# .VALLIAMMAI ENGINEERING COLLEGE

Size: px
Start display at page:

Transcription

1 .VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF GENERAL ENGINEERING QUESTION BANK II SEMESTER GE Engineering Mechanics Regulation 2017 Academic Year

2 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF GENERAL ENGINEERING SUBJECT : GE8292 SEM / YEAR: II SEM / QUESTION BANK UNIT I BASICS AND STATICS OF PARTICLES Introduction Units and Dimensions Laws of Mechanics Lami s theorem, Parallelogram and triangular Law of forces Vectorial representation of forces Vector operations of forces - additions, subtraction, dot product, cross product Coplanar Forces rectangular components Equilibrium of a particle Forces in space Equilibrium of a particle in space Equivalent systems of forces Principle of transmissibility. PART A Q. No Questions BT Level Competence 1. Resolve the 100N force acting 30 to horizontal into two BT-6 Creating components, one along horizontal and other along 120 to horizontal 2. State the Second Law of Newton. 3. Write the equations of equilibrium of a coplanar system of forces. 4. State Lami s theorem with a neat sketch? 5. State the Parallelogram law of forces? 6. State the triangular law of forces? 7. Define principle of transmissibility. 8. Distinguish the following system of forces with a suitable sketch. a) Coplanar b) Collinear. BT-2 Understanding 9. Find the resultant of Concurrent forces F 1 = 2i+3j-4k, BT-2 Understanding F 2 = 5i-4j+6k & F 3 = -2i+3j-2k. 10. What differences exist between Kinetics and Kinematics. BT-2 Understanding 11. State the Gravitational Law of Newton. BT-2 Understanding 12. Solve the following: A force vector F= 700i j is applied to a bolt. Determine the magnitude of the force and angle it forms with the horizontal. 13. Solve the following: A force of magnitude 50 KN is acting along the line joining A (2,0,6) and B (3,-2,0)m. Write the vector form of the force. 14. Solve the following: Two forces of magnitude 50 KN and 80 KN are acting on a particle, such that the angle between the two is 135. If both the force are acting away from the particle, calculate

3 the resultant and find its direction. 15. Compare Resultant and Equilibrant 16. Compare and contrast between particle and rigid body 17. State the Polygon Law of forces. 18. Find the resultant and direction of Force F = 3i-4j. BT-5 Evaluating 19. Imagine if the resultant of an 800N force acting towards eastern direction and a 500N force acting towards north eastern direction 20. A force of 500N forms angle 60,45 & 120 respectively x, y, z axes. Write the force in vector form. PART B 1. Two cylinders, having weight WA = 2000N and WB = 1000 N are resting on smooth inclined planes having inclination 60* and 45ᵒ with the horizontal respectively as shown in figure. They are connected by a weightless bar AB with hinge connections. The bar AB makes 15 ᵒ angle with the horizontal. Find the magnitude of the force P required to hold the system in equilibrium. BT-5 BT-6 Evaluating Creating 2. (i)four forces act on a bolt A as shown below. Determine the resultant of the forces on the bolt. (8) (ii)predict the tension in each cable for the given Figure. (5)

4 3. (i) Consider the 75 kg crate shown in the diagram. This crate was lying between two buildings and it is now being lifted onto a truck, which will remove it. The crate is supported by a vertical cable, which is joined at A to two ropes which pass over pulleys attached to the buildings at B and C. Determined the tension in each of the ropes AB and AC. (5) (ii) )A force P is applied at O to the string AOB as shown in fig. If the tension in each part of string is 50 N, Find the direction and magnitude of force P for equilibrium conditions. (8) 4. Determine the magnitude and direction of force F shown in figure so that particle O is in equilibrium. 5. (i) Determine the tension in cables BC & AC to hold 40 Kg load shown in fig. (8)

5 (ii)a cylindrical roller has a weight of 10kN and it is being pulled by a force which is inclined at 30 with the horizontal as shown in fig. While moving it comes across an obstacle of 10cm height. Predict the forcerequired to cross this obstacle when the diameter of the roller is 70cm. (5) 6. Two cylinders E,F of diameter 60mm and 30mm. Weighing 160N and 40 N respectively are placed as shown in Fig. Assuming all the contact surfaces to be smooth, find the reactions at the contact points.

6 7. Two identical rollers each of weight 50N are supported by an inclined plane and a vertical wall as shown infig. Find the reactions at the points of supports A, B,and C. 8. Three links PQ, QR and RS connected as shown in Fig. Support loads W and 50 N. Find the weight W and the force in each link if the system remains in equilibrium. BT-2 Understanding 9. Two smooth circular cylinders each of weight 1000 N and radius 15 cm are connected at their centers by a string AB of length 40 cm and rest upon a horizontal plane, supporting above them a third cylinder of weight 2000 N and radius 15 cm as shown in Figure. Predict the force S in the string AB and reactions on the floor at the points of contact D and E. BT-2 Understanding 10. Determine the resultant of system of forces acting as shown in Fig. BT-2 Understanding

7 11. Forces 32 KN, 24 KN, 24 KN and 120 KN are concurrent at origin (0,0,0) and are respectively directed through the points whose coordinates are A (2,1,6) B(4,-2,5) C(-3,-2,1) and D (5,1,-2). Determine resultant of the system. 12. Members OA, OB and OC form a three member space truss. A weight of 10 KN is suspended at the joint O as shown in fig. Analyze magnitude and nature of forces in each of the three members of the truss. 13. Find out the resultant of the system of forces given below: (i) 20N inclined at 30º towards north of east. (ii) 25 N towards North. (iii) 30N towards north west. (iv) 35N inclined at 40º towards south of west. BT-5 Evaluating

8 14. The forces shown in the figure below are in equilibrium. Determine the forces F1 and F2. BT-6 Creating

9 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF CIVIL ENGINEERING SUBJECT : GE8292 SEM / YEAR: II SEM / QUESTION BANK UNIT II - EQUILIBRIUM OF RIGID BODIES Free body diagram Types of supports Action and reaction forces stable equilibrium Moments and Couples Moment of a force about a point and about an axis Vectorial representation of moments and couples Scalar components of a moment Varignon s theorem Single equivalent force -Equilibrium of Rigid bodies in two dimensions Equilibrium of Rigid bodies in three dimensions PART A Q.No Questions BT Level 1. A Force F= 10 i+8j-5k N acts at a point A[2,5,6]. What is the moment of the force F about the point B[3,1,4]. Competence 2. What is meant by a force couple system? 3. Replace the force 600n from A as shown in figure by equivalent force and couple at B. 4. Determine the resultant of the force systems shown in figure. 5. State Varignon s theorem. 6. Define a couple. 7. A Uniform ladder of weight 'W' leans against a vertical wall. Assuming the contact surfaces as rough, draw the free body diagram of the ladder with necessary assumptions. 8. Solve the following: three couples 16Nm,-45Nm and 120Nm BT-6 Creating are acting in the xy, yz and xz planes respectively. Find the resultant moment vector of these three couples. 9. State the different types of supports. BT-5 Evaluating

10 10. Find the moment of the 100 N force about point A and B BT-5 Evaluating 11. Write down the conditions of equilibrium of a particle in space. 12. What are the reactions at a fixed support of a plane beam that BT-6 Creating are possible? 13. The position vector and force are [2i-3j+4k]m and [10i+20j- BT-2 Understanding 30k] N respectively, find the moment of force about origin. 14. List the different types of beams? 15. Predict how you will reduce a force into an equivalent forcecouple system. 16. A line of action of a 50 N force is passing through the points a [1,8,7]m and B [7,1.6,2.2]m. The coordinates being given in m. What is the moment of the force about a point C[4,6,3]? BT-2 Understanding 17. Discuss about the equation of equilibrium of a rigid body. BT-2 Understanding 18. Find the moment of 20 N force about the point 'O' as shown in Fig. 19. Distinguish between couple and moment. BT-2 Understanding 20. Explain free body diagram with one example. PART B 1. Find the resultant of the force system shown in figure. Radius = 2.5m.

11 2. Compute the moment of the force P=1500 N and of the force Q=1200 N as shown in figure about points A, B, C. BT-2 Understanding 3. Reduce the given system of forces acting on the beam AB in fig. to (i) an equivalent force couple system at A (ii)an equivalent force couple system at B. BT-2 Understanding 4. Find the pin reaction of A and the Roller reaction at B. For the beam shown in FIg.

12 5. Illustrate the system of forces shown in fig to a force couple system at A 6. Four forces act on a 700mm X 375mm plate as shown in fig. a) Find the resultant of these forces b) Locate the two points where the line of action of the resultant intersects the edge of the plate. 7. Four tug boats are used to bring a large ship to its pier. Each tug boat exerts a 5000 N force in the direction as shown in Fig. Determine the equivalent force - couple system at point 'O' and the point on hull where a single more powerful tug boat should push to produce the same effect as the original four boats.

13 8. Determine the tension in cable BC as shown in figure. Neglect the self-weight of AB. 9. A light bar AD is suspended from a cable BE and supports a 50 kg block at C as shown in fig. The ends A and D of the bar are in contact with frictionless vertical walls. Determine the tension in cable BE and the reactions at A and D. BT-2 Understanding

14 10. Find the support reactions of the truss loaded as shown in figure BT-2 Understanding 11. Blocks A and B of weight 200N and 100N respectively, rest on a 30 inclined plane and are attached to the post which is held perpendicular to the plane by force P, parallel to the plane, as shown in fig. Assume that all surfaces are smooth and that the cords are parallel to the plane. Determine the value of P. Also find thenormal reaction of Blocks A and B.

15 12. A Fixed crane shown in Fig. has a mass of 1000kg and it is used to lift a 2400 kg weight. It is held in a place by a pin at A and a rocker at B. The centre of gravity of the crane is located at G. Determine the components of the reactions at A and B. BT-5 Evaluating 13. A rod AB of weight 200 N is supported by a cable BD and the corner of wall and floor surface as shown infig. Show that the reaction at A and tension in the cord.

16 14. Find the reactions at points A & B.

17 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF CIVIL ENGINEERING SUBJECT : GE8292 SEM / YEAR: II SEM / QUESTION BANK UNIT III - PROPERTIES OF SURFACES AND SOLIDS Centroids and centre of mass Centroids of lines and areas Rectangular, circular, triangular areas by integration T section, I section, Angle section, Hollow section by using standard formula -Theorems of Pappus Area moments of inertia of plane areas Rectangular, circular, triangular areas by integration T section, I section, Angle section, Hollow section by using standard formula Parallel axis theorem and perpendicular axis theorem Principal moments of inertia of plane areas Principal axes of inertia-mass moment of inertia mass moment of inertia for prismatic, cylindrical and spherical solids from first principle Relation to area moments of inertia. PART A Q.No Questions BT Level Competence 1. Define centroid and centre of gravity of a area Remember 2. State parallel axis theorem and perpendicular axis Remember therorem. 3. Define principal axes and principal moment of inertia. Remember 4. Find the polar moment of inertia of a hollow circular section of external diameter D and internal diameter d 5. Locate the centroid and solve the moment of inertia about centroidal axes of a semicircular lamina of radius r 6. A semicircular area having radius of 100 mm is located in the XY plane such that its diameter coincides with the Y-axis. Determine the X-coordinate of the center. BT-5 BT-6 Evaluating Creating 7. Define product of inertia. BT-2 Understanding 8. Define polar moment of inertia. Remember 9. Differentiate Centroid and centre of gravity BT-2 Understanding 10. Discuss about the expression for finding mass moment of BT-2 Understanding inertia of a cylinder of radius R and height h about its base. 11. State the Pappus guildinus area theorem Remember 12. State the Pappus guildinus volume theorem Analyse

18 13. Discuss about the Polar moment of Inertia and state its BT-2 Understanding significant. 14. Compare and contrast the Area moment of Inertia with Analyse mass moment of inertia. 15. Define Radius of gyration. Remember 16. Determine MI of an isosceles triangle with base 150mm and sides of 125mm about its base. BT-6 Creating 17. State the relationship between the second moment of area and mass moment of inertia of a uniform plate. 18. Compare and contrast moment and second moment about Analyse an axis. 19. Create the centroidal distances of a sector of radius r BT-5 Evaluating 20. What is the radius of gyration of a circle of diameter d about its diameter. BT-5 Evaluating PART B 1. Find the moment of inertia of shaded area as shown in figure about Ixx axis and Iyy axis. BT-2 Understanding 2. Determine the moment of inertia of the shaded area as shown in figure with respect to the x axis 3. A solid hemisphere of density 2ρ is attached centrally to a solid cylinder of density ρ. Find the height of the cylindrical portion to have the CG of the solid combination on the axis of symmetry at the junction between the hemisphere and the cylinder. Take the cylinder diameter as 100mm.

19 4. Locate the centroid of the area shown in figure below. The dimensions are in mm. 5. Determine the co-odinates of centroid of the shaded area shown in figure. BT-6 Creating 6. A Cylinder of height of 10 cm and radius of base 4 cm is placed under sphere of radius 4 cm such that they have a common vertical axis. If both of them are made of the same material, find the centre of gravity of the combined unit. 7. Find the moment of inertia of the section shown in the figure about the centroidal axes.

20 8. Find the mass moment of inertia of the plate shown in fig with respect to the axis AB. Thickness of the plate is 5mm and density of the material is 6500Kg/m Discuss expression form mass moment of inertia of prism along three axes. 10. Design Moment of Inertia about the co-ordinate axes of plane area shown in fig. Also find Polar Moment of Inertia. All the dimensions are in 'mm'. BT-2 BT-5 Understanding Evaluating 11. Determine the principal moments of inertia and find location of principal axes of surface shown in figure. BT-2 Understanding

21 12. Determine the Moment of Inertia and radius of gyration of surface about x axis shown in fig. Also find MOIabout centroidal x axis. 13. Illustrate the polar moment of inertia and polar radius of gyration of plane area about centroidal axes shown in fig. 14. Explain second moment of area about the centroidal XX axis and a-a axis of the surface shown in fig.

22 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF CIVIL ENGINEERING SUBJECT : GE8292 SEM / YEAR: II SEM / QUESTION BANK UNIT IV - DYNAMICS OF PARCTICLES Displacements, Velocity and acceleration, their relationship Relative motion Curvilinear motion Newton s laws of motion Work Energy Equation Impulse and Momentum Impact of elastic bodies. Q.No Questions PART A 1. Differentiate linear and angular momentum. BT Level BT-5 Competence Evaluating 2. Define D Alembert s principle 3. Discuss about the equations of motion of a particle under gravitation. BT-2 Understanding 4. A car accelerates uniformly from a speed of 30 kmph in 5 seconds. Determine the acceleration of the car and the distance travelled by the car during 5 seconds. BT-6 Creating 5. Give the dynamic equilibrium conditions. 6. State the law of conservation of momentum. BT-5 Evaluating Remember 7. A car starts from rest with a constant acceleration of 4m/sec2. Determine the distance travelled in the 7 th second. BT-6 Creating 8. A point P moves along a straight line according to the equation x= 4t3+2t+5, where x is in meters and t is in secs. Solve the velocity and acceleration at t=3 secs. 9. Solve the following: A stone is projected in space at an angle of 45 to horizontal at an initial velocity of 10 m/sec. Find the range of the projectile.

23 10. What is work energy principle. 11. Illustrate the impulse momentum equation? 12. Distinguish between kinetics and kinematics. BT-2 Understanding 13. Distinguish between impulse and impulsive force. BT-2 Understanding 14. Analyze the impulse momentum equation. Analyse 15. Compare and contrast the rectilinear and curvilinear motion. 16. Define inertia force. 17. What differences exist between impulse and momentum BT-2 Understanding 18. Compare and contrast the impact and elastic impact. 19. Define Co-efficient of restitution. 20. State Newton s law of collision of elastic bodies. 1. PART B A body A is projected vertically upwards from the top of a tower with a velocity of 40 m/s, the tower being 180m high. After t sec, another body B is allowed to fall from the same point. Both the bodies reach the ground simultaneously. Calculate t and the velocities of A and B on reaching the ground Two smooth spheres 1 and 2 having a mass of 2 kg and 4 kg respectively collide with initial velocities as shown in figure. If the coefficient of restitution for the spheres is e=0.8, determine the velocities of each sphere after collision. 2. BT-2 Understanding

24 Two bodies of 9 kg and 13.5 kg are suspended on two ends of a string passing over a pulley of radius 275 mm and mass moment of inertia = 16.5kg m2 as shown. Determine the tensions in the strings and the angular acceleration of the pulley. 3. BT-2 Understanding 4. A body moving with uniform acceleration observed to travel 33m in 8th second and 53m in 13 second of its travel. calculate the velocity at start and uniform acceleration 5. Two stones A and B are projected from the same point at inclinations of 45ᴼ and 30ᴼ respectively to the horizontal. Find the ratio of the velocities of projection of A and B if the maximum height reached by them is the same 6. Water drips from a tap fitted to a barrel at the rate of four drops per second. Find the vertical separation between two consecutive drops after the lower drop has attained a velocity of 3m/s 7. A train is traveling from A to D along the track shown in fig. Its initial velocity at A is zero. The train takes 5 min to cover the distance AB, 2250 m length and 2.5 minutes to cover, the distance BC, 3000 m in length, on reaching the station C, the brakes are applied and the train stops 2250 m beyond, at D (i) Find the retardation on CD, (ii) the time it takes the train to get from A to D, and (iii) its average speed for the whole distance. 8. The position of the particle is given by the relation S=1.5t3-9t2-22.5t+60, where S is expressed in meters and t in seconds. Determine (i) the time at which the velocity will be zero (ii) the position and distance travelled by the particle at that time (iii) the acceleration of the particle at that time and (iv) the distance travelled by the particle from t = 5s to t = 7s. BT-6 Creating

25 9. A particle is projected with a initial velocity of 12m/s at an angle M with the horizontal. After sometime, the position of the particle is observed by its x and y distances of 6m and 4m respectively from the point ofprojection. Find the angle of projection. 10. Two Blocks A and B of weight 100 N and 200 N respectively are initially at rest on a 30 inclined plane asshown in figure. The distance between the blocks is 6 m. The co efficient of friction between the block A and the plane is 0.25 and that between the block B and the plane is If they are released at the same time, in what time the upper block (B) reaches the Block (A). Two blocks of weight 150 N and 50 N are connected by a string and passing over a frictionless pulley as shown in figure. Predict the acceleration of blocks A and B and the tension in the string. 11. BT-2 Understanding 12. Two weights 80 N and 20 N are connected by a thread and move along a rought horizontal plane under the action of a force 40 N, applied to the first weight of 80 N as shown in figure. The coefficient of friction between the sliding surfaces of the wrights and the plane is 0.3. Design the acceleration of the weights and the tension in the thread using work-energy equation. BT-5 Evaluating

26 A block of mass 50 kg slides down a 35 incline and strikes a spring 1.5 m away from it as shown in Fig. The maximum compression of the spring is 300 mm when the block comes to rest. If the spring constant is 1 kn/m, Solve the coefficient of kinetic friction between the block and the plane. 13. A ball of mass 2 kg, moving with a velocity of 3 m/s, impinges on a ball of mass 4 kg moving with a velocity of 1 m/s. The velocities of the two balls are parallel and inclined at 30 to the line of joining their centres at the instant of impact.if the coefficient of restitution is 0.5, Explain I. Direction, in which the 4 kg ball will move after impact; (5) 14. II. Velocity of the 4 kg ball after impact; (2) III. Direction, in which the 2 kg ball will move after impact; (4) IV. Velocity of the 2 kg ball after impact. (2)

27 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK SUBJECT : GE8292 SEM / YEAR: II SEM / UNIT V - FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS Friction force Laws of sliding friction equilibrium analysis of simple systems with sliding friction wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies Velocity and acceleration General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere. PART A Q.No Questions BT Level Competence 1. Define angle of friction. 2. Define limiting friction. 3. Show that the mathematical definitions of velocity and acceleration. 4. Compare and contrast Ladder friction and Wedge friction. 5. A Car traverses half of a distance with a velocity of 40 Kmph and the remaining half of distance with a velocity of 60kmph. Determine the average velocity. BT-6 Creating 6. Define friction and classify its types. 7. Classify the types of friction. 8. Discuss about the coefficient of static friction. BT-2 Understanding 9. Discuss about the coulomb s laws of dry friction. BT-2 Understanding 10. Define rolling resistance. 11. Discuss coefficient of rolling resistance? BT-2 Understanding 12. Analyze the coefficient of friction and express its relationship with angle of friction. 13. If x=3.5t3 7 t2, determine acceleration, velocity and position of the particle, when t = 5 sec. BT-6 Creating 14. Illustrate the characteristics of general plane motion. BT-5 Evaluating 15. Design work energy equation of rigid body and mention BT-5 Evaluating the meaning for all parameters used in the 16. What are general plane motions? Give some examples.

28 17. Compare Co-efficient of friction and angle of friction 18. Define coulomb s laws of dry friction. 19. Define impending motion. 20. Define angle of repose. PART B 1. Two blocks A and B are placed on inclined planes as shown. The block A weighs 1000N. Determine minimum weight of the block B for maintaining the equilibrium of the system. Assume that the blocks are connected by an inextensible string passing over a frictionless pulley. Coefficient of friction µ A between the block A and the plane is Assume the same value for µ B. 2. Two rough planes are joined together. One of them is horizontal and the other is inclined at 45ᴼ to the horizontal. A 100 kg block is on the inclined plane and is connected to a 60 kg block on the horizontal plane through a cable passing over a smooth pulley at the junction of the planes. A dragging force of A is applied on 60 kg block at an angle of ϴ to the horizontal. Find the magnitude of the force and the value of ϴ for the motion is about to start. Assume µ = A block and pulley system is shown in figure below. The coefficient of kinetic friction between the block and the plane is The pulley is frictionless. Find the acceleration of the blocks and the tension in the string when the system is just released. Also find the time required for 100 kg block to come down by 2 m. BT-2 Understanding 4. A flywheel is fixed to the shaft of a motor. The unit attains the rated speed of 1200rpm in 4 seconds. But when it is switched off, the unit comes to rest in 70 seconds. Find the revolutions executed by the unit a) To attain the rated speed, and b) To come to rest after being switched off when the acceleration is uniform.

29 5. Two blocks 'A' and 'B' of masses m A = 280 kg and m B = 420 kg are jointed by an inextensible cable as shown in Fig. Assume that the pulley is frictionless and µ = 0.30 between block 'A' and the surface. The system is initially at rest. Determine (i) Acceleration of block A (ii) velocity after it has moved 3.5 m and (iii) velocity after 1.5 seconds. 6. Block (2) rests on block (1) and is attached by a horizontal rope AB to the wall as shown in fig. What force P is necessary to cause motion of block (1) to impend? The co-efficient of friction between the blocks is ¼ and between the floor and block (1) is 1/3. Mass of blocks (1) and (2) are 14kg and 9 kg respectively.

30 7. Block A weighing 1000 N rests on a rough inclined plane whose inclination to the horizontal is 45. It is connected to another block B, weighing 3000 N rests on a rough horizontal plane by a weightless rigid bar inclined at an angle of 30 to the horizontal as shown in fig. Find the horizontal force required to be applied to the block B just to move the block A in upward direction. Assume angle of friction as 15 at all surfaces where there is sliding. 8. A 7m long ladder rests against a vertical wall, with which it makes an angle of 45 and on a floor. If a man whose weight is one half that of the ladder climbs it, at what distance along the ladder will he be, when the ladder is about to slip? Take coefficient of friction between the ladder and the wall is 1/3 and that between the ladder and the floor is ½. BT1

31 9. An effort of 200 N is required just to move a certain body up an inclined plane of angle 15, the force is acting parallel to the plane. If the angle of inclination of the plane is made 20, the effort required being again parallel to the plane, is found to be 230 N. Predict the weight of the body and coefficient of friction. BT-2 Understanding 10. Illustrate the force P inclined at an angle of 32 to the inclined plane making an angle of 25 degree with the horizontal plane to slide a block weighing 125 KN (i) up the inclined plane (ii) Down the inclined plane, when P = A ladder of weight 1000 N and length 4 m rests as shown in figure. If a 750 N weight is applied at a distance of 3 m from the top of ladder, it is at the point of sliding. Determine the coefficient of friction between ladder and the floor. BT-6 Creating 12. A rope is wrapped 3 times around the rod as shown in the fig. Design the force required at the free end of the rope to stope the load w=20kn.takeµ=0.3 BT-5 Evaluating

32 13. Two blocks A and B of mass 50 kg and 100 kg respectively are connected by a string C which passes through a frictionless pulley connected with the fixed wall by another string D as shown in figure. Find the force P required to pull the lock B. Also find the tension in the string D. Take coefficient of friction at all contact surfaces as In the engine system shown in figure, the crank AB has a constant clockwise angular speed of 3000 r.p.m. For the crank position indicated, Analyse (i) the angular velocity of the connecting rod BP (ii) velocity of piston P

### VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

### KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

### Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester.

Ws11 Reg. No. : Question Paper Code : 27275 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Civil Engineering GE 6253 ENGINEERING MECHANICS (Common to all branches except Electrical

### PART-A. a. 60 N b. -60 N. c. 30 N d. 120 N. b. How you can get direction of Resultant R when number of forces acting on a particle in plane.

V.S.. ENGINEERING OLLEGE, KRUR EPRTMENT OF MEHNIL ENGINEERING EMI YER: 2009-2010 (EVEN SEMESTER) ENGINEERING MEHNIS (MEH II SEM) QUESTION NK UNIT I PRT- EM QUESTION NK 1. efine Mechanics 2. What is meant

### where G is called the universal gravitational constant.

UNIT-I BASICS & STATICS OF PARTICLES 1. What are the different laws of mechanics? First law: A body does not change its state of motion unless acted upon by a force or Every object in a state of uniform

### 2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

### Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS

3 Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Question Paper Consists

### JNTU World. Subject Code: R13110/R13

Set No - 1 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

### 2016 ENGINEERING MECHANICS

Set No 1 I B. Tech I Semester Regular Examinations, Dec 2016 ENGINEERING MECHANICS (Com. to AE, AME, BOT, CHEM, CE, EEE, ME, MTE, MM, PCE, PE) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part-A

### 2015 ENGINEERING MECHANICS

Set No - 1 I B. Tech I Semester Supplementary Examinations Aug. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

### Dept of ECE, SCMS Cochin

B B2B109 Pages: 3 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017 Course Code: BE 100 Course Name: ENGINEERING MECHANICS Max. Marks: 100 Duration:

### Anna University May/June 2013 Exams ME2151 Engineering Mechanics Important Questions.

Anna University May/June 2013 Exams ME2151 Engineering Mechanics Important Questions 1. Find the resultant force and its direction for the given figure 2. Two forces are acting at a point O as shown in

### Questions from all units

Questions from all units S.NO 1. 1 UNT NO QUESTON Explain the concept of force and its characteristics. BLOOMS LEVEL LEVEL 2. 2 Explain different types of force systems with examples. Determine the magnitude

ENGINEERING MECHANICS UNIT-I BASICS & STATICS OF PARTICLES 1. What is meant by mechanics? 2. What is meant by Engineering Mechanics? 3. State the different type of mechanics 4. Define Statics 5. Define

### if the initial displacement and velocities are zero each. [ ] PART-B

Set No - 1 I. Tech II Semester Regular Examinations ugust - 2014 ENGINEERING MECHNICS (Common to ECE, EEE, EIE, io-tech, E Com.E, gri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part- and

### ENGINEERING MECHANICS

Set No - 1 I B. Tech II Semester Regular/Supply Examinations July/Aug. - 2015 ENGINEERING MECHANICS (Common to ECE, EEE, EIE, Bio-Tech, E Com.E, Agri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists

### JNTU World. Subject Code: R13110/R13 '' '' '' ''' '

Set No - 1 I B. Tech I Semester Supplementary Examinations Sept. - 2014 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

### 2015 ENGINEERING MECHANICS

Set No - 1 I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem. E, Aero E, AME, Min E, PE, Metal E, Textile Engg.) Time: 3 hours

### 1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

Code No: Z0321 / R07 Set No. 1 I B.Tech - Regular Examinations, June 2009 CLASSICAL MECHANICS ( Common to Mechanical Engineering, Chemical Engineering, Mechatronics, Production Engineering and Automobile

### I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM)

Code.No: 09A1BS05 R09 SET-1 I B.TECH EXAMINATIONS, JUNE - 2011 ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Time: 3 hours Max. Marks: 75 Answer any FIVE questions All questions

### ENGINEERING MECHANICS - Question Bank

E Semester-_IST YEAR (CIVIL, MECH, AUTO, CHEM, RUER, PLASTIC, ENV,TT,AERO) ENGINEERING MECHANICS - Question ank All questions carry equal marks(10 marks) Q.1 Define space,time matter and force, scalar

### SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

### C7047. PART A Answer all questions, each carries 5 marks.

7047 Reg No.: Total Pages: 3 Name: Max. Marks: 100 PJ DUL KLM TEHNOLOGIL UNIVERSITY FIRST SEMESTER.TEH DEGREE EXMINTION, DEEMER 2017 ourse ode: E100 ourse Name: ENGINEERING MEHNIS PRT nswer all questions,

### Code No: R Set No. 1

Code No: R05010302 Set No. 1 I B.Tech Supplimentary Examinations, February 2008 ENGINEERING MECHANICS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering,

### E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

### K.GNANASEKARAN. M.E.,M.B.A.,(Ph.D)

DEPARTMENT OF MECHANICAL ENGG. Engineering Mechanics I YEAR 2th SEMESTER) Two Marks Question Bank UNIT-I Basics and statics of particles 1. Define Engineering Mechanics Engineering Mechanics is defined

### Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

### DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

### 7. What are the characteristics of a force? (N-11) A force is characterized by i). Magnitude ii).line of action iii).direction

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING GE 6253 ENGINEERING MECHANICS UNIT I : BASICS AND STATICS OF PARTICLES PART A (2 MARKS) 1. Define principle of transmissibility

### ISBN :

ISBN : 978-81-909042-4-7 - www.airwalkpublications.com ANNA UNIVERSITY - R2013 GE6253 ENGINEERING MECHANICS UNIT I: BASICS AND STATICS OF PARTICLES 12 Introduction Units and Dimensions Laws of Mechanics

### PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

### Statics deal with the condition of equilibrium of bodies acted upon by forces.

Mechanics It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics

### Coplanar Concurrent Forces 7) Find magnitude and direction of the resultant force of the force system as shown in

ALPHA COLLEGE OF ENGINEERING & TECHNOLOGY SUBJECT: Engineering Mechanics(3300008) Introduction 1) Define the terms. (WINTER 2013) [1] Kinematics [2] Freebody diagram [3] Equilibrunt [4] Couple [5] Limiting

### A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

### Physics for Scientists and Engineers 4th Edition, 2017

A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

### Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine

(ISO/IEC - 700-005 Certified) Model Answer: Summer 07 Code: 70 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

### PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

### Coimisiún na Scrúduithe Stáit State Examinations Commission

00. M3 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, 5 JUNE MORNING, 9.30 to.00 Six questions to be answered.

### Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

### PESIT- Bangalore South Campus Dept of science & Humanities Sub: Elements Of Civil Engineering & Engineering Mechanics 1 st module QB

PESIT- Bangalore South Campus Dept of science & Humanities Sub: Elements Of Civil Engineering & Engineering Mechanics 1 st module QB Sub Code: 15CIV13/23 1. Briefly give the scope of different fields in

### USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

Set No - 1 I B. Tech II Semester Supplementary Examinations Feb. - 2015 ENGINEERING MECHANICS (Common to ECE, EEE, EIE, Bio-Tech, E Com.E, Agri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists

### STATICS Chapter 1 Introductory Concepts

Contents Preface to Adapted Edition... (v) Preface to Third Edition... (vii) List of Symbols and Abbreviations... (xi) PART - I STATICS Chapter 1 Introductory Concepts 1-1 Scope of Mechanics... 1 1-2 Preview

### AP Mechanics Summer Assignment

2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

### 1 MR SAMPLE EXAM 3 FALL 2013

SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

### Force and Moment. Figure 1 Figure 2

Force and Moment 1 Determine the magnitude and direction of the resultant of the two forces shown, using (a) the parallelogram law (b) the sine law. [1391 N, 47.8 ] Figure 1 Figure 2 2 The force F of magnitude

### E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu.

Academic Year: 017-018 1701GEX04 ENGINEERING MECHANICS Programme: Question Bank B.E Mechanical Year / Semester: I / II Course Coordinator: Mr.S.K.Krishnakumar/ Mr.V.Manathunainathan Course Objectives To

GCE Advanced Level 2014 Combined Mathematics I Model Paper 04 PART A (Answer all questions) Time 3 hrs 1. A cyclist rides along a straight path with uniform velocity u and passes a motor car, which is

### APPLIED MATHEMATICS HIGHER LEVEL

L.42 PRE-LEAVING CERTIFICATE EXAMINATION, 203 APPLIED MATHEMATICS HIGHER LEVEL TIME : 2½ HOURS Six questions to be answered. All questions carry equal marks. A Formulae and Tables booklet may be used during

### PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

### 1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg

1. What would be the value of F1 to balance the system if F2=20N? F2 5cm 20cm F1 (a) 3 N (b) 5 N (c) 4N (d) None of the above 2. The stress in a wire of diameter 2 mm, if a load of 100 gram is applied

### Equilibrium & Elasticity

PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

### Q1. Which of the following is the correct combination of dimensions for energy?

Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Name Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK ENGINEERING MECHANICS AME002 B.Tech II Semester AE /

### TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

### Equilibrium of a Rigid Body. Engineering Mechanics: Statics

Equilibrium of a Rigid Body Engineering Mechanics: Statics Chapter Objectives Revising equations of equilibrium of a rigid body in 2D and 3D for the general case. To introduce the concept of the free-body

### (a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

### M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity.

Page 1 M1 January 003 1. A railway truck P of mass 000 kg is moving along a straight horizontal track with speed 10 ms -1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same

### Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

### Model Answers Attempt any TEN of the following :

(ISO/IEC - 70-005 Certified) Model Answer: Winter 7 Sub. Code: 17 Important Instructions to Examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer

STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

### ENGINEERING MECHANICS SOLUTIONS UNIT-I

LONG QUESTIONS ENGINEERING MECHANICS SOLUTIONS UNIT-I 1. A roller shown in Figure 1 is mass 150 Kg. What force P is necessary to start the roller over the block A? =90+25 =115 = 90+25.377 = 115.377 = 360-(115+115.377)

### Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

### TOPIC B: MOMENTUM EXAMPLES SPRING 2019

TOPIC B: MOMENTUM EXAMPLES SPRING 2019 (Take g = 9.81 m s 2 ). Force-Momentum Q1. (Meriam and Kraige) Calculate the vertical acceleration of the 50 cylinder for each of the two cases illustrated. Neglect

### Thomas Whitham Sixth Form Mechanics in Mathematics

Thomas Whitham Sixth Form Mechanics in Mathematics 6/0/00 Unit M Rectilinear motion with constant acceleration Vertical motion under gravity Particle Dynamics Statics . Rectilinear motion with constant

### A.M. MONDAY, 25 January hours

GCE S/ level 980/01 MTHEMTICS M1 Mechanics 1.M. MONDY, 25 January 2010 1 1 2 hours W10 0980 01 1 DDITIONL MTERILS In addition to this examination paper, you will need: a 12 page answer book; a Formula

Subject : Engineering Mechanics Subject Code : 1704 Page No: 1 / 6 ----------------------------- Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING DEFINITIONS AND TERMINOLOGY Course Name : ENGINEERING MECHANICS Course Code : AAEB01 Program :

### CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS

CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS 1. What are vectors and scalar quantities? Give one example of each. (1993, 2012) 2. What are the different methods of adding two vectors? (1988) 3.

### Sample Test Paper - I

Scheme - G Sample Test Paper - I Course Name : Civil, Chemical, Mechanical and Electrical Engineering Group Course Code : AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS Semester : Second Subject Title :

### Regents Physics. Physics Midterm Review - Multiple Choice Problems

Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

### MOI (SEM. II) EXAMINATION.

Problems Based On Centroid And MOI (SEM. II) EXAMINATION. 2006-07 1- Find the centroid of a uniform wire bent in form of a quadrant of the arc of a circle of radius R. 2- State the parallel axis theorem.

### APPLIED MATHEMATICS AM 02

AM SYLLABUS (2013) APPLIED MATHEMATICS AM 02 SYLLABUS Applied Mathematics AM 02 Syllabus (Available in September) Paper I (3 hrs)+paper II (3 hrs) Applied Mathematics (Mechanics) Aims A course based on

### Review Chapter 1 and 2 [184 marks]

Review Chapter 1 and 2 [184 marks] This question is in two parts. Part 1 is about momentum. Part 2 is about electric point charges. Part 1 Momentum 1a. State the law of conservation of linear momentum.

### is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

### Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

### Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1

Section 4: TJW Force-mass-acceleration: Example 1 The beam and attached hoisting mechanism have a combined mass of 1200 kg with center of mass at G. If the inertial acceleration a of a point P on the hoisting

### UNIT-1 DEPARTMENT OF MECHANICAL ENGINEERING SUBJECT: ENGINEERING MECHANICS (ME101ME/201) Q.1. Q.2. D E. C 1.5m. 60 o A B.

UNIT-1 DEPRTMENT OF MEHNIL ENGINEERING SUJET: ENGINEERING MEHNIS (ME101ME/201) Mr.Nurul Hassan Q.1. Q.2. D E 2 D 1.5m 1 1m 60 o 120mm Radius of ball 1=100mm and ball 2=50mm ; Weight of ball 1=2000N and

### BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

### Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

### COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013 PROGRAMME SUBJECT CODE SUBJECT : Foundation in Engineering : PHYF115 : Physics I DATE : September 2012

### M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

M1 January 2003 1. railway truck P of mass 2000 kg is moving along a straight horizontal track with speed 10 m s 1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same track.

### 3. Kinetics of Particles

3. Kinetics of Particles 3.1 Force, Mass and Acceleration 3.3 Impulse and Momentum 3.4 Impact 1 3.1 Force, Mass and Acceleration We draw two important conclusions from the results of the experiments. First,

### Sample Final Exam 02 Physics 106 (Answers on last page)

Sample Final Exam 02 Physics 106 (Answers on last page) Name (Print): 4 Digit ID: Section: Instructions: 1. There are 30 multiple choice questions on the test. There is no penalty for guessing, so you

### PHYSICS 221 SPRING 2014

PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

### AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

### Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

### REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

### Get Solution of These Packages & Learn by Video Tutorials on EXERCISE-1 (C) (C) ml2

EXERCISE-1 1. A thin rod of length 4 l, mass 4m is bent at the points as shown in the fig. What is the moment of inertia of the rod about the axis passing point O & perpendicular to the plane of the paper.

### INSTITUTE OF AERONAUTICAL ENGINEERING

Department Course Code Course Title INSTITUTE OF AERONAUTICAL ENGINEERING Course Category Course Structure : Course Coordinator Team of Instructors Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING

### TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

### Suggested Problems. Chapter 1

Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

### Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

### APPLIED MATHEMATICS IM 02

IM SYLLABUS (2013) APPLIED MATHEMATICS IM 02 SYLLABUS Applied Mathematics IM 02 Syllabus (Available in September) 1 Paper (3 hours) Applied Mathematics (Mechanics) Aims A course based on this syllabus

### Rotation. PHYS 101 Previous Exam Problems CHAPTER

PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

### Mechanics 2. Revision Notes

Mechanics 2 Revision Notes October 2016 2 M2 OCTOER 2016 SD Mechanics 2 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 7 Centre

### Figure 1 Answer: = m

Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

### CHAPTER 4 NEWTON S LAWS OF MOTION

62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

### 1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.