RETURN ONLY THE SCANTRON SHEET!


 Darrell Lawrence
 6 years ago
 Views:
Transcription
1 Andrzej Czajkowsk PHY/ exam Page out o Prncples o Physcs I PHY PHY Instructor: Dr. Andrzej Czajkowsk Fnal Exam December Closed book exam pages questons o equal value 5 correct answers pass the test! Duraton: hrs REURN ONLY HE SCANRON SHEE!
2 Andrzej Czajkowsk PHY/ exam Page out o kg mass hangs an the strng. Strng makes angle π/4 wth the celng. he tenson n the strng s: A N B 9.4N C N 4.7N E none o the above he poston o a partcle o mass kg s gven by r t 4t j + k (t s n seconds and r n meters). he magntude o the nstantaneous acceleraton at t s s: A 8m/s B 5m/s C a 8 j D 8 m/s E none o the above A partcle o mass M, s at the orgn whle the partcle o the mass 4M s at xm. he centre o mass o ths system s at: A x.m B x.m C x.4 m D.8 m E none o the above. kg π/4 4. A cart o mass M movng at speed v colldes wth another statonary cart o mass M on ar track (no rcton), and the two stck together ater the collson. What s ther velocty ater colldng? A.5 v B.5v C .5v D v E none o the above 5. A constant orce o N n the postve x drecton acts on a 4.kg object as t moves rom the orgn to the pont (6 8j) m. How much work s done by the gven orce durng ths dsplacement? A) +6 J B) +84 J C) +48 J D) +57 J E) +7 J 6 An object moves rom x m to x 7 m subject to the orce shown n the dagram. How much work n J s done on the object by the orce when the object moves rom x4m to x5m? A. 4 B. C. D.  E. 4 F ( x) (N) x (m) 7. he work done n the expanson rom an ntal to a nal state A. depends only on the end pont. B. s ndependent o the path. C. s the slope o a P curve. D equals P( F ) E. s the area under the curve o a P dagram.
3 Andrzej Czajkowsk PHY/ exam Page out o 8. In order or two objects to have the same temperature, they must a. be n thermal equlbrum. b. be n thermal contact wth each other. c. have the same relatve hotness or coldness when touched. d. have all o the propertes lsted above. e. have only propertes (b) and (c) above. 9. A gasolne engne absorbs 5 J o heat and perorms J o mechancal work n each cycle. he ecency o the engne s a.8% b.6% c.5% d.4% e.%. A Carnot cycle, operatng as a heat engne, conssts, n the order gven, o a. an sothermal expanson, an sothermal compresson, an adabatc expanson and an adabatc compresson. b. an adabatc expanson, an adabatc compresson, an sothermal expanson and an sothermal compresson. c. an sothermal expanson, an adabatc compresson, an sothermal compresson and an adabatc expanson. d. an adabatc compresson, an sothermal compresson, an sothermal expanson and an adabatc expanson. e. an sothermal expanson, an adabatc expanson, an sothermal compresson and an adabatc compresson When the partcle s at x m t has J o knetc energy, and moves under nluence o conservatve orce whose potental energy s shown n the dagram. What s ts knetc energy, and what s the drecton o the orce actng on the partcle at xm? U(J) 6 4 A) KJ, F s negatve B) KJ, F s postve C) K J, F s negatve D) K 4J, F s postve E) none o the above x(m). A bullet s red through a board, 4. cm thck, wth ts lne o moton perpendcular to the ace o the board. I t enters wth a speed o 45 m/s and emerges wth a speed o m/s, what s the bullet s acceleraton as t passes through the board? A) 5 km/s B) 55 km/s C) 6 km/s D) 5 km/s E) 75 km/s
4 Andrzej Czajkowsk PHY/ exam Page 4 out o. he horzontal surace on whch the objects slde s rctonless. I M. kg, the tenson n strng s N. Determne F n N. M M M F a. 5 b. c. d. 5 e A sh weghs. N at rest. When t s weghed on a sprng scale n an elevator acceleratng upwards at 6. m s, the scale reads N. a. 7.5 b..7 c..7 d..7 e he specc heat at constant volume at C o one mole o an deal datomc gas s 5 a. R. b.r. c. R. d.r. e. R. 6 Some speces o whales can dve to depths o klometer. What s the total pressure they experence at ths depth? (ρ sea kg/m and 5 N/m AM.) A) 9 AM B) 9 AM C) AM D) AM E) AM 7. A hole s punched n a ull mlk carton, cm below the top. What s the ntal velocty o outlow? A.4 m/s B. m/s C.8 m/s D.9 m/s E.8 m/s 8 A heat pump wth a coecent o perormance o 4.9 absorbs heat rom the atmosphere at a rate o kw. At what rate s t dong work? A 6 kw B 47 kw C 7 kw D 6 kw E none o the above 9 Fve moles o an deal gas expands sothermally at C to ve tmes ts ntal volume. Fnd the heat low nto the system. A).5 4 J B). 4 J C) 6.7 J D).9 J E) 7. J. I M. kg, what s the tenson n N n strng? a.. b. c. 4 d..5 e. 4 In an adabatc process 6 J o work are done on each mole o a gas. I the gas has 5 degrees o reedom, how much does ts temperature change? Answer n terms o R. A) 4/R (K) B).4/R (K) C) 6.4/R (K) D)./R(K) E) none o the above M
5 he dstrbuton o car speeds measured by a Polce patrol or a partcular stretch o the 4 hghway between Kngston and Ottawa s shown on the gure. Whch o the ollowng conclusons about the v rms [root mean square speed], and the P (85;5) [probablty that the car has speed between 85km/h and 5 km/h] are true: A v rms 7km/h P(85,5).6 B v rms km/h P(85,5).6 C v rms 5km/h P(85,5).84 D v rms 7km/h P(85,5).66 E none o the above Andrzej Czajkowsk PHY/ exam Page 5 out o number o cars speed Speed km/h). A.8 kg stone you throw rses 4. m n the ar. he mpulse your hand receves rom the stone whle t throws the stone s A. 7. N s, up. B. 7. N s, down. C. 7. N s, up. D. 7. N s, down. E N s, up. 4. he gure shows the dstrbuton o the molecular speeds o gas or two derent temperatures (sold) and (dashed). Whch o the ollowng sentences s true: (v) a) <, and the pont labeled corresponds to the average speed o molecules whose temperature s b) > and the pont labeled corresponds to the average speed o molecules whose temperature s c) > and the pont labeled corresponds to the most probable speed o molecules at v d) <, and the pont labeled corresponds to the average speed o molecules at e) <, and the pont labeled corresponds to the most probable speed o molecules at 5. A.6 kg mass s swung n a vertcal crcle. It s astened to a strng.5 m long. What s the tenson n the strng n N at the bottom o the crcle when the speed o the mass at that pont s 5.5 m/s? A. 5 B. 4 C. 49 D. 58 E. 6
6 Andrzej Czajkowsk PHY/ exam Page 6 out o 6 Four objects o the same volume are placed careully n the contaner lled wth water (shown on the gure). None o the object s movng wth respect to the water. Whch o the ollowng statements about the masses o these objects s true: A) m() m() < m() < m(4) B) m() m() < m() < m(4) C) m() < m() m() < m(4) D) m() < m() m() m(4) E) m() < m() m() m(4) 4 7 A kg block on a horzontal rctonless surace s attached a lght sprng (orce constant.8 kn/m). he block s ntally at rest at ts equlbrum poston when a orce (magntude P 8 N) actng parallel to the surace s appled to the block, as shown. What s the speed o the block when t s cm rom ts equlbrum poston? A B C D E.78 m/s.8 m/s.7 m/s.58 m/s.64 m/s P 8. An 8,kg alumnum lagpole m long s heated by the sun rom a temperature o C to C. Fnd the work done (n J) by the alumnum the lnear expanson coecent s 4 6 ( C). (he densty o alumnum s.7 kg/m and atm. 5 N/m.) A. 87 B. 45 C. D. 7 E.66 9 grams o molten lead (6 C) s used to make musket balls. I the lead shot s allowed to cool to room temperature ( C), what s the change n entropy (n J/K) o the lead? (For the specc heat o molten and sold lead use.9 J/g C; the latent heat o uson and the meltng pont o lead are.45 4 J/kg and 7 C.) a. 4 b. 5 c. d. 49 e.
7 Andrzej Czajkowsk PHY/ exam Page 7 out o A 5 g lead bullet at C moves at 75 m/s and strkes a block o ce at C. What quantty o ce n kg s melted all o the knetc energy o the bullet s converted to heat? he block o ce does not move. (he latent heat o uson o ce s 8 kcal/kg and the specc heat o lead s.5 kcal kg C. cal 486. J) A 4. E 5. 8 B C D 5. 5 A potter's wheel (a sold, unorm dsk) o mass 6. kg and radus.65 m spns about ts central axs. A. kg lump o clay s dropped onto the wheel at a dstance.4 m rom the axs. It stcks to the wheel and rotates wth t Calculate the moment o nerta o the system. A. kg m B.4 kg m C. kg m D.6 kg m E none o the above A sold, unorm sphere o mass. kg and radus.7 m rolls wthout slppng down an nclned plane o heght 7. m. What s the angular velocty o the sphere at the bottom o the nclned plane? A 5.8 rad/s B 9.9 rad/s C. rad/s D 7. rad/s E none o the above. A 5g con, s dropped rom a m buldng. I t reaches a termnal velocty o 45 m/s, and the rest o the energy s converted to heatng the con, what s the change n temperature (n K ) o the con? (he specc heat o copper s 87 J/kg C.) What s the entropy change assocated wth ths heatng ( con ntal emperature was K)? A 9K; S.6J/K B K; S.J/K C 5K; S.J/K D K; S.9J/K E none o the above
8 Andrzej Czajkowsk PHY/ exam Page 8 out o Mechancs dx v x v d r dv a x d v x a r r v t a t o + o + dv a t v a c r F m a F o b v µn R DρAv F ρ l g B. F k x W F. d s mv k U g mgh d p P m v F U e kx m r rcm r CM rdm M M 4 π r π A 4 r Flud Mechancs: A πr C πr v Av p po + ρgh A p o + ρ gy + ρ v const
9 Andrzej Czajkowsk PHY/ exam Page 9 out o Rotatonal moton About a Fxed Axs Angular speed ω dθ Angular acceleraton α dw Net torque τ Iα ω ω + αt Iα const. θ θ + ωt + αt ω ω + α ( θ θ ) Work W θ θ τ dθ Rotatonal knetc energy K R Power P τ ω Angular momentum L Iω Net torque dl τ Iω Crcular Hoop I CM MR Hollow cylnder I CM M ( R + R ) where R : nner radus, R : outer radus Sold cylnder or dsc I CM MR hn Rectangle I CM M ( a + b ) Long thn rod wth rotatonal axs through center I CM ML Long thn rod wth rotatonal axs through edge Sold sphere I CM MR 5 hn sphercal shell I CM MR I CM ML
10 Integrals: v MP Andrzej Czajkowsk PHY/ exam Page out o HERMODYNAMICS Probablty o ndng the speed o a partcle n the range (v;v+dv )s: k m p ρ < v e ax x dx e ax m P( v) dv 4π π k π a dx a > 4 x v rms v k m xe ax dx a e ax dx 8 π 5 a e mv k dv x e ρ ax v avg Nm dx 4 4 x π dx x e 5 8k π m Ent Q + W pnr dq S Change Ent W Q S P const nc v p(  ) nc p nc p ln const nc v nc v const nr ln Q nc v ( p p ) γ p const. W Q Q H L CRN Q QH C γ P γ C p Cv R C C H COP what we want what we pay or t nr ln π a nc ln nr ln L αl S βs γ P e σ A 4; σ 5.67x 8 W/(K 4 m d ) P ka dx Q mc Q Lm c(water) 486 J/(kg C); c(ce) 9 J/(kg C); c(steam) J/(kg C) L(meltng).x 5 J/kg L (vaporzaton).6x 6 J/kg
Chapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More information10/9/2003 PHY Lecture 11 1
Announcements 1. Physc Colloquum today The Physcs and Analyss of Nonnvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationAngular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004
Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a
More informationImportant Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!
Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test MakeUp Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post
More informationEMU Physics Department
Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product
More informationA Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph
A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular
More informationDynamics of Rotational Motion
Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =
More informationτ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1
A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor
More informationCHAPTER 8 Potential Energy and Conservation of Energy
CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and nonconservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated
More informationConservation of Energy
Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,
More informationLinear Momentum and Collisions
Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I  [kg m/s] I t t Fdt I = area under curve bounded by t axs ImulseMomentum Theorem
More informationCHAPTER 10 ROTATIONAL MOTION
CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n xy plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationLecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics
Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationSpring Force and Power
Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationChapter 21  The Kinetic Theory of Gases
hapter 1  he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetctheory account or pressure:. hen mv Kav where N nna NA N
More informationa) No books or notes are permitted. b) You may use a calculator.
PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded
More informationSo far: simple (planar) geometries
Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector
More informationRotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa
Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.
More informationSpring 2002 Lecture #13
4450 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallelas Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the mdterm
More informationPhysics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4
Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed
More informationRotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles
Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More informationPHYSICS 231 Review problems for midterm 2
PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October
More informationChapter Seven  Potential Energy and Conservation of Energy
Chapter Seven  Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members
More informationPhysics 207, Lecture 13, Oct. 15. Energy
Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple
More informationPHYS 1441 Section 002 Lecture #15
PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam
More informationPHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014
PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 WorkKnetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o
More informationPeriod & Frequency. Work and Energy. Methods of Energy Transfer: Energy. WorkKE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?
Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationYou will analyze the motion of the block at different moments using the law of conservation of energy.
Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next
More informationPhysics 207 Lecture 13. Lecture 13
Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationAngular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )
Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst
More informationEnergy and Energy Transfer
Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1
More informationChapter 11 Torque and Angular Momentum
Chapter Torque and Angular Momentum I. Torque II. Angular momentum  Defnton III. Newton s second law n angular form IV. Angular momentum  System of partcles  Rgd body  Conservaton I. Torque  Vector
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationPage 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.
Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More informationPhysics for Scientists and Engineers. Chapter 9 Impulse and Momentum
Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum
More informationChapter 8: Potential Energy and The Conservation of Total Energy
Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. Dmenson F x d U( x) dx
More informationForce = F Piston area = A
CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,
More informationPhysics 181. Particle Systems
Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system
More informationˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)
7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to
More informationPhysics 240: Worksheet 30 Name:
(1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy
More informationPhysics 111 Final Exam, Fall 2013, Version A
Physcs 111 Fnal Exam, Fall 013, Verson A Name (Prnt): 4 Dgt ID: Secton: Honors Code Pledge: For ethcal and farness reasons all students are pledged to comply wth the provsons of the NJIT Academc Honor
More informationPHYS 1441 Section 002 Lecture #16
PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Nonconservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!
More informationLinear Momentum. Center of Mass.
Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html
More informationSCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ
s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSEDBOOK
More informationRE 11.e Mon. Review for Final (111) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 111)
We..7 .9, (.) Moton Wth & Wthout Torque E. ab r. otaton ab Evals.0 Quantzaton, Quz, ect Evals E.e Mon. evew or nal () HW: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. nal Exam (Ch. ) Usng ngular Momentum The
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationThermodynamics and Gases
hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From
More informationPHYS 1443 Section 002
PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS
More informationPHYSICS 231 Lecture 18: equilibrium & revision
PHYSICS 231 Lecture 18: equlbrum & revson Remco Zegers Walkn hour: Thursday 11:3013:30 am Helproom 1 gravtaton Only f an object s near the surface of earth one can use: F gravty =mg wth g=9.81 m/s 2
More informationGeneral Formulas applicable to ALL processes in an Ideal Gas:
Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:
More informationName (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well:
Name (prnt neatly): Secton #: Physcs 111 Exam Frst, wrte your name on ths sheet and on the Scantron Card. The Physcs faculty would lke to help you do well: 1. Budget your tme: 80 mnutes/0 questons=4 mn
More informationChapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)
Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent
More informationChapter 11: Angular Momentum
Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For
More informationMechanics Cycle 3 Chapter 9++ Chapter 9++
Chapter 9++ More on Knetc Energy and Potental Energy BACK TO THE FUTURE I++ More Predctons wth Energy Conservaton Revst: Knetc energy for rotaton Potental energy M total g y CM for a body n constant gravty
More informationPhysics 2A Chapter 3 HW Solutions
Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C
More informationPhysics 105: Mechanics Lecture 13
Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy
More informationPhysics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.
Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays
More informationName: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.
Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1  I the acceleraton o an object s negate, the object must be
More informationChapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.
Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3
More informationPhysics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative
Physcs (PHYF hap : Heat and the Frst aw of hermodynamcs . Work and Heat n hermodynamc Processes A thermodynamc system s a system that may exchange energy wth ts surroundngs by means of heat and work.
More informationMoments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.
Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these
More informationPhysics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight
Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was
More informationONEDIMENSIONAL COLLISIONS
Purpose Theory ONEDIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n onedmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal
More informationWork is the change in energy of a system (neglecting heat transfer). To examine what could
Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes
More informationPage 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Nonconstant forces
Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Nonconstant forces Imulsemomentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs
More information1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7
Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total
More informationSpinrotation coupling of the angularly accelerated rigid body
Spnrotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 Emal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s
More informationPhysics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall
Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 2126 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons
More informationLecture 09 Systems of Particles and Conservation of Linear Momentum
Lecture 09 Systes o Partcles and Conseraton o Lnear oentu 9. Lnear oentu and Its Conseraton 9. Isolated Syste lnear oentu: P F dp dt d( dt d dt a solated syste F ext 0 dp dp F, F dt dt dp dp d F F 0, 0
More informationPhysics 207: Lecture 27. Announcements
Physcs 07: ecture 7 Announcements akeup labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What
More informationChapter 10 Rotational motion
Prof. Dr. I. Nasser Chapter0_I November 6, 07 Important Terms Chapter 0 Rotatonal moton Angular Dsplacement s, r n radans where s s the length of arc and r s the radus. Angular Velocty The rate at whch
More informationChapter 20 The First Law of Thermodynamics
Chapter he Frst aw o hermodynamcs. developng the concept o heat. etendng our concept o work to thermal processes 3. ntroducng the rst law o thermodynamcs. Heat and Internal Energy Internal energy: s the
More informationPhysics 2A Chapters 6  Work & Energy Fall 2017
Physcs A Chapters 6  Work & Energy Fall 017 These notes are eght pages. A quck summary: The workenergy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on
More informationUniversity Physics AI No. 10 The First Law of Thermodynamics
Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )
More informationPhysical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)
hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.15.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where
More informationGAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)
PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to
More informationConservation of Angular Momentum = "Spin"
Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts
More informationPHYS 1443 Section 003 Lecture #17
PHYS 144 Secton 00 ecture #17 Wednesda, Oct. 9, 00 1. Rollng oton of a Rgd od. Torque. oment of Inerta 4. Rotatonal Knetc Energ 5. Torque and Vector Products Remember the nd term eam (ch 6 11), onda, Nov.!
More informationPhys102 General Physics II
Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More informationChapter 7. Potential Energy and Conservation of Energy
Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy
More informationModeling of Dynamic Systems
Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how
More informationChapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.
Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS
More informationProblem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?
Problem 0750 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle
More informationPhysics 101 Lecture 9 Linear Momentum and Collisions
Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum D Collsons
More informationChapter 5 rd Law of Thermodynamics
Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter
More information