Lecture 3. A Proof of Ihara s Theorem, Edge & Path Zetas, Connections with Quantum Chaos

Size: px
Start display at page:

Download "Lecture 3. A Proof of Ihara s Theorem, Edge & Path Zetas, Connections with Quantum Chaos"

Transcription

1 Lecture 3. A Proof of Ihara s Theorem, dge & Path Zetas, Connections with Quantum Chaos Audrey Terras Correction to lecture The 4-regular tree T 4 can be identified with the 3-adic quotient SL(2,Q 3 )/SL(,Z 3 ) Ihara Zeta Function ν(c) ( ) - ζ(u,x)= -u [C] prime ν(c) = # edges in C converges for u complex, u small Ihara s Theorem. - 2 r- 2 ζ(u,x) =(-u ) det(i-au+qu t(ia ) A=adjacency matrix, Q +I = diagonal matrix of degrees, r=rank fundamental group.

2 Basic Assumptions graphs are connected, with r=rank fundamental group >, no degree vertices (called leaf vertex, hair, danglers,...) Outline of Talk: ) Bass s proof of Ihara s theorem. It involves defining an edge zeta function with more variables coming from pairs of directed edges of the graph 2) Path zeta function which depends only on variables from the edges corresponding to generators of the fundamental group of the graph 3) a bit of quantum chaos for the W matrix 2

3 dge Zetas Orient the edges of the graph. Multiedge matrix W has ab entry w ab in C, w(a,b)=w ab if the edges a and b look like a Otherwise set w ab =0. b and a is not the inverse of b For a prime C = a a 2 a s, define the edge norm N C wa a wa a wa a wa a ( ) = ( s, ) (, 2) ( 2, 3) ( s, s) Define the edge zeta for small w ab as [ C ] ( ) ζ ( W, X) = N ( C) Properties of dge Zeta Ihara ζ = ζ (W,X) non-0 w(i,j)=u edge e deletion ζ (W,X-e)=ζ (W,X) 0=w(i,j), if i or j=e 3

4 Determinant Formula For dge Zeta ζ ( ) d t W X = I W (, ) det ( ) From this Bass gives an ingenious proof of Ihara s theorem. Reference: Stark and T., Adv. in Math., Vol. 2 and 54 and 208 (996 and 2000 and 2007) xample e 3 e 6 D=Dumbbell Graph e 2 e 5 e e 4 w w w w w 33 0 w35 0 ζ ( W, D) = det 0 w42 0 w w5 0 0 w w 65 w66 e 2 and e 5 are the vertical edges. Specialize all variables with 2 and 5 to be 0 and get zeta function of subgraph with vertical edge removed. Fission Diagonalizes the matrix. 4

5 Proof of the Determinant Formula j N ( C) logζ = j L= wij w [ C] j L L N C k ( ) log ζ m k m C k ( ), ν ( C) = m = C primitive, no backtrack, no tails i, j L N C Tr W ij k LN ( C) = kmn ( C) m log ζ = ( ) = ( ) C m Here C need not be primitive, still no backtrack, no tails though. k An exercise in matrix calculus gives ( ) m m Llog det I W Tr( W ) = This proves L(log( determinant formula)). So we get the formula ζ (, ) det( ) W X = I W up to a multiplicative constant. The proof ends by noting that both sides are when all the w ij are 0. 5

6 ζ ( W, X ) det( I W ) = ζ 2 2 (, ) ( ) r V ux = u det( I Au+ Qu) Part of Bass Proof Define starting matrix S and terminal matrix T s ve Define, if v is starting vertex of edge e = 0, otherwise, if v is the terminal vertex of edge e t ve = 0, otherwise Then, recalling our edge numbering system, we see that SJ = T, TJ=S since start t (end) of e is end (start) t) of e j j+ t t t A = S T, Q+I V = SS = TT 0 I J = I 0 Note: matrix A counts number of undirected edges connecting 2 distinct vertices and twice # of loops at each vertex. Q+I = diagonal matrix of degrees of vertices 6

7 Part 2 of Bass Proof W matrix obtained from W by setting all non -zero w ij equal to t W+J=T S, where J compensates for not allowing edge e to feed into e Below all matrices are ( V +2 ) x ( V +2 ), with V x V st block. The preceding formulas imply that: 2 I V 0 I V ( u ) Su t T I2 0 I2 Wu 2 I I 0 Au + Qu Su V V = t t 0 I T S u I 2 Ju + 2 Then take determinants of both sides to see V 2 ( u ) det( I Wu) = det( I Au+ Qu ) det( I + Ju) j j± nd of Bass Proof ( u ) det( I Wu) = det( I Au+ Qu ) det( I + Ju) 2 V 2 2 V 2 I Iu I 0 I Iu I + Ju = implies ( I + Ju) = 2 Iu I -Iu I 0 I( u ) So det(i+ju)=(-u 2 ) Since r-= - V V, for a connected graph, the Ihara formula for the vertex zeta function follows from the edge zeta determinant formula. 7

8 Next we define a zeta function invented by Stark which has several advantages over the edge zeta. It can be used to compute the edge zeta using smaller determinants. It gives the edge zeta for a graph in which an edge has been fused. spanning trees A tree is a connected graph without cycles. A spanning tree for a graph X is a subgraph which is a tree and which contains all the vertices of X. the red graph is a spanning tree for K 4 8

9 Fundamental Group of X can be identified with group generated by edges left out of a spanning tree e,... e r, e,...,, e r 2r 2r multipath matrix Z has ij entry z ij in C if ej e i, z ij =0, otherwise. Imitate the definition of the edge zeta function. Define for a prime path C = a a where a e e, h { ± s j,, ± r } s the path norm NP( C) = z( as, a) z( ai, ai+ ) Define the path zeta function i= [ C ] ( ) ζ ( Z, X) = N ( C) P P edges left out of a spanning tree T of X are inverse edges are e,... er e = + e,..., e = e r 2r r t,...,, t X edges of the spanning tree T are with inverse edges t X,... t2 X 2 If ei e j, write the part of the path between e i and e j as the (unique) product tk t kn A prime cycle C is first written as a reduced product of generators of the fundamental group e j and then a product of actual edges e j and t k. Now specialize the multipath matrix Z to Z(W) with entries Then n- z = w(e,t )w(t,e ) w(t,t ) ij i k kn j kν kν+ ν= ζ (Z(W),X) = ζ (W,X) P 9

10 c f Recall that the edge zeta involved a 6x6 determinant. b e The path zeta is only 4x4. Maple computes ζ much faster than the 6x6. Fusion: shrink edge b to a point. The edge zeta of the new graph obtained by setting w xb w by =w xy in specialized path zeta & same for e instead of b. waa wabwbc 0 wabwbf wcewea wcc wcewed 0 0 wdbwbc wdd wdbw bf wfewea 0 wfewed wff a d xercises ) Fill in the details of the proof that /ζ (W,X)=det(I-W). 2) Fill in the details of the proof that the formula in exercise 4 implies Ihara s 3-term determinant formula for the vertex zeta. 3) Write a Mathematica (or whatever) program to do the process that specializes the path zeta to get the edge zeta. 0

11 4) Prove that if L= wij w i, j ( ) m L log det I W Tr ( W ) ij = m Hint: Use the fact that you can write the matrix W (which is not symmetric) as a product W=U - TU, where U is orthogonal and T is upper triangular by Gram-Schmidt. A Taste of Random Matrix Theory / Quantum Chaos a reference with some background on the interest in random matrices in number theory and quantum physics: A.Terras, Arithmetical quantum chaos, IAS/Park City Math. Series, Vol. 2 (2007).

12 In lecture we mentioned the experimental connections between statistics of spectra of random symmetric real matrices and the statistics of imaginary parts of s at poles of Ihara ζ(q -s ) (analogous to statistics of imaginary parts of zeros of Riemann ζ and spectra of Hermitian matrices). from O. Bohigas and M.-J. Giannoni, Chaotic motion and random matrix theories, Lecture Notes in Physics, 209, Springer-Verlag, Berlin, 984: arrows mean lines are too close to distiguish 2

13 O. Bohigas and M.-J. Giannoni, Chaotic motion and random matrix theories, Lecture Notes in Physics, 209, Springer-Verlag, Berlin, 984: The question now is to discover the stochastic laws governing sequences having very different origins, as illustrated in the Figure, each column with 50 levels... Note that the spectra have been rescaled to the same vertical axis from 0 to 49. (a) Poisson spectrum, i.e., of a random variable with spacings of probability density e x. (b) primes between and (c) resonance energies of compound nucleus observed in the reaction n+66r. (d) from eigenvalues corresponding to transverse vibrations of a membrane whose boundary is the Sinai billiard which is a square with a circular hole cut out centered at the center of the square. (e) the positive imaginary parts of zeros of the Riemann zeta function (from the 55th to the 600th zero). (f) is equally spaced - the picket fence or uniform distribution. ib ti (g) from P. Sarnak, Arithmetic quantum chaos, Israel Math. Conf. Proc., 8 (995), (published by Amer. Math. Soc.) : eigenvalues of the Poincaré Laplacian on the fundamental domain of the modular group SL(2,Z), 2 2 integer matrices of determinant. (h) spectrum of a finite upper half plane graph for p=53 (a = δ = 2), without multiplicity (see my book Fourier Analysis on Finite Groups) The Figure is from from Bohigas, Haq, and Pandey, Fluctuation properties of nuclear energy levels and widths: comparison of theory with experiment, in K.H. Bockhoff (d.), Nuclear Data for Science and Technology, Reidel, Dordrecht, 983) Level spacing histogram for (a) 66r and (b) a nuclear data ensemble. 3

14 Wigner surmise for spacings of spectra of random symmetric real matrices This means that you arrange the eigenvalues) i in decreasing order: 2 n. Assume that the eigenvalues are normalized so that the mean of the level spacings i i+ is. Wigner s Surmise from 957 says the level (eigenvalue) spacing histogram is the graph of the function ½πxexp( πx 2 /4),if the mean spacing is. In 960, Gaudin and Mehta found the correct distribution function which is close to Wigner s. The correct graph is labeled GO in the Figure preceding. Note the level repulsion indicated by the vanishing of the function at the origin. Also in the preceding Figure, we see the Poisson density which is e x. A reference is Mehta, Random Matrices. Now we wish to add a new column to earlier figure - spacings of the eigenvalues of the W matrix of a graph Call this exercise 5 or, more accurately perhaps, research project. 4

15 Here although W is not symmetric, the nearest neighbor spacing (i.e., histogram of minimum distances between eigenvalues) is also of interest. many references on the study of spacings of spectra of non- Hermitian or non-symmetric matrices. I did find one: P. LeBoef, Random matrices, random polynomials, and Coulomb systems. He studies the ensemble of matrices introduced by J. Ginibre, J. Math. Phys. 6, 440 (965). An approximation to the distribution of spacings of eigenvalues of a complex matrix (analogous to the Wigner surmise for Hermitian matrices) is: Γ s 3 4 4Γ se 4 Since our matrix is real, this will probably not be the correct Wigner surmise. I haven t done this experiment yet. In what follows, I just plot the reciprocals of the eigenvalues of W - the poles of Ihara zeta for various graphs. The distribution looks rather different than that of a random real matrix with the properties of W. Statistics of the poles of Ihara zeta or reciprocals of eigenvalues of the dge Matrix W Define W to be the 0, matrix you get from W by setting all non-0 entries of W to be. Theorem. ζ(u,x) - =det(i-w u). Corollary. The poles of Ihara zeta are the reciprocals of the eigenvalues of W. The pole R of zeta is: R=/Perron-Frobenius eigenvalue of W. 5

16 Properties of W ) A B, B and C symmetric real, A real W = T C A 2) Row sums of entries are q j +=degree vertex which is start of edge j. Poles Ihara Zeta are in region q - R u, q+=maximum degree of vertices of X. Theorem of Kotani and Sunada If p+=min vertex degree, and q+=maximum vertex degree, non-real n lpl poles u of zeta satisfy tif u q p Kotani & Sunada, J. Math. Soc. U. Tokyo, 7 (2000) or see my manuscript on my website: Spectrum of Random Matrix with Properties of W -matrix spectrum W=A B;C trn(a) with A rand norm, B,C rand symm normal r =sqrt(n)*(+2. 5)/2 and n=000 A B W = C A T 20 B and C symmetric Girko circle law with a symmetry with respect to real axis since our matrix is real. (Girko, Theory Prob. Appl. 22 (977)) We used Matlab command randn(000) to get A,B,C matrices with random normally distributed entries mean 0 std dev. 6

17 What is the meaning of the RH for irregular graphs? For irregular graph, natural change of variables is u=r s, where R = radius of convergence of Dirichlet series for Ihara zeta. Note: R is closest pole of zeta to 0. No functional equation. Then the critical strip is 0 Res and translating back to u- variable. In the q+-regular case, R=/q. Graph theory RH: ζ(u) is pole free in R < u < R xperiment on Locations of 0.6 Poles of Ihara Zeta of Irregular Graphs 0.4 All poles but - of ζ X (u) for a random graph with 80 vertices denoted by 0.2 using Mathematica: RandomGraph[80,/0] circles centered at 0 with radii R, q -/2, R /2, (pq) -/4, p -/2 q+=max degree, p+=min degree, R=radius of convergence of uler product for ζ X (u) RH is false but poles are not far inside circle of radius R /2 RandomGraph[80,/0] means probability of edge between 2 vertices =/0. 7

18 xperiment on Locations of Poles of Ihara Zeta of Irregular Graphs All poles except - of ζ X (u) for a random graph with 00 vertices are denoted, using Mathematica RandomGraph[00,/2] Circles centered at 0 with radii RH is false maybe not as false as in previous example with probability /0 of an edge rather than ½. Poles clustering on RH circle (green) R, q -/2, R /2, p -/2 q+=max degree, p+=min degree R=radius of convergence of product for ζ X (u) Matthew Horton n s Graph has /R e to 7 digits. it Poles of Ihara zeta are boxes on right. Circles have radii R,q -½,R ½,p -½, if q+=max deg, p+=min deg. Here The RH is false. Poles more spread out over plane. 8

19 Poles of Ihara Zeta for a Z 6 xz 62 -Cover of 2 Loops + xtra Vertex are pink dots Circles Centers (0,0); Radii: 3 -/2, R /2,; R.47 RH very False.2 random 700 cover of 2loops with extra vertex on loop Z is random 700 cover of 2 loops plus vertex graph in picture. The pink dots are at poles of ζ Z. Circles have radii q -/2, R /2, p -/2, with q=3, p=, R RH approximately True. 9

20 References: 3 papers with Harold Stark in Advances in Math. Paper with Matthew Horton & Harold Stark in Snowbird Proceedings, Contemporary Mathematics, Volume 45 (2006) Quantum Graphs and Their Applications, Contemporary Mathematics, v. 45, AMS, Providence, RI See my draft of a book: Draft of new paper joint with Horton & Stark: also on my website There was a graph zetas special session of this AMS meeting many interesting papers some on my website. For work on directed graphs, see Matthew Horton, Ihara zeta functions of digraphs, Linear Algebra and its Applications, 425 (2007) work of Angel, Friedman and Hoory giving analog of Alon conjecture for irregular graphs, implying our Riemann Hypothesis (see Joel Friedman s website: The nd 20

LECTURE 4. PROOF OF IHARA S THEOREM, EDGE CHAOS. Ihara Zeta Function. ν(c) ζ(u,x) =(1-u ) det(i-au+qu t(ia )

LECTURE 4. PROOF OF IHARA S THEOREM, EDGE CHAOS. Ihara Zeta Function. ν(c) ζ(u,x) =(1-u ) det(i-au+qu t(ia ) LCTUR 4. PROOF OF IHARA S THORM, DG ZTAS, QUANTUM CHAOS Ihara Zeta Function ν(c) ( ) - ζ(u,x)= -u [C] prime ν(c) = # edges in C converges for u complex, u small Ihara s Theorem. - 2 r- 2 ζ(u,x) =(-u )

More information

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs?

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? Audrey Terras Banff February, 2008 Joint work with H. M. Stark, M. D. Horton, etc. Introduction The Riemann zeta function for Re(s)>1

More information

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs?

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? UCLA, IPAM February, 2008 Joint work with H. M. Stark, M. D. Horton, etc. What is an expander graph X? X finite connected (irregular)

More information

Ihara zeta functions and quantum chaos

Ihara zeta functions and quantum chaos Ihara zeta functions and quantum chaos Audrey Terras Vancouver AMS Meeting October, 2008 Joint work with H. M. Stark, M. D. Horton, etc. Outline 1. Riemann zeta 2. Quantum Chaos 3. Ihara zeta 4. Picture

More information

Fun with Zeta Functions of Graphs. Thanks to the AWM!!!!!!!!!!!!!!!!!

Fun with Zeta Functions of Graphs. Thanks to the AWM!!!!!!!!!!!!!!!!! Fun with Zeta Functions of Graphs Audrey Terras Thanks to the AWM!!!!!!!!!!!!!!!!! from Wikipedia Amalie Emmy Noether Abstract Introduction to zeta functions of graphs + history & comparisons with other

More information

Copy from Lang, Algebraic Number Theory

Copy from Lang, Algebraic Number Theory Copy from Lang, Algebraic Number Theory 1) L(u,1,Y/X) = z(u,x) = Ihara zeta function of X (our analogue of the Dedekind zeta function, also Selberg zeta function) 2) ζ( uy, ) = Lu (, ρ, Y / X) dρ ρ G product

More information

x #{ p=prime p x }, as x logx

x #{ p=prime p x }, as x logx 1 The Riemann zeta function for Re(s) > 1 ζ s -s ( ) -1 2 duality between primes & complex zeros of zeta using Hadamard product over zeros prime number theorem x #{ p=prime p x }, as x logx statistics

More information

Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas

Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas Audrey Terras U.C.S.D. 2008 more details can be found in my webpage: www.math.ucsd.edu /~aterras/ newbook.pdf First the Riemann Zeta 1 The Riemann

More information

fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion

fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion Introduction The Riemann zeta function for Re(s)>1 1

More information

Lecture 2: Ruelle Zeta and Prime Number Theorem for Graphs

Lecture 2: Ruelle Zeta and Prime Number Theorem for Graphs Lecture 2: Ruelle Zeta and Prie Nuber Theore for Graphs Audrey Terras CRM Montreal, 2009 EXAMPLES of Pries in a Graph [C] =[e e 2 e 3 ] e 3 e 2 [D]=[e 4 e 5 e 3 ] e 5 [E]=[e e 2 e 3 e 4 e 5 e 3 ] e 4 ν(c)=3,

More information

Zeta Functions and Chaos

Zeta Functions and Chaos Zeta Functions and Chaos Audrey Terras October 2, 2009 Abstract: The zeta functions of Riemann, Selberg and Ruelle are briefly introduced along with some others. The Ihara zeta function of a finite graph

More information

What are primes in graphs and how many of them have a given length?

What are primes in graphs and how many of them have a given length? What are pries in graphs an how any of the have a given length? Aurey Terras Math. Club Oct. 30, 2008 A graph is a bunch of vertices connecte by eges. The siplest exaple for the talk is the tetraheron

More information

Zeta Functions of Graph Coverings

Zeta Functions of Graph Coverings Journal of Combinatorial Theory, Series B 80, 247257 (2000) doi:10.1006jctb.2000.1983, available online at http:www.idealibrary.com on Zeta Functions of Graph Coverings Hirobumi Mizuno Department of Electronics

More information

p e po K p e+1 efg=2

p e po K p e+1 efg=2 field ring prime ideal finite field K=F( m) O K = Z[ m] p po K O K /p F= Q O F =Z pz Z/pZ g = # of such p, f = degree of O K /p over O F /po F p e po K p e+1 efg=2 Assume, m is a square-free integer congruent

More information

Zeta functions and chaos

Zeta functions and chaos A Window Into Zeta and Modular Physics MSRI Publications Volume 57, 2010 Zeta functions and chaos AUDREY TERRAS 1. Introduction This paper is an expanded version of lectures given at MSRI in June of 2008.

More information

Eigenvalues of Non-Backtracking Walks in a Cycle with Random Loops

Eigenvalues of Non-Backtracking Walks in a Cycle with Random Loops Rose-Hulman Undergraduate Mathematics Journal Volume 8 Issue 2 Article 10 Eigenvalues of Non-Backtracking Walks in a Cycle with Random Loops Ana Pop University of British Columbia, anapop@telus.net Follow

More information

Zeta functions in Number Theory and Combinatorics

Zeta functions in Number Theory and Combinatorics Zeta functions in Number Theory and Combinatorics Winnie Li Pennsylvania State University, U.S.A. and National Center for Theoretical Sciences, Taiwan 1 1. Riemann zeta function The Riemann zeta function

More information

Rongquan Feng and Jin Ho Kwak

Rongquan Feng and Jin Ho Kwak J. Korean Math. Soc. 43 006), No. 6, pp. 169 187 ZETA FUNCTIONS OF GRAPH BUNDLES Rongquan Feng and Jin Ho Kwak Abstract. As a continuation of computing the zeta function of a regular covering graph by

More information

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2 Problem Set 2: Interferometers & Random Matrices Graduate Quantum I Physics 6572 James Sethna Due Friday Sept. 5 Last correction at August 28, 2014, 8:32 pm Potentially useful reading Sakurai and Napolitano,

More information

Zeta functions of buildings and Shimura varieties

Zeta functions of buildings and Shimura varieties Zeta functions of buildings and Shimura varieties Jerome William Hoffman January 6, 2008 0-0 Outline 1. Modular curves and graphs. 2. An example: X 0 (37). 3. Zeta functions for buildings? 4. Coxeter systems.

More information

Networks and Matrices

Networks and Matrices Bowen-Lanford Zeta function, Math table talk Oliver Knill, 10/18/2016 Networks and Matrices Assume you have three friends who do not know each other. This defines a network containing 4 nodes in which

More information

Weighted Zeta Functions of Graph Coverings

Weighted Zeta Functions of Graph Coverings Weighted Zeta Functions of Graph Coverings Iwao SATO Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN e-mail: isato@oyama-ct.ac.jp Submitted: Jan 7, 2006; Accepted: Oct 10, 2006; Published:

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Determinant of the Schrödinger Operator on a Metric Graph

Determinant of the Schrödinger Operator on a Metric Graph Contemporary Mathematics Volume 00, XXXX Determinant of the Schrödinger Operator on a Metric Graph Leonid Friedlander Abstract. In the paper, we derive a formula for computing the determinant of a Schrödinger

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19 832: Algebraic Combinatorics Lionel Levine Lecture date: April 2, 20 Lecture 9 Notes by: David Witmer Matrix-Tree Theorem Undirected Graphs Let G = (V, E) be a connected, undirected graph with n vertices,

More information

Preparing for the CSET. Sample Book. Mathematics

Preparing for the CSET. Sample Book. Mathematics Preparing for the CSET Sample Book Mathematics by Jeff Matthew Dave Zylstra Preparing for the CSET Sample Book Mathematics We at CSETMath want to thank you for interest in Preparing for the CSET - Mathematics.

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003 arxiv:cond-mat/0303262v1 [cond-mat.stat-mech] 13 Mar 2003 Quantum fluctuations and random matrix theory Maciej M. Duras Institute of Physics, Cracow University of Technology, ulica Podchor ażych 1, PL-30084

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

An Introduction to Spectral Graph Theory

An Introduction to Spectral Graph Theory An Introduction to Spectral Graph Theory Mackenzie Wheeler Supervisor: Dr. Gary MacGillivray University of Victoria WheelerM@uvic.ca Outline Outline 1. How many walks are there from vertices v i to v j

More information

Quantum chaos on graphs

Quantum chaos on graphs Baylor University Graduate seminar 6th November 07 Outline 1 What is quantum? 2 Everything you always wanted to know about quantum but were afraid to ask. 3 The trace formula. 4 The of Bohigas, Giannoni

More information

ZETA FUNCTIONS OF WEIGHTED GRAPHS AND COVERING GRAPHS

ZETA FUNCTIONS OF WEIGHTED GRAPHS AND COVERING GRAPHS ZETA FUNCTIONS OF WEIGHTED GRAPHS AND COVERING GRAPHS MATTHEW D. HORTON, H. M. STARK, AND AUDREY A. TERRAS ABSTRACT. We nd a condition for weights on the edges of a graph which insures that the Ihara zeta

More information

Random matrices and the Riemann zeros

Random matrices and the Riemann zeros Random matrices and the Riemann zeros Bruce Bartlett Talk given in Postgraduate Seminar on 5th March 2009 Abstract Random matrices and the Riemann zeta function came together during a chance meeting between

More information

Riemann Hypotheses. Alex J. Best 4/2/2014. WMS Talks

Riemann Hypotheses. Alex J. Best 4/2/2014. WMS Talks Riemann Hypotheses Alex J. Best WMS Talks 4/2/2014 In this talk: 1 Introduction 2 The original hypothesis 3 Zeta functions for graphs 4 More assorted zetas 5 Back to number theory 6 Conclusion The Riemann

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Homework 1 Elena Davidson (B) (C) (D) (E) (F) (G) (H) (I)

Homework 1 Elena Davidson (B) (C) (D) (E) (F) (G) (H) (I) CS 106 Spring 2004 Homework 1 Elena Davidson 8 April 2004 Problem 1.1 Let B be a 4 4 matrix to which we apply the following operations: 1. double column 1, 2. halve row 3, 3. add row 3 to row 1, 4. interchange

More information

Eigenvalue statistics and lattice points

Eigenvalue statistics and lattice points Eigenvalue statistics and lattice points Zeév Rudnick Abstract. One of the more challenging problems in spectral theory and mathematical physics today is to understand the statistical distribution of eigenvalues

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

This section is an introduction to the basic themes of the course.

This section is an introduction to the basic themes of the course. Chapter 1 Matrices and Graphs 1.1 The Adjacency Matrix This section is an introduction to the basic themes of the course. Definition 1.1.1. A simple undirected graph G = (V, E) consists of a non-empty

More information

Alan Edelman. Why are random matrix eigenvalues cool? MAA Mathfest 2002 Thursday, August 1. MIT: Dept of Mathematics, Lab for Computer Science

Alan Edelman. Why are random matrix eigenvalues cool? MAA Mathfest 2002 Thursday, August 1. MIT: Dept of Mathematics, Lab for Computer Science Why are random matrix eigenvalues cool? Alan Edelman MIT: Dept of Mathematics, Lab for Computer Science MAA Mathfest 2002 Thursday, August 6/2/2004 Message Ingredient: Take Any important mathematics Then

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES MATRICES ARE SIMILAR TO TRIANGULAR MATRICES 1 Complex matrices Recall that the complex numbers are given by a + ib where a and b are real and i is the imaginary unity, ie, i 2 = 1 In what we describe below,

More information

A Generalization of Wigner s Law

A Generalization of Wigner s Law A Generalization of Wigner s Law Inna Zakharevich June 2, 2005 Abstract We present a generalization of Wigner s semicircle law: we consider a sequence of probability distributions (p, p 2,... ), with mean

More information

7. Nuclear Magnetic Resonance

7. Nuclear Magnetic Resonance 7. Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) is another method besides crystallography that can be used to find structures of proteins. NMR spectroscopy is the observation of spins of

More information

On the inverse matrix of the Laplacian and all ones matrix

On the inverse matrix of the Laplacian and all ones matrix On the inverse matrix of the Laplacian and all ones matrix Sho Suda (Joint work with Michio Seto and Tetsuji Taniguchi) International Christian University JSPS Research Fellow PD November 21, 2012 Sho

More information

1.10 Matrix Representation of Graphs

1.10 Matrix Representation of Graphs 42 Basic Concepts of Graphs 1.10 Matrix Representation of Graphs Definitions: In this section, we introduce two kinds of matrix representations of a graph, that is, the adjacency matrix and incidence matrix

More information

Lecture 1 and 2: Random Spanning Trees

Lecture 1 and 2: Random Spanning Trees Recent Advances in Approximation Algorithms Spring 2015 Lecture 1 and 2: Random Spanning Trees Lecturer: Shayan Oveis Gharan March 31st Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Graph fundamentals. Matrices associated with a graph

Graph fundamentals. Matrices associated with a graph Graph fundamentals Matrices associated with a graph Drawing a picture of a graph is one way to represent it. Another type of representation is via a matrix. Let G be a graph with V (G) ={v 1,v,...,v n

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

Sphere Packings. Ji Hoon Chun. Thursday, July 25, 2013

Sphere Packings. Ji Hoon Chun. Thursday, July 25, 2013 Sphere Packings Ji Hoon Chun Thursday, July 5, 03 Abstract The density of a (point) lattice sphere packing in n dimensions is the volume of a sphere in R n divided by the volume of a fundamental region

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

18.S34 linear algebra problems (2007)

18.S34 linear algebra problems (2007) 18.S34 linear algebra problems (2007) Useful ideas for evaluating determinants 1. Row reduction, expanding by minors, or combinations thereof; sometimes these are useful in combination with an induction

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

EIGENVALUE SPACINGS FOR REGULAR GRAPHS. 1. Introduction

EIGENVALUE SPACINGS FOR REGULAR GRAPHS. 1. Introduction EIGENVALUE SPACINGS FOR REGULAR GRAPHS DMITRY JAKOBSON, STEPHEN D. MILLER, IGOR RIVIN AND ZEÉV RUDNICK Abstract. We carry out a numerical study of fluctuations in the spectrum of regular graphs. Our experiments

More information

Accurate eigenvalue decomposition of arrowhead matrices and applications

Accurate eigenvalue decomposition of arrowhead matrices and applications Accurate eigenvalue decomposition of arrowhead matrices and applications Nevena Jakovčević Stor FESB, University of Split joint work with Ivan Slapničar and Jesse Barlow IWASEP9 June 4th, 2012. 1/31 Introduction

More information

Determinant of the Schrödinger Operator on a Metric Graph, by Leonid Friedlander, University of Arizona. 1. Introduction

Determinant of the Schrödinger Operator on a Metric Graph, by Leonid Friedlander, University of Arizona. 1. Introduction Determinant of the Schrödinger Operator on a Metric Graph, by Leonid Friedlander, University of Arizona 1. Introduction Let G be a metric graph. This means that each edge of G is being considered as a

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

More information

Energy of Graphs. Sivaram K. Narayan Central Michigan University. Presented at CMU on October 10, 2015

Energy of Graphs. Sivaram K. Narayan Central Michigan University. Presented at CMU on October 10, 2015 Energy of Graphs Sivaram K. Narayan Central Michigan University Presented at CMU on October 10, 2015 1 / 32 Graphs We will consider simple graphs (no loops, no multiple edges). Let V = {v 1, v 2,..., v

More information

arxiv: v3 [math.ra] 10 Jun 2016

arxiv: v3 [math.ra] 10 Jun 2016 To appear in Linear and Multilinear Algebra Vol. 00, No. 00, Month 0XX, 1 10 The critical exponent for generalized doubly nonnegative matrices arxiv:1407.7059v3 [math.ra] 10 Jun 016 Xuchen Han a, Charles

More information

arxiv: v1 [math.co] 3 Nov 2014

arxiv: v1 [math.co] 3 Nov 2014 SPARSE MATRICES DESCRIBING ITERATIONS OF INTEGER-VALUED FUNCTIONS BERND C. KELLNER arxiv:1411.0590v1 [math.co] 3 Nov 014 Abstract. We consider iterations of integer-valued functions φ, which have no fixed

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

1 Review: symmetric matrices, their eigenvalues and eigenvectors

1 Review: symmetric matrices, their eigenvalues and eigenvectors Cornell University, Fall 2012 Lecture notes on spectral methods in algorithm design CS 6820: Algorithms Studying the eigenvalues and eigenvectors of matrices has powerful consequences for at least three

More information

Extreme eigenvalues of Erdős-Rényi random graphs

Extreme eigenvalues of Erdős-Rényi random graphs Extreme eigenvalues of Erdős-Rényi random graphs Florent Benaych-Georges j.w.w. Charles Bordenave and Antti Knowles MAP5, Université Paris Descartes May 18, 2018 IPAM UCLA Inhomogeneous Erdős-Rényi random

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

Recent results in quantum chaos and its applications to nuclei and particles

Recent results in quantum chaos and its applications to nuclei and particles Recent results in quantum chaos and its applications to nuclei and particles J. M. G. Gómez, L. Muñoz, J. Retamosa Universidad Complutense de Madrid R. A. Molina, A. Relaño Instituto de Estructura de la

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

Pre-sessional Mathematics for Big Data MSc Class 2: Linear Algebra

Pre-sessional Mathematics for Big Data MSc Class 2: Linear Algebra Pre-sessional Mathematics for Big Data MSc Class 2: Linear Algebra Yuri Kalnishkan September 22, 2018 Linear algebra is vitally important for applied mathematics We will approach linear algebra from a

More information

Size Effect of Diagonal Random Matrices

Size Effect of Diagonal Random Matrices Abstract Size Effect of Diagonal Random Matrices A.A. Abul-Magd and A.Y. Abul-Magd Faculty of Engineering Science, Sinai University, El-Arish, Egypt The statistical distribution of levels of an integrable

More information

CONVERGENCE OF ZETA FUNCTIONS OF GRAPHS. Introduction

CONVERGENCE OF ZETA FUNCTIONS OF GRAPHS. Introduction CONVERGENCE OF ZETA FUNCTIONS OF GRAPHS BRYAN CLAIR AND SHAHRIAR MOKHTARI-SHARGHI Abstract. The L 2 -zeta function of an infinite graph Y (defined previously in a ball around zero) has an analytic extension.

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

An Introduction to Algebraic Graph Theory

An Introduction to Algebraic Graph Theory An Introduction to Algebraic Graph Theory Rob Beezer beezer@ups.edu Department of Mathematics and Computer Science University of Puget Sound Mathematics Department Seminar Pacific University October 9,

More information

An Invitation to Modern Number Theory. Steven J. Miller and Ramin Takloo-Bighash PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

An Invitation to Modern Number Theory. Steven J. Miller and Ramin Takloo-Bighash PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD An Invitation to Modern Number Theory Steven J. Miller and Ramin Takloo-Bighash PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Contents Foreword Preface Notation xi xiii xix PART 1. BASIC NUMBER THEORY

More information

In this paper, we will investigate oriented bicyclic graphs whose skew-spectral radius does not exceed 2.

In this paper, we will investigate oriented bicyclic graphs whose skew-spectral radius does not exceed 2. 3rd International Conference on Multimedia Technology ICMT 2013) Oriented bicyclic graphs whose skew spectral radius does not exceed 2 Jia-Hui Ji Guang-Hui Xu Abstract Let S(Gσ ) be the skew-adjacency

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

Mathematical Methods for Engineers and Scientists 1

Mathematical Methods for Engineers and Scientists 1 K.T. Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis, Determinants and Matrices With 49 Figures and 2 Tables fyj Springer Part I Complex Analysis 1 Complex Numbers 3 1.1 Our Number

More information

Exponentials of Symmetric Matrices through Tridiagonal Reductions

Exponentials of Symmetric Matrices through Tridiagonal Reductions Exponentials of Symmetric Matrices through Tridiagonal Reductions Ya Yan Lu Department of Mathematics City University of Hong Kong Kowloon, Hong Kong Abstract A simple and efficient numerical algorithm

More information

Finite Models for Arithmetical Quantum Chaos

Finite Models for Arithmetical Quantum Chaos Finite Models for Arithmetical Quantum Chaos Audrey Terras Math. Dept., U.C.S.D., San Diego, Ca 92093-0112 Abstract. Physicists have long studied spectra of Schrödinger operators and random matrices thanks

More information

The Matrix-Tree Theorem

The Matrix-Tree Theorem The Matrix-Tree Theorem Christopher Eur March 22, 2015 Abstract: We give a brief introduction to graph theory in light of linear algebra. Our results culminates in the proof of Matrix-Tree Theorem. 1 Preliminaries

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

EXAM. Exam 1. Math 5316, Fall December 2, 2012

EXAM. Exam 1. Math 5316, Fall December 2, 2012 EXAM Exam Math 536, Fall 22 December 2, 22 Write all of your answers on separate sheets of paper. You can keep the exam questions. This is a takehome exam, to be worked individually. You can use your notes.

More information

First, we review some important facts on the location of eigenvalues of matrices.

First, we review some important facts on the location of eigenvalues of matrices. BLOCK NORMAL MATRICES AND GERSHGORIN-TYPE DISCS JAKUB KIERZKOWSKI AND ALICJA SMOKTUNOWICZ Abstract The block analogues of the theorems on inclusion regions for the eigenvalues of normal matrices are given

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Lecture 2: Lattices and Bases

Lecture 2: Lattices and Bases CSE 206A: Lattice Algorithms and Applications Spring 2007 Lecture 2: Lattices and Bases Lecturer: Daniele Micciancio Scribe: Daniele Micciancio Motivated by the many applications described in the first

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Final Exam Exam date: 12/14/17 Time Limit: 170 Minutes Name: Student ID: GSI or Section: This exam contains 9 pages (including this cover page) and 10 problems. Problems are

More information

9. Nuclear Magnetic Resonance

9. Nuclear Magnetic Resonance 9. Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) is a method that can be used to find structures of proteins. NMR spectroscopy is the observation of spins of atoms and electrons in a molecule

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Effect of Unfolding on the Spectral Statistics of Adjacency Matrices of Complex Networks

Effect of Unfolding on the Spectral Statistics of Adjacency Matrices of Complex Networks Effect of Unfolding on the Spectral Statistics of Adjacency Matrices of Complex Networks Sherif M. Abuelenin a,b, Adel Y. Abul-Magd b,c a Faculty of Engineering, Port Said University, Port Said, Egypt

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors MAT 67L, Laboratory III Contents Instructions (1) Read this document. (2) The questions labeled Experiments are not graded, and should not be turned in. They are designed for

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

arxiv: v1 [math.nt] 15 Mar 2012

arxiv: v1 [math.nt] 15 Mar 2012 ON ZAGIER S CONJECTURE FOR L(E, 2): A NUMBER FIELD EXAMPLE arxiv:1203.3429v1 [math.nt] 15 Mar 2012 JEFFREY STOPPLE ABSTRACT. We work out an example, for a CM elliptic curve E defined over a real quadratic

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information