so the resistance will be low. We

Power in Resistive Electric Circuits

Power in Resistive Electric Circuits Chapter Solutions Resistance and Resistivity Description: Short conceptual problem on resistance and resistivity of an ohmic conductor of different sizes at the same temperature. Based on Young/Geller

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

T U T O R I A L : A M O D E L F O R C I R C U I T S

T U T O R I A L : A M O D E L F O R C I R C U I T S South Pasadena Physics Name 10 Circuits Period Date T U T O R I A L : A M O D E L F O R C I R C U I T S Tutorial Instructions This Tutorial contains Activities and Exercises. Activities: These are intended

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-4 Resistivity Example 25-5: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper

More information

Current and Resistance

Current and Resistance Chapter 17 Current and esistance Quick Quizzes 1. (d. Negative charges moving in one direction are equivalent to positive charges moving in the opposite direction. Thus, Ia, Ib, Ic, and Id are equivalent

More information

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E. Circuits Topics: Current Conservation of current Batteries Resistance and resistivity Simple circuits 0.1 Electromotive Force and Current Conventional current is the hypothetical flow of positive charges

More information

Power lines. Why do birds sitting on a high-voltage power line survive?

Power lines. Why do birds sitting on a high-voltage power line survive? Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high

More information

Physics 1402: Lecture 10 Today s Agenda

Physics 1402: Lecture 10 Today s Agenda Physics 1402: Lecture 10 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av

More information

ELECTRICITY & CIRCUITS

ELECTRICITY & CIRCUITS ELECTRICITY & CIRCUITS Reason and justice tell me there s more love for humanity in electricity and steam than in chastity and vegetarianism. Anton Chekhov LIGHTNING, PART 2 Electricity is really just

More information

Electricity CHARGE. q = 1.6 x10-19 C

Electricity CHARGE. q = 1.6 x10-19 C Electricity CHARGE q = 1.6 x10-19 C How many protons in a Coulomb? -19 1.00 C x (1 proton) / (1.60 x 10 C) = 18 6.25x10 protons! Opposites Attract Most materials are Electrically NEUTRAL (lowest potential

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

Physics Circuits: Series

Physics Circuits: Series FACULTY OF EDUCATION Department of Curriculum and Pedagogy Physics Circuits: Series Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 2012-2013 Series

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Parallel Resistors (32.6)

More information

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles

More information

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Circuits. PHY2054: Chapter 18 1

Circuits. PHY2054: Chapter 18 1 Circuits PHY2054: Chapter 18 1 What You Already Know Microscopic nature of current Drift speed and current Ohm s law Resistivity Calculating resistance from resistivity Power in electric circuits PHY2054:

More information

Lab 3 Parallel Circuits

Lab 3 Parallel Circuits Lab 3 Parallel Circuits!!! RED THIS PGE!!!! When a wire or light bulb is connected across a battery, we have evidence that something is happening in the circuit. The wire gets warm. The bulb glows. In

More information

Static Electricity. Electric Field. the net accumulation of electric charges on an object

Static Electricity. Electric Field. the net accumulation of electric charges on an object Static Electricity the net accumulation of electric charges on an object Electric Field force exerted by an e - on anything that has an electric charge opposite charges attract like charges repel Static

More information

PEP 2017 Assignment 12

PEP 2017 Assignment 12 of the filament?.16.. Aductile metal wire has resistance. What will be the resistance of this wire in terms of if it is stretched to three times its original length, assuming that the density and resistivity

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity

More information

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges. A. Law of electric charges. Electricity and Electromagnetism SOL review Scan for a brief video The law of electric charges states that like charges repel and opposite charges attract. Because protons and

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Topic 5.2 Heating Effect of Electric Currents

Topic 5.2 Heating Effect of Electric Currents Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 18

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 18 CHAPTER 18 1. The charge that passes through the battery is ÆQ = I Æt = (5.7 A)(7.0 h)(3600 s/h) = 1.4 10 5 C. 2. The rate at which electrons pass any point in the wire is the current: I = 1.00 A = (1.00

More information

10/14/2018. Current. Current. QuickCheck 30.3

10/14/2018. Current. Current. QuickCheck 30.3 Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

More information

Lab 8 Simple Electric Circuits

Lab 8 Simple Electric Circuits Lab 8 Simple Electric Circuits INTRODUCTION When we talk about the current in a river, we are referring to the flow of water. Similarly, when we refer to the electric current in a circuit, we are talking

More information

Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee ١ The glow of the thin wire filament of a light bulb is caused by the electric current passing through it. Electric energy is transformed

More information

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power Name Period AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power Dr. Campbell 1. The two plates of a capacitor hold +2500 µc and -2500 µc of charge, respectively, when

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

Continuous flow of electric charges. Current Electricity

Continuous flow of electric charges. Current Electricity Continuous flow of electric charges Current Electricity Did You Know? The voltage across a muscle cell in your body is about 70 millivolts. A millivolt (mv) is one thousandth of a volt. AC and DC DC Direct

More information

Electroscope Used to are transferred to the and Foil becomes and

Electroscope Used to are transferred to the and Foil becomes and Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both (-) and (+) carry a charge.

More information

Electricity Review completed.notebook. June 13, 2013

Electricity Review completed.notebook. June 13, 2013 Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a

More information

Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and

More information

I depicted in Figure 1. When a current of I amps (A) flows through the resistor, a voltage drop V AB volts (V) appears across the terminals A and B.

I depicted in Figure 1. When a current of I amps (A) flows through the resistor, a voltage drop V AB volts (V) appears across the terminals A and B. ntroduction to DC Circuits v 0.92: September 20, 2018 Gerald ecktenwald gerry@pdx.edu 1 ntroduction Engineers from all disciplines need to have working knowledge of basic electrical circuits. These notes

More information

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250- ohm resistor.

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

Physics 22: Homework 4

Physics 22: Homework 4 Physics 22: Homework 4 The following exercises encompass problems dealing with capacitor circuits, resistance, current, and resistor circuits. 1. As in Figure 1, consider three identical capacitors each

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

week 6 chapter 31 Current and Resistance

week 6 chapter 31 Current and Resistance week 6 chapter 31 Current and Resistance Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3) Which is the correct way to light the lightbulb

More information

Now let s look at some devices that don t have a constant resistance.

Now let s look at some devices that don t have a constant resistance. Lab #3 Now let s look at some devices that don t have a constant resistance. This is the same circuit you built last time. But now, in place of the resistor first build the circuit with a light bulb, then

More information

Electric Currents and Circuits

Electric Currents and Circuits Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current- flow of positive charges flowing from positive

More information

Chapter 25: Electric Current

Chapter 25: Electric Current Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

More information

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010 Introduction In this lab we will examine more complicated circuits. First, you will derive an expression for equivalent resistance using Kirchhoff s Rules. Then you will discuss the physics underlying

More information

Designing Information Devices and Systems I Spring 2015 Note 11

Designing Information Devices and Systems I Spring 2015 Note 11 EECS 16A Designing Information Devices and Systems I Spring 2015 Note 11 Lecture notes by Edward Wang (02/26/2015). Resistors Review Ohm s law: V = IR Water pipe circuit analogy: Figure 1: Water analogy

More information

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE ELECTRICITY Chapter 17 17.1 ELECTRIC CHARGE & FORCE Essential Questions: What are the different kinds of electric charge? How do materials become charged when rubbed together? What force is responsible

More information

1. A1, B3 2. A1, B2 3. A3, B2 4. A2, B2 5. A3, B3 6. A1, B1 7. A2, B1 8. A2, B3 9. A3, B1

1. A1, B3 2. A1, B2 3. A3, B2 4. A2, B2 5. A3, B3 6. A1, B1 7. A2, B1 8. A2, B3 9. A3, B1 peden (jp5559) Time onstants peden (0100) 1 This print-out should have 21 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Test is Thursday!

More information

PHY232 Spring 2008 Jon Pumplin (Original ppt courtesy of Remco Zegers) Direct current Circuits

PHY232 Spring 2008 Jon Pumplin  (Original ppt courtesy of Remco Zegers) Direct current Circuits PHY232 Spring 2008 Jon Pumplin http://www.pa.msu.edu/~pumplin/phy232 (Original ppt courtesy of Remco Zegers) Direct current Circuits So far, we have looked at systems with only one resistor PHY232 Spring

More information

Lecture 6 Current and Resistance Ch. 26

Lecture 6 Current and Resistance Ch. 26 Lecture 6 Current and esistance Ch. 6 Cartoon -nvention of the battery and Voltaic Cell Warm-up problem Topics What is current? Current density Conservation of Current esistance Temperature dependence

More information

THE LINE OF RESISTANCE

THE LINE OF RESISTANCE ADDENDA TO: THE LINE OF RESISTANCE Dr. Lawrence D. Woolf General Atomics San Diego, CA 92121 Larry.Woolf@gat.com July 5, 2001 ADDENDUM TO 1A: ELECTRICAL RESISTIVITY OF GRAPHITE There is another way to

More information

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other. Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

More information

12/2/2018. Monday 12/17. Electric Charge and Electric Field

12/2/2018. Monday 12/17. Electric Charge and Electric Field Electricity Test Monday 1/17 Electric Charge and Electric Field 1 In nature, atoms are normally found with equal numbers of protons and electrons, so they are electrically neutral. By adding or removing

More information

Chapter 28: Fundamentals of Circuits

Chapter 28: Fundamentals of Circuits Chapter 8: Fundamentals of Circuits Source of Electric Potential the Mechanical Battery (the Van de Graaff VdG) What determines how much potential difference the motor of the VdG can maintain in order

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Power College - PHY2054C and 09/15/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building PHY2054C Power First Mini-Exam this week on Wednesday!! Location: UPL 101, 10:10-11:00 AM Exam on chapters

More information

Electrodynamics. Review 8

Electrodynamics. Review 8 Unit 8 eview: Electrodynamics eview 8 Electrodynamics 1. A 9.0 V battery is connected to a lightbulb which has a current of 0.5 A flowing through it. a. How much power is delivered to the b. How much energy

More information

ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

More information

PHYS 1444 Section 003. Lecture #12

PHYS 1444 Section 003. Lecture #12 Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy

More information

Series and Parallel. How we wire the world

Series and Parallel. How we wire the world Series and Parallel How we wire the world Series vs Parallel Circuits Series Circuit Electrons only have one path to flow through. Parallel Circuit There are MULTIPLE paths for the current to flow through.

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism S8P5. Students will recognize the characteristics of gravity, electricity, and magnetism as major kinds of forces acting in nature. b. Demonstrate the advantages and disadvantages

More information

Chapter19-Magnetism and Electricity

Chapter19-Magnetism and Electricity Chapter19-Magnetism and Electricity Magnetism: attraction of a magnet for another object. Magnetic poles: north & south ends of a magnet, they exert the strongest forces Like poles repel each other, unlike

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Circuits. 1. The Schematic

Circuits. 1. The Schematic + ircuits 1. The Schematic 2. Power in circuits 3. The Battery 1. eal Battery vs. Ideal Battery 4. Basic ircuit nalysis 1. oltage Drop 2. Kirchoff s Junction Law 3. Series & Parallel 5. Measurement Tools

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Electricity Worksheet (p.1) All questions should be answered on your own paper.

Electricity Worksheet (p.1) All questions should be answered on your own paper. Electricity Worksheet (p.1) 1. In terms of attraction and repulsion, how do negative particles affect negative particles? How do negatives affect positives? 2. What happens to electrons in any charging

More information

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli ConcepTest Clicker Questions Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli 2008 Pearson Education, Inc. This work is protected by United States copyright laws

More information

Magnets attract some metals but not others

Magnets attract some metals but not others Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials

More information

Objectives. to understand qualitatively current flow through circuit elements connected in series and parallel

Objectives. to understand qualitatively current flow through circuit elements connected in series and parallel UNIT 8 DIRECT CURRENT CIRCUITS: CURRENT (from Lillian C. McDermott and the Physics Education Group, Physics by Inquiry Volume II, John Wiley and Sons, NY, 1996) Objectives to understand qualitatively current

More information

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors: 4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...

More information

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

More information

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20 Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the

More information

Electricity and Magnetism Module 4 Student Guide

Electricity and Magnetism Module 4 Student Guide Electricity and Magnetism Module 4 Student Guide Note: each time you are finished with a circuit we ask that you disconnect all wires, so that the next circuit you investigate starts with a blank slate.

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

DC Circuits. Circuits and Capacitance Worksheet. 10 Ω resistance. second? on the sodium is the same as on an electron, but positive.

DC Circuits. Circuits and Capacitance Worksheet. 10 Ω resistance. second? on the sodium is the same as on an electron, but positive. Circuits and Capacitance Worksheet DC Circuits 1. A current of 1.30 A flows in a wire. How many electrons are flowing past any point in the wire per second? 2. What is the current in amperes if 1200 Na

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

Electric Current. You must know the definition of current, and be able to use it in solving problems.

Electric Current. You must know the definition of current, and be able to use it in solving problems. Today s agenda: Electric Current. You must know the definition of current, and be able to use it in solving problems. Current Density. You must understand the difference between current and current density,

More information

Version 001 HW 20 Circuits C&J sizemore (21301jtsizemore) 1

Version 001 HW 20 Circuits C&J sizemore (21301jtsizemore) 1 Version 00 HW 20 Circuits C&J sizemore (230jtsizemore) This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Serway

More information

Electric Current. Volta

Electric Current. Volta Electric Current Galvani Volta In the late 1700's Luigi Galvani and Alessandro Volta carried out experiements dealing with the contraction of frogs' leg muscles. Volta's work led to the invention of the

More information

Electricity. Lily, Laura, Lynette, Elyse, Gillian, Emma, Hailey Period 2. onedio.com

Electricity. Lily, Laura, Lynette, Elyse, Gillian, Emma, Hailey Period 2. onedio.com Electricity Lily, Laura, Lynette, Elyse, Gillian, Emma, Hailey Period 2 onedio.com Electrostatics vs. Electricity Electrostatics is the study of charges at rest Electrostatics: to help remember the difference

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: Date: AP REVIEW 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a positively charged glass rod is used to charge a metal

More information

Electricity. What is electricity?

Electricity. What is electricity? Words attract = pull towards an object back and forth = to go in one direction and then in the other balanced = the same as stable carbon = a chemical material that is in coal or petrol. It is in its purest

More information

EE 42/100 Lecture 3: Circuit Elements, Resistive Circuits. Rev D 1/22/2012 (4:19PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 3: Circuit Elements, Resistive Circuits. Rev D 1/22/2012 (4:19PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 3 p. 1/22 EE 42/100 Lecture 3: Circuit Elements, Resistive Circuits ELECTRONICS Rev D 1/22/2012 (4:19PM) Prof. Ali M. Niknejad University

More information

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

BROCK UNIVERSITY. Physics 1P22/1P92. Mid-term Test 2: 19 March Solutions

BROCK UNIVERSITY. Physics 1P22/1P92. Mid-term Test 2: 19 March Solutions BROCK UNIVERSITY Physics 1P22/1P92 Mid-term Test 2: 19 March 2010 Solutions 1. [6 marks] (See Page 746, CP # 24, and pages 15 16 of the posted Ch. 22 lecture notes from 4 March.) A 3.0 V potential difference

More information

Electrical Circuits. Sources of Voltage

Electrical Circuits. Sources of Voltage Electrical Circuits ALESSANDRO VOLTA (1745-1827) ANDRE MARIE AMPERE (1775-1836) GEORG SIMON OHM (1789-1854) POTENTIAL IN VOLTS, CURRENT IN AMPS, RESISTANCE IN OHMS! Sources of Voltage Voltage, also known

More information

An Introduction to Electricity and Circuits

An Introduction to Electricity and Circuits An Introduction to Electricity and Circuits Materials prepared by Daniel Duke 4 th Sept 2013. This document may be copied and edited freely with attribution. This course has been designed to introduce

More information

What is dynamic electricity?

What is dynamic electricity? Dynamic Electricity What is dynamic electricity? Has to do with charges in motion So we re talking about moving electrons Think about any electronic device Dynamic electricity Think back to properties

More information

Electricity Test Review

Electricity Test Review Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil

More information

3/17/2009 PHYS202 SPRING Lecture notes Electric Circuits

3/17/2009 PHYS202 SPRING Lecture notes Electric Circuits PHYS202 SPRING 2009 Lecture notes Electric Circuits 1 Batteries A battery is a device that provides a potential difference to two terminals. Different metals in an electrolyte will create a potential difference,

More information

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move. SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

More information

Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

Electric Current & DC Circuits  How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

More information

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. 1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the

More information