# Pine Hill Public Schools Curriculum

Size: px
Start display at page:

Transcription

1 Content Area: Pine Hill Public Schools Curriculum Science Course Title/ Grade Level: Honors Physics / Gr. 11 & 12 Unit 1: Unit 2: Unit 3: Unit 4: Unit 4: Introduction, Measurement, Estimating Duration: 1 week Describing Motion: Kinematics in One Duration: 3 week Dimension Kinematics in Two Dimensions; Vectors Duration: 2 weeks Dynamics: Newton s Laws of Motion Duration: 3 weeks Benchmark Exam #1 Dynamics: Newton s Laws of Motion Duration: 3 weeks Duration: 1 day (Administered on the 9 th instructional Week) Unit 5: Circular Motion; Gravitation Duration: 5 weeks Unit 6: Work and Energy Duration: 1 week Benchmark Exam #2 Duration: 1 day (Administered on the 18 th instructional Week) Unit 6: Work and Energy Duration: 4 week Unit 7: Linear Momentum Duration: 3 weeks Unit 8: Rotational Motion Duration: 2 weeks Benchmark Exam #3 Duration: 1 day (Administered on the 27 th instructional Week) Unit 8: Rotational Motion Duration: 2 weeks Unit 9: Oscillations and Waves Duration: 2 weeks Unit 10: Sound Duration: 2 weeks Unit 11: Electric Charge and Electric Fields & Electric Potential Unit 12 Electric Current Duration: 1 week Unit 13 DC Circuits Duration: 1 week Benchmark Exam #4 BOE Approved date: Ratified October 2014 Date Created or Revised: September 2014 Duration: 8 days + 4 days = 12 days Duration: 3 day (Administered on the 36 th instructional Week)

2

3 Pine Hill Public Schools Science Curriculum Unit Title: Introduction, Measurement, Unit #1 Estimating (Ch1) Course or Grade Level: Honors Physics Length of Time: 1 week NGSS Performance Expectations (PE s) 2-1. Analyze data to support the claim that Newton s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2- HS-PS2- HS-PS2-4. HS-PS2-5. Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Use mathematical representations of Newton s Law of Gravitation and Coulomb s Law to describe and predict the gravitational and electrostatic forces between objects. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Models, theories, and laws - Significant figures - Units, standards, and the SI system

4 - Converting units - Rapid Estimating - Dimensional analysis - Types of measurements - Rules for rounding measurements - Scientific notation - Scientific method of problem solving - Writing a lab report Skills - Display information and interpret information on various types of graphs (line graphs, histograms, pie charts ) - Express measurements using appropriate labels and units - Perform calculations and report answers with the appropriate amount of significant digits - Express measurements metric units - Express measurements in various magnitudes using metric prefixes - Use the rule for expressing answers to calculations with the correct number of significant digits - Express numbers in scientific notation - Analyze information using experimental error Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Chapter study guides - Oral presentation of chapter concepts - Laboratory exercises related to subject matter Bambi/Rudolph Lab Measurement lab#1 Conversion Lab

5 Pine Hill Public Schools Science Curriculum Unit Title: Describing Motion: Kinematics in Unit #2 One Dimension (Ch2) Course or Grade Level: Honors Physics Length of Time: 3 weeks NGSS Performance Expectations (PE s) 2-1. Analyze data to support the claim that Newton s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2-1 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Reference frames and displacement

6 Skills/Learning Objectives - Average Velocity - Instantaneous Velocity - Acceleration - Motion at Constant acceleration - Solving Problems - Free Falling Objects - Graphical Analysis of Linear Motion - Differentiate between scalar and vector measurements - Solve vector problems using graphical techniques and computational methods - Calculate the resultant of two or more vector quantities - Resolve a vector into its horizontal and vector components Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Speed Lab Deriving equations of motion Acceleration Due to Gravity #1 Acceleration Due to Gravity #2 - Chapter study guides - Oral presentation of chapter concepts

7 Pine Hill Public Schools Science Curriculum Unit Title: Kinematics in Two Dimensions Unit #3 Course or Grade Level: Honors Physics(Ch s Length of Time: 2 weeks 2,3, & 6) NGSS Performance Expectations (PE s) 2-1. Analyze data to support the claim that Newton s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2- HS-PS2- HS-PS2-4. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Use mathematical representations of Newton s Law of Gravitation and Coulomb s Law to describe and predict the gravitational and electrostatic forces between objects. HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.* 1 Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking

8 NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Vectors and Scalars - Addition of Vectors, and Multiplication of a Vector by a Scalar - Adding vectors by components - Projectile motion - Solving projectile motion problems - Projectile motion is parabolic Skills/Learning Objectives - Use Pythagorean Theorem and trig functions to determine the vector forces acting on an object - Determine the net force acting on an object allowing for frictional effects - Calculate the velocity, acceleration or position of a freely falling body - Construct a vector diagram to show the resultant acting on a body - Use vector addition to show the resultant force and the equilibrant - Solve incline plane problems using trig function express the motion of an object using narrative, mathematical, and graphical representations. - Design an experimental investigation of the motion of an object. - Analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical, and graphical representations. Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports

9 Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Projectile Motion lab1 Projectile Motion lab2 Projectile Bingo Lab - Chapter study guides - Oral presentation of chapter concepts

10 Pine Hill Public Schools Science Curriculum Unit Title: Dynamics: Newton s Laws of Unit #4 Motion (Ch4) Course or Grade Level: Honors Physics Length of Time: 6 weeks NGSS Performance Expectations (PE s) 2-1. Analyze data to support the claim that Newton s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2- HS-PS2- HS-PS2-4. HS-PS2-5. HS-PS Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Use mathematical representations of Newton s Law of Gravitation and Coulomb s Law to describe and predict the gravitational and electrostatic forces between objects. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.* Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations

11 Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Force - Newton s First Law of Motion - Mass - Newton s 2 nd Law of Motion - Newton s 3 rd Law of Motion - Weight and the force of Gravity and the Normal Force - Solving problems with Newton s Laws: Free-Body Diagrams - Problems involving friction and inclines Skills/Learning Objectives Model verbally or visually the properties of a system based on its substructure and to relate this to changes in the system properties over time as external variables are changed. Design an experiment for collecting data to determine the relationship between the net force exerted on an object, its inertial mass, and its acceleration. Design a plan for collecting data to measure gravitational mass and to measure inertial mass, and to distinguish between the two experiments. Apply F = mg to calculate the gravitational force on an object with mass m in a gravitational field of strength g in the context of the effects of a net force on objects and systems.

12 Approximate a numerical value of the gravitational field (g) near the surface of an object from its radius and mass relative to those of the Earth or other reference objects. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Analyze situations involving interactions among several objects by using free-body diagrams that include the application of Newton's third law to identify forces. Make predictions about the motion of an object subject to forces exerted by several objects using an application of Newton's second law in a variety of physical situations with acceleration in one dimension. Design a plan to collect and analyze data for motion (static, constant, or accelerating) from force measurements and carry out an analysis to determine the relationship between the net force and the vector sum of the individual forces. Draw a free-body diagram representation into a mathematical representation and solve the mathematical representation for the acceleration of the object. Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Identifying Forces lab Drawing FBD s Calculating Force lab Tension Lab Static Friction lab Kinetic Friction Lab #1 Kinetic Friction Lab #2 Kinetic Friction Lab #3 - Chapter study guides - Oral presentation of chapter concepts

13 Pine Hill Public Schools Science Curriculum Unit Title: Dynamics: Circular Motion; Unit #5 Gravitation(Ch s 6,7) Course or Grade Level: Honors Physics Length of Time: 6 weeks NGSS Performance Expectations (PE s) 2-1. Analyze data to support the claim that Newton s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2- Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. 1 Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information

14 NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Kinematic of Uniform Circular Motion - Dynamics of Uniform Circular Motion - Highway Curves: Banked and unbanked - Nonuniform Circular Motion - Newton s Law of Universal Gravitation - Gravity near Earth s Surface - Satellites and Weightlessness - Planets, Kepler s Laws, and Newtonian Synthesis - Moon Rises an hour later each day - Types of forces in nature Skills/Learning Objectives - Solve problems involving freely falling bodies - Solve problems for moving objects in two dimensions - Determine the position of a body moving with an initial velocity as it moves in two dimension - Calculate the velocity and acceleration of a body moving in two dimensions - Using Kepler s Laws determine the period and radius of an orbiting object - Apply Universal Law of Gravitation to determine the mass of an object or the distance it is from another object - Apply F =mg to calculate the gravitational force on an object with mass m in a gravitational field of strength g in the context of the effects of a net force on objects and systems. - Analyze situations involving interactions among several objects by using free-body diagrams that include the application of Newton's third law to identify forces. - Predict the motion of an object subject to forces exerted by several objects using an application of Newton's

15 second law in a variety of physical situations with acceleration in one dimension. - Create and use free-body diagrams to analyze physical situations to solve problems with motion qualitatively and quantitatively. - Use Newton's law of gravitation to calculate the gravitational force between two objects and use that force in contexts involving orbital motion Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Flying Pig Lab Circular motion lab Motion Detector lab - Chapter study guides - Oral presentation of chapter concepts

16 Pine Hill Public Schools Science Curriculum Unit Title: Work and Energy (Ch10,11) Unit #6 Course or Grade Level: Honors Physics Length of Time: 5 weeks NGSS Performance Expectations (PE s) HS-PS2- HS-PS Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence

17 NOS-Science Addresses Questions About the Natural and Material World Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Work done by constant force - Work done by varying force - Kinetic energy, and the Work-Energy Principle - Potential energy - Conservative and neoconservative forces - Mechanical Energy and its conservation - Problem solving using conservation of mechanical energy - Other forms of energy and energy transformations: The Law of Conservation of Energy - Energy conservation with dissipative forces: solving problems - Power Skills/Learning Objectives Apply F =mg to calculate the gravitational force on an object with mass m in a gravitational field of strength g in the context of the effects of a net force on objects and systems. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Describe a force as an interaction between two objects and identify both objects for any force. Make predictions about the changes in kinetic energy of an object based on considerations of the direction of the net force on the object as the object moves. Use net force and velocity vectors to determine qualitatively whether kinetic energy of an object would increase, decrease, or remain unchanged. Use force and velocity vectors to determine qualitatively or quantitatively the net force exerted on an object and qualitatively whether kinetic energy of that object would increase, decrease, or remain unchanged. Calculate the total energy of a system and justify the mathematical routines used in the calculation of component types of energy within the system whose sum is the total energy.

18 Predict changes in the total energy of a system due to changes in position and speed of objects or frictional interactions within the system. Apply the concepts of Conservation of Energy and the Work- Energy theorem to determine qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. Describe and make predictions about the internal energy of systems. Calculate changes in kinetic energy and potential energy of a system, using information from representations of that system. Design an experiment and analyze data to examine how a force exerted on an object or system does work on the object or system as it moves through a distance. Predict and calculate from graphical data the energy transfer to or work done on an object or system from information about a force exerted on the object or system through a distance. Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Friction Lab revisited with work and energy Work and Energy lab Potential energy and Kinetic energy lab Revisit the velocity of a marble lab using the work and energy theorems - Chapter study guides - Oral presentation of chapter concepts

19 Pine Hill Public Schools Science Curriculum Unit Title: Linear Momentum (Ch9) Unit #7 Course or Grade Level: Honors Physics Length of Time: 3 weeks NGSS Performance HS-PS2- Expectations (PE s) HS-PS2-1 Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence

20 NOS-Science Addresses Questions About the Natural and Material World Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Momentum and its relation to force - Conservation of Momentum - Collisions and impulse - Conservation of energy and momentum in collisions - Elastic collisions in one dimension - Inelastic collisions - Collision in two dimensions - Center of Mass - Center of mass for the human body - Center of mass and translational motion Skills/Learning Objectives Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Able to justify the selection of data needed to determine the relationship between the direction of the force acting on an object and the change in momentum caused by that force. Predict the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted. Analyze data to characterize the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted. Design a plan for collecting data to investigate the relationship between changes in momentum and the average force exerted on an object over time. Calculate the change in linear momentum of a two-object system with constant mass in linear motion from a representation of the system (data, graphs, etc.). Analyze data to find the change in linear momentum for a constant-mass system using the product of the mass and the change in velocity of the center of mass. Apply mathematical routines to calculate the change in momentum of a system by analyzing the average force exerted over a certain time on the system.

21 Make qualitative predictions about natural phenomena based on conservation of linear momentum and restoration of kinetic energy in elastic collisions. Apply mathematical routines appropriately to problems involving elastic collisions in one dimension and justify the selection of those mathematical routines based on conservation of momentum and restoration of kinetic energy. Design an experimental test of an application of the principle of the conservation of linear momentum, predict an outcome of the experiment using the principle, analyze data generated by that experiment whose uncertainties are expressed numerically, and evaluate the match between the prediction and the outcome. Plan data collection strategies to test the law of conservation of momentum in a two-object collision that is elastic or inelastic and analyze the resulting data graphically. Analyze data that verify conservation of momentum in collisions with and without an external friction force. Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Pendulum Lab Ramp lab Revisit the velocity of a marble lab using momentum - Chapter study guides - Oral presentation of chapter concepts

22 Pine Hill Public Schools Science Curriculum Unit Title: Rotational Motion (Ch8) Unit #8 Course or Grade Level: Honors Physics Length of Time: 4 weeks NGSS Performance HS-PS2- Expectations (PE s) HS-PS2-1 Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods

23 NOS-Science Addresses Questions About the Natural and Material World Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Momentum and its relation to force - Conservation of Momentum - Collisions and impulse - Conservation of energy and momentum in collisions - Elastic collisions in one dimension - Inelastic collisions - Collision in two dimensions - Center of Mass - Center of mass for the human body - Center of mass and translational motion Skills/Learning Objectives Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Able to use representations of the relationship between force and torque. Design an experiment and analyze data testing a question about torques in a balanced rigid system. Determine the center of mass of an isolated two-object system Analyze the motion of the system qualitatively and semiquantitatively. Learning Objective (4.D.1): The student is able to describe a model of a rotational system and use that model to analyze a situation in which angular momentum changes due to interaction with other objects or systems. Make calculations of quantities related to the angular momentum of a system when the net external torque on the system is zero. Describe or calculate the angular momentum and rotational inertia of a system in terms of the locations and velocities of objects that make up the system. Students are expected to do qualitative reasoning with compound objects. Students are expected to do calculations with a fixed set of extended objects and point masses.

24 Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Elastic collision lab Inelastic collision lab Find the Center of mass of an irregular shape Bat Speed lab - Chapter study guides - Oral presentation of chapter concepts

25 Pine Hill Public Schools Science Curriculum Unit Title: Oscillations and Waves (Ch 14 ) Unit #9 Course or Grade Level: Honors Physics Length of Time: 2 weeks NGSS Performance HS-PS1- Expectations (PE s) 1. HS-PS1- HS-PS1-7. HS-PS1-8. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

26 Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Evaluate questions about the advantages of using a digital transmission and storage of information. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

27 Content - Simple Harmonic motion - Energy in simple harmonic motion - The period and sinusoidal nature of SHM - The simple pendulum - Damped harmonic motion - Forced oscillations; Resonance - Wave Motion - Types of waves and their speeds - Energy Transported by waves - Reflection and transmission of waves - Interference; Principle of Superposition - Standing waves; Resonance - Refraction - Diffraction - Mathematical representation of traveling wave Skills/Learning Objectives Apply F =mg to calculate the gravitational force on an object with mass m in a gravitational field of strength g in the context of the effects of a net force on objects and systems. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Predict which properties determine the motion of a simple harmonic oscillator and what the dependence of the motion is on those properties. Design a plan and collect data in order to ascertain the characteristics of the motion of a system undergoing oscillatory motion caused by a restoring force. Analyze data to identify qualitative or quantitative relationships between given values and variables (i.e., force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length, mass) associated with objects in oscillatory motion to use that data to determine the value of an unknown. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of conservation of energy principles to calculate the change in internal energy due to changes in internal structure because the object is actually a system. Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments

28 Interventions/ differentiated instruction Lesson resources/activities - Experiments/lab reports - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Pendulum Lab #2 Damped Harmonic Motion Vs. Undamped Resonance lab Lenses lab Mirror/reflection lab - Chapter study guides - Oral presentation of chapter concepts

29 Pine Hill Public Schools Science Curriculum Unit Title: Sound (Ch 15,16) Unit #10 Course or Grade Level: Honors Physics Length of Time: 2 weeks NGSS Performance HS-PS1- Expectations (PE s) 1. HS-PS1- HS-PS1-7. HS-PS1-8. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Evaluate questions about the advantages of using a digital transmission and storage of information.

30 Cross Cutting Concepts Patterns Cause and Effect Scale, Proportion, and Quantity Systems and Systems Models Energy and Matter in Systems Structure and Function Stability and Change in Systems NOS-Science is a Way of Knowing NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems NOS-Science is a Human Endeavor NOS-Science Addresses Questions About the Natural and Material World Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. Science and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information Scientific Investigations Use a Variety of Methods Scientific Knowledge is Based on Empirical Evidence Scientific Knowledge is Open to Revision in Light of New Evidence Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Content - Characteristics of sound - Intensity of sound: Decibels - Sources of sound: Vibrating strings and air columns - Interference of sound waves; Beats - Doppler effect Skills/Learning Objectives Describe representations of transverse and longitudinal waves. Describe sound in terms of transfer of energy and momentum in a medium and relate the concepts to everyday examples. Use graphical representation of a periodic mechanical wave to determine the amplitude of the wave. Explain and/or predict qualitatively how the energy carried by a sound wave relates to the amplitude of the wave, and/or apply this concept to a real-world example.

31 Use a visual representation of a periodic mechanical wave to determine wavelength of the wave. Analyze data or observations or evaluate evidence of the interaction of two or more traveling waves in one or two dimensions (i.e., circular wave fronts) to evaluate the variations in resultant amplitudes. Predict properties of standing waves that result from the addition of incident and reflected waves that are confined to a region and have nodes and antinodes. Calculate wavelengths and frequencies (if given wave speed) of standing waves based on boundary conditions and length of region within which the wave is confined, and calculate numerical values of wavelengths and frequencies. Examples should include musical instruments. Use a visual representation to explain how waves of slightly different frequency give rise to the phenomenon of beats Assessments - Teacher evaluation of special projects - Quizzes and chapter tests - Homework/class work assignments - Experiments/lab reports Interventions/ differentiated instruction Lesson resources/activities - Provide advanced notice for tests - Present materials suitable to student s level of functioning - Include hands on activities - Provide options for independent study - Hands on activities - Laboratory exercises related to subject matter Building a speaker lab Speed of sound lab - Chapter study guides - Oral presentation of chapter concepts

32 Pine Hill Public Schools Science Curriculum Unit Title: Electric Charge and Electric Field, Unit #11 Electric Potential (Ch s 20,21) Course or Grade Level: Honors Physics Length of Time: = 12 days (only 4 days on electric potential) NGSS Performance HS-PS1- Expectations (PE s) 1. HS-PS1- HS-PS1- HS-PS1-7. HS-PS1-8. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Evaluate questions about the advantages of using a digital transmission and storage of information.

### AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES

AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES KINEMATICS 3.A.1.1: The student is able to express the motion of an object using narrative, mathematical, and graphical representations. [SP 1.5, 2.1, 2.2]

### Physics 1. and graphical representations. Express the motion of an object using narrative, mathematical,

Theme Strand Topics Physics The Marriage of Motion and Energy Kinematics Motion in one direction Motion in two directions Content Statement Learning Targets: I can describe the similarities and differences

### Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement

Course Name: AP Physics Team Names: Jon Collins 1 st 9 weeks Objectives Vocabulary 1. NEWTONIAN MECHANICS and lab skills: Kinematics (including vectors, vector algebra, components of vectors, coordinate

### AP PHYSICS 1 Learning Objectives Arranged Topically

AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters

### HS AP Physics 1 Science

Scope And Sequence Timeframe Unit Instructional Topics 5 Day(s) 20 Day(s) 5 Day(s) Kinematics Course AP Physics 1 is an introductory first-year, algebra-based, college level course for the student interested

### Pine Hill Public Schools Curriculum

Pine Hill Public Schools Curriculum Content Area: Science Course Title/ Grade Level: AP Physics 2 / Gr. 11 & 12 Unit 1: Electrostatics Duration: 7 week Unit 2: Electric Circuits Duration: 2 week Benchmark

### Grade Level: 10,11,12. Course Overview:

Course:Advanced Placement Physics 1 Content Area: Science Grade Level: 10,11,12 Course Overview: AP Physics 1: Algebra-based is part one of a two-year sequence equivalent to the first and second semesters

### PHYSICS CURRICULUM. Unit 1: Measurement and Mathematics

Chariho Regional School District - Science Curriculum September, 2016 PHYSICS CURRICULUM Unit 1: Measurement and Mathematics OVERVIEW Summary Mathematics is an essential tool of physics. This unit will

### 1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement

Textbook Correlation Textbook Correlation Physics 1115/2015 Chapter 1 Introduction, Measurement, Estimating 1.1 Describe thoughts of Aristotle vs. Galileo in describing motion 1 1 Nature of Science 1.2

### Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department:

Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department: Nadia Iskandarani Teacher(s) + e-mail: Cycle/Division: Ms.Shewon Nasir: Shewon.n@greenwood.sch.ae High School

### Page 1 of 9. Curriculum Map: Physics/Lab Course: Physics Sub-topic: Physics. Unit: Language of Physics Timeline: 2 Weeks Unit Description:

Curriculum Map: Physics/Lab Course: Physics Sub-topic: Physics Grade(s): 10 to 12 Course Course Textbooks, Workbooks, Materials Citations: Through theory and laboratory practices, the student will learn

### SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

SPRING GROVE AREA SCHOOL DISTRICT PLANNED COURSE OVERVIEW Course Title: Advanced Placement Physics 1 Grade Level(s): 10-12 Units of Credit: 1.5 credits Classification: Elective Length of Course: 30 cycles

### Physics Teaching & Learning Framework (Block) Unit 4. Sounds, Waves and Light SP4

Physics Physics Standards The Cobb Teaching and Learning Standards (CT & LS) for science are designed to provide foundational knowledge and skills for all students to develop proficiency in science. The

### AP Physics 1. Essential Question(s) Standards(College Board Standards for Science)

Unit 1 KINEMATICS 3 weeks Describing the motion of objects. Use Free-body diagrams to analyze and solve problems Projectile Motion How can one or two dimensional motion be described? Why is it an advantage

### AP Physics 1. Course Overview

Radnor High School Course Syllabus AP Physics 1 Credits: Grade Weighting: Yes Prerequisites: Co-requisites: Length: Format: 1.0 Credit, weighted Honors chemistry or Advanced Chemistry Honors Pre-calculus

### 1 Physics Level I. Concepts Competencies Essential Questions Standards / Eligible Content

Math Review Concepts Competencies Essential Questions Standards / Eligible A. Math Review 1. Accuracy & Precision 2. Quantitative Measurement 3. Scientific Notation 4. Algebraic Distributing & Factoring

### BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS MECHANICS AND HEAT

BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS 2325 - MECHANICS AND HEAT CATALOG DESCRIPTION: PHYS 2325 Mechanics and Heat. CIP 4008015403 A calculus-based approach to the principles of mechanics

### Physics Curriculum Pacing Guide MONTGOMERY COUNTY PUBLIC SCHOOLS

MONTGOMERY COUNTY PUBLIC SCHOOLS Physics Curriculum Pacing Guide 1 st 9 Weeks SOL Objectives Vocabulary 2 Days INTRODUCTION: PH.1 The student will plan and conduct investigations using experimental design

### Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p.

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. 7 Review & Summary p. 8 Problems p. 8 Motion Along

### East Penn School District Secondary Curriculum

East Penn School District Secondary Curriculum A Planned Course Statement for Advanced Placement Physics : Algebra Based Course # Grades Department 465, Science Length of Period (mins): 40 mins Total Clock

### Curricular Requirements

Curricular Requirements Code Description Page CR1 CR2 CR2a CR2b CR2c CR2d CR2e CR2f CR2g CR2h CR2i CR2j CR3 CR4 CR5 CR6 Students and teachers have access to college-level resources including college-level

### Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science

Physics Curriculum Physics Overview Course Description Physics is the study of the physical world and is a mathematical application of science. The study includes an investigation of translational and

### Physics Scope and Sequence

Motion Readiness: First Grading Period (24 days) Scientific Investigation and Reasoning. (Process skills and implemented instruction and are not taught in isolation.) ESS.1 A,B Aug 22- ESS.2 A,B,C,D,E,F,G,H,I,J,K,L

### Physics Curriculum. * Optional Topics, Questions, and Activities. Topics

* Optional Topics, Questions, and Activities Physics Curriculum Topics 1. Introduction to Physics a. Areas of science b. Areas of physics c. Scientific method * d. SI System of Units e. Graphing 2. Kinematics

### Standards at a Glance

Standards at a Glance NGSS The Next Generation Science Standards identify the key scientific ideas and practices that all students should learn by the time they graduate from high school. Each standard

### Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School

Prentice Hall Physics: Principles with Applications, Updated 6th Edition (Giancoli) 2009 High School C O R R E L A T E D T O Physics I Students should understand that scientific knowledge is gained from

### Centerville Senior High School Curriculum Mapping Physics, 1 st Nine Weeks Damon Anderson

Centerville Senior High School Curriculum Mapping Physics, 1 st Nine Weeks Damon Anderson 2/1 P.1.1 What is the difference between speed and Finding gravity lab Displacement, velocity? velocity 2/2 P.1.1

### SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

### Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

### Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

### Saint Patrick High School

Saint Patrick High School Curriculum Guide Physics Department: Science Grade and Level: 11th and 12th grade Class: Physics Term (Semester or Year): Year course Required Text: Additional Resources (i.e.

### Physics Curriculum Guide for High School SDP Science Teachers

Physics Curriculum Guide for High School SDP Science Teachers Please note: Pennsylvania & Next Generation Science Standards as well as Instructional Resources are found on the SDP Curriculum Engine Prepared

### Prentice Hall: Conceptual Physics 2002 Correlated to: Tennessee Science Curriculum Standards: Physics (Grades 9-12)

Tennessee Science Curriculum Standards: Physics (Grades 9-12) 1.0 Mechanics Standard: The student will investigate the laws and properties of mechanics. The student will: 1.1 investigate fundamental physical

### Unit assessments are composed of multiple choice and free response questions from AP exams.

AP Physics B Text: Serway, Raymond A., and Jerry S. Faugh, College Physics, 7 th ed. Belmont, CA: Thomson Brooks/Cole, 2006. Course evaluation: - Grade determination Final Exam 15% Unit Exams 42.5% Daily

### Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods.

Physics I Unit 1 Methods in Science (Systems of Units) Estimated Time Frame Big Ideas for Units 10 Days Tools are needed for the study of Physics, such as measurement, conversions, significant figures,

### AP Goal 1. Physics knowledge

Physics 2 AP-B This course s curriculum is aligned with College Board s Advanced Placement Program (AP) Physics B Course Description, which supports and encourages the following broad instructional goals:

### EXPERIENCE COLLEGE BEFORE COLLEGE

Mechanics, Heat, and Sound (PHY302K) College Unit Week Dates Big Ideas Subject Learning Outcomes Assessments Apply algebra, vectors, and trigonometry in context. Employ units in problems. Course Mathematics

### Miami-Dade Community College PHY 2053 College Physics I

Miami-Dade Community College PHY 2053 College Physics I PHY 2053 3 credits Course Description PHY 2053, College physics I, is the first semester of a two semester physics-without-calculus sequence. This

### Chemistry-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS

Chemistry-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS FIRST SEMESTER FIRST/SECOND SECOND SEMESTER Unit 1 Motion and Matter Unit 2 Atomic Trends and Behavior Unit 3 Chemical Reactions Unit

### D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for

D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for 2017-2018 UNIT NAME OF UNIT WEIGHTAGE 1. 2. 3. Physical World and Measurement Kinemetics Laws of Motion

### Baccalieu Collegiate. Physics Course Outline

Baccalieu Collegiate Physics 2204 Course Outline Course Content: Unit 1: Kinematics Motion is a common theme in our everyday lives: birds fly, babies crawl, and we, ourselves, seem to be in a constant

### SCI403: Physics. Course length: Two semesters. Materials: Physics: Problems and Solutions; materials for laboratory experiments

SCI403: Physics This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum, energy, thermodynamics, waves, electricity, and magnetism, and

### Warren County Schools PHYSICS PACING GUIDE (SEMESTER)

Warren County Schools PHYSICS PACING GUIDE 2017 2018 (SEMESTER) Philosophical approach to the process of teaching and learning science in the Warren County School District (WCS). In WCS there is an emphasis

### AP PHYSICS (B) SYLLABUS. Text: Physics, Sixth Edition by Cutnell and Johnson ISBN , Wiley and Sons, 2004 COURSE OVERVIEW

AP PHYSICS (B) SYLLABUS Text: Physics, Sixth Edition by Cutnell and Johnson ISBN 0471-15183-1, Wiley and Sons, 2004 COURSE OVERVIEW Advanced Placement Physics is an intensive and rigorous college level

### Unified School District of De Pere Physics Benchmarks

Content Standards: A. Students will understand that among the science disciplines, there are unifying themes: systems, order, organization, and interactions; evidence, models, and explanations; constancy,

### B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science Physics

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science Physics ORGANIZING THEME/TOPIC UNIT 1: KINEMATICS Mathematical Concepts Graphs and the interpretation thereof Algebraic manipulation of equations

### AP Physics B Syllabus

AP Physics B Syllabus Course Overview Advanced Placement Physics B is a rigorous course designed to be the equivalent of a college introductory Physics course. The focus is to provide students with a broad

### CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature

### Amarillo ISD Science Curriculum

Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

### Kutztown Area School District Curriculum (Unit Map) High School Physics Written by Kevin Kinney

Kutztown Area School District Curriculum (Unit Map) High School Physics Written by Kevin Kinney Course Description: This introductory course is for students who intend to pursue post secondary studies.

### Massachusetts Tests for Educator Licensure (MTEL )

Massachusetts Tests for Educator Licensure (MTEL ) FIELD 11: PHYSICS TEST OBJECTIVES Subarea Multiple-Choice Range of Objectives Approximate Test Weighting I. Nature of Science 01 05 12% II. Force and

### Subject Area Competencies and Skills (22nd Edition)

Science Education (Physics) Program Requirements Physics 6-12 "C" below indicates where content is covered through coursework 1. Knowledge of the nature of scientific investigation and instruction in physics

### High School. Prentice Hall. Conceptual Physics (Hewitt) Correlation to the Mississippi Curriculum Frameworks - Physics (High School)

Prentice Hall High School C O R R E L A T E D T O Correlation to the Mississippi Curriculum Frameworks - Physics (High School) CONTENT STRANDS: Inquiry Physical Science 1. INQUIRY - Apply inquiry-based

### HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Physics

Curriculum Map for Accelerated Physics September Targeted Standard(s): SCI.9-12.5.3.12 B.1 - [Cumulative Progress Indicator] - When performing mathematical operations with measured quantities, express

### NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar.

INDICATOR 5.1 a-e September Unit 1 Units and Scientific Notation SI System of Units Unit Conversion Scientific Notation Significant Figures Graphical Analysis Unit Kinematics Scalar vs. vector Displacement/dis

### Modesto Junior College Course Outline of Record PHYS 142

Modesto Junior College Course Outline of Record PHYS 142 I. OVERVIEW The following information will appear in the 2011-2012 catalog PHYS 142 Mechanics, Heat, & Waves 5 Units Formerly listed as: PHYS -

### Essential Questions. How can one explain & predict interactions b/t objects & within systems of objects.

Subject: Physics Grade Level: 11/12 NJSLS Standards (NGSS) NJ Model Curriculum Unit Essential Questions Content Skills Essential Vocabulary September @16 days HS-PS2-1.- Analyze data to support the claim

### East Penn School District Secondary Curriculum

East Penn School District Secondary Curriculum A Planned Course Statement for Applied Physics Course # Grades Department #406 11, 12 Science Length of Period (mins): 40 mins Total Clock Hours: 120 Periods

### High School Curriculum Standards: Physics

High School Curriculum Standards: Physics Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical

### SCI404: Honors Physics

SCI404: Honors Physics This advanced course surveys all key areas: physical systems, measurement, kinematics, dynamics, momentum, energy, thermodynamics, waves, electricity, and magnetism, and introduces

### THE PRINCIPLES OF PHYSICAL SCIENCE Nadia Iskandarani

Course Title: Head of Department: Teacher(s) + e-mail: Cycle/Division: THE PRINCIPLES OF PHYSICAL SCIENCE Nadia Iskandarani Ms.Ibtessam: ibtissam.h@greenwood.sch.ae High School Grade Level: Grade 9 Credit

### Amarillo ISD - Physics - Science Standards

Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

### AP Physics Syllabus Course Overview. Text: Physics by Giancoli, 5th edition Course Outline

AP Physics Syllabus Course Overview Advanced Placement Physics B is an algebra-based course in general physics. It is equivalent to an introductory algebra-based university level physics course, whose

### Physics for Scientists and Engineers 4th Edition, 2017

A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

### AP Physics B. Determining and expressing uncertainties for analog, digital and

St. Mary's College High School AP Physics B Essential Questions Determining and expressing uncertainties for analog, digital and The Spreadsheet is Your Friend Graphing With Excel How can we determine

### AP PHYSICS 1 Content Outline arranged TOPICALLY

AP PHYSICS 1 Content Outline arranged TOPICALLY with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Common Textbook Chapters Much

### Fairfield Public Schools Science Curriculum Physics

Fairfield Public Schools Science Curriculum Physics BOE Approved 5/8/2018 1 Physics: Description Physics is the study of natural phenomena and interactions and between matter and energy using mathematical

### Physics Overview. High School Core Science Standards Physics

Overview The standards establish the scientific inquiry skills and core content for all courses in DoDEA schools. The learning framework of this course focuses on the basic concepts of physics in relation

### 2. What are the 4 steps of the Scientific Method as described by Mr. Martin?

Ch.1 Study Guide Outline Study the Review that is posted on the website. Make a note card to use for the test. 1. What is science and physics? 2. What are the 4 steps of the Scientific Method as described

### GREENWOOD PUBLIC SCHOOL DISTRICT Physics Pacing Guide FIRST NINE WEEKS

FIRST NINE WEEKS 1 Aug. 1 Introduction to Course Aug. 7 11 5 Prerequisite 2 Aug. 1 18 5 3 Aug. 21 25 5 Mathematical Computational Analysis Overarching Science Engineering Practices (SEPs) These concepts

### AP Physics 1 Syllabus

AP Physics 1 Syllabus Course Overview AP Physics 1 will meet for 90 minutes on A-B scheduling and for 45 minutes on regular scheduling. Class activities will include lecture, demonstration, problem solving

### NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR Department of PHYSICS ( I PUC)

NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR 017 018 Department of PHYSICS ( I PUC) Week --------------------- Month: June Chapter (Physical world) Scope and excitement of Physics

### Science. Circular Motion. Atomic Structure and Nuclear Chemistry. Kinematics; Motion in One and Two Dimensions

Inquiry -P-1.1 -P-1.2 -P-1.3 -P-1.4 -P-1.5 -P-1.6 -P-1.7 -P-1.8 -P-1.9 -P-2.1 -P-1.1 -P-2.1 -P-2.2 -P-2.3 Circular Motion Use appropriate safety procedures when conducting investigations. Use appropriate

### CURRICULUM COURSE OUTLINE

CURRICULUM COURSE OUTLINE Course Name(s): Grade(s): Department: Course Length: Pre-requisite: Introduction to Physics 9 th grade Science 1 semester Textbook/Key Resource: Conceptual Physical Science Explorations

### Range of Competencies

PHYSICS Content Domain Range of Competencies l. Nature of Science 0001 0002 14% ll. Mechanics 0003 0006 28% lll. Electricity and Magnetism 0007 0009 22% lv. Waves 0010 0011 14% V. Modern Physics 0012 0014

### Units (Different systems of units, SI units, fundamental and derived units)

Physics: Units & Measurement: Units (Different systems of units, SI units, fundamental and derived units) Dimensional Analysis Precision and significant figures Fundamental measurements in Physics (Vernier

### High School AP Physics I Curriculum

High School AP Physics I Curriculum Course Description: AP Physics I is an introductory first-year, algebra-based, college level course for the student interested in medicine or engineering. Topics of

### PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

### Applied Mathematics B Study Guide

Science, Engineering and Technology Portfolio School of Life and Physical Sciences Foundation Studies (Applied Science/Engineering) Applied Mathematics B Study Guide Topics Kinematics Dynamics Work, Energy

### History of Physics: History of Physics: - Identify the contributions of key figures in the history of physics.

Texas University Interscholastic League Contest Event: Science (Physics) The contest challenges students to read widely in physics, to understand the significance of experiments rather than to recall obscure

### ELECTRIC FORCE, FIELD AND POTENTIAL

AP PHYSICS 2 LEARNING OBJECTIVES AND TOPICS ELECTRIC FORCE, FIELD AND POTENTIAL Static Electricity; Electric Charge and its Conservation Insulators and Conductors Charging Processes: Friction, Conduction

### Dynamics inertia, mass, force. Including centripetal acceleration

For the Singapore Junior Physics Olympiad, no question set will require the use of calculus. However, solutions of questions involving calculus are acceptable. 1. Mechanics Kinematics position, displacement,

### Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 4 5 weeks

Physical Science 8 th Grade Physical Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 9 weeks Nature of Matter S8P1. Obtain, evaluate, and the structure and properties

### COPPELL ISD SUBJECT YEAR AT A GLANCE

COPPELL ISD SUBJECT YEAR AT A GLANCE SUBJECT AP PHYSICS 2 GRADES 10-12 Program Transfer Goals Use knowledge of science to predict what will happen to objects when they interact or explain interactions

### Tentative Physics 1 Standards

Tentative Physics 1 Standards Mathematics MC1. Arithmetic: I can add, subtract, multiply, and divide real numbers, take their natural and common logarithms, and raise them to real powers and take real

### Accelerated Physical Science-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS

Accelerated Physical Science-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS FIRST SEMESTER SECOND SEMESTER Unit 1 Forces and Motion Unit 2 Energy Transformation Unit 3 Chemistry of Matter

### PHYSICS. Curriculum Standard One: The student will understand that Newton s laws predict the motion of most objects.

Science Motion and Forces 11-12 Curriculum Standard One: The student will understand that Newton s laws predict the motion of most objects. *1A. The student will demonstrate an problems involving constant

### Content (What needs to be taught?) Time Line. NYS Learning/Core Standards. (Daily/Weekly/Benchmarks) Test/Quizzes Lab Reports.

NYS Learning/Core Standards Key Idea 3: Critical thinking skills are used in the solution of mathematical problems. M3.1 Apply algebraic and geometric concepts and skills to the solution of problems. explain

### TEACHER CERTIFICATION STUDY GUIDE

Table of Contents Pg. Domain I. Mechanics Vectors (properties; addition and subtraction)... 129H1 Vector multiplication (dot and cross product)... 130H3 Motion along a straight line (displacement, velocity,

### Science Online Instructional Materials Correlation to the 2010 Physics Standards of Learning and Curriculum Framework

and Curriculum Framework Provider York County School Division Course Title Physics Last Updated 2010-11 Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx PH.1 The student

### School District of Springfield Township

School District of Springfield Township Course Name: Physics (Honors) Springfield Township High School Course Overview Course Description Physics (Honors) is a rigorous, laboratory-oriented program consisting

### Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions

Motion and Forces Broad Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. LS 1.1 Compare and contrast vector quantities (such as, displacement, velocity,

### Saint Lucie County Science Scope and Sequence

Course: Honors Physics 1 Course Code: 2003390 UNIT 4 TOPIC of STUDY: Newton s Laws of Motion and the Law of Gravity STANDARDS: 10: Energy, 12: Motion ~Net force produces motion ~There are four fundamental

### There are three units of study within the Physics Specialisation. ATPPHY001 - Unit 1:

The Physics Specialisation applies to those who require foundation Physics knowledge and skills for entrance to tertiary study in a relevant discipline or field. There are three units of study within the

### Physics. and engage in higher-order thinking skills with some independence and support.

Physics PLD Type Objective Below Proficient Approaching Proficient Proficient Highly Proficient Note: Students who are The Level 1 student is below proficient The Level 2 student is approaching The Level

### Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

### Science TEKS Verification

Science EKS Verification (1) Scientific processes. he student conducts investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. hese investigations

### The... of a particle is defined as its change in position in some time interval.

Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle