Cost Analysis of Square Root Information Filtering and Smoothing with a Mixed Real-Integer State

Size: px
Start display at page:

Download "Cost Analysis of Square Root Information Filtering and Smoothing with a Mixed Real-Integer State"

Transcription

1 Cost Analysis of Square Root Information Filtering and Smoothing with a Mixed Real-Integer State December 8, 013 The following analysis provides an analysis of the transformation undergone by the maximum a posteriori cost function as a priori information, process noise, and measurements are ingested by a square root information lter and smoother with a mixed real-integer state. The analysis supports claims made in [1]. 1 Filtering Analysis The initial cost function at time i, embedded with square root information equations that encode the a priori information about the real-valued state and the process noise and with square root information equations relating the new measurements to the real- and integer- valued state can be written as follows: R xxi x i z xi A priori real-valued state information R nni n i z ni A priori integer-valued state information R ww w k 0 H xk x k H nk n k z k k=i A priori process noise information k=i } {{ } Measurements Note that the nonhomogeneous measurement term for the a priori process noise is set to 0 since the process noise is assumed to be zero-mean. Stacking the a priori terms at time i we can rewrite the cost as: R ww 0 0 w i 0 0 R xxi 0 x i z xi n i z ni k=i1 R nni H xk x k H nk n k z k k=i1 To form the big block matrix above, we used the following identity: ] a b = a [ b R ww w k (1) 1

2 x i and n i can be written in terms of x i1 and n i1 according to their respective dynamics models: x i = 1 [x i1 w i ] Φ { n i = n i1 (1 : m) if a new integer becomes present between time i and i 1 n i1 otherwise wherem = numel(n i1 ) 1. Substituting x i with x i1 and n i with n i1 into the above cost function, we arrive at: R ww 0 [0 0] R xxi Φ 1 R xxi Φ 1 [R xni 0] 0 0 [R nni 0] k=i1 H xk x k H nk n k z k k=i1 w i x i1 n i1 0 z xi z ni R ww w k where [x 0] represents the augmentation of the square-root information matrices with a column of 0 s to represent the introduction of a new integer between time i and i 1. Zeros are used to indicate that no knowledge is known about this new integer. By QR factorizing the big block matrix and left multiplying the insides of the rst term by Q T, one can propagate the state elements forward to i 1 and arrive at the following equivalent cost function: R wwi R wx,i1 R wn,i1 w i z wi 0 R xx,i1 R xn,i1 x i1 z x,i1 0 0 R nn,i1 n i1 z n,i1 k=i1 H xk x k H nk n k z k k=i1 R ww w k Next, by unpacking the process noise data equation from the big block matrix (see (1)) and replacing

3 it with the latest measurement at time i 1, one can rewrite the cost as: R xx,i1 R xn,i1 [ ] 0 R nn,i1 xi1 z x,i1 z n n,i1 H i1 H i1 n,i1 z i1 Rwwi w i R wx,i1 x k1 R wn,i1 n i1 z wi H xk x k H nk n k z k R ww w k k=i Next QR factorize this new big matrix and left multiply by Q T to perform a measurement update to get : R xx,i1 R xn,i1 [ ] 0 R nn,i1 xi1 z x,i1 z n n,i1 0 0 i1 z r,i1 Rwwi w i R wx,i1 x k1 R wn,i1 n i1 z wi H xk x k H nk n k z k R ww w k k=i The cost function can now be unpacked from its big block matrix form and written as follows: R xx,i1 x i1 R xn,i1 n i1 z x,i1 R nn,i1 n i1 z n,i1 z r,i1 Rwwi w i R wx,i1 x i1 R wn,i1 n i1 z w,i H k x k H nk n k z k R ww w k k=i k=i1 The above steps can be reiterated for i i 1. After incorporating all measurements up to time i = K, the cost function can be written as: R xx,k x K R xn,k n K z x,k R nn,k n K z n,k Rwwk w k R wx,k1 x k1 R wn,k1 n k1 z w,k z r,k = 0 R nn,k ˆn K z n,k 0 z r,k when minimized over n K, x k 's and w k 's () 3

4 Smoothing Analysis Next, we can derive the above mixed integer-real cost function after smoothing. We rst dene the smoother's initial nonhomogeneous term z x,k, initial square-root information matrix R xx,k, and the integer-valued vector estimate ˆn K at time K. The new quantities are derived from the variables output after running the lter: z x,k = z x,k R xn,k ˆn K R xx,k = R xx,k ˆn K = min n i Z K R nn,k n i z n,k These variables can be substituted into the cost function in () to arrive at: R xx,k x K z x,k R nn,k ˆn K z n,k Rwwk w k R wx,k1 x k1 R wn,k1ˆn k1 z w,k z r,k We can use the following dynamics equation to eliminate x k in favor of x and ˆn K in favor of ˆn : (3) x k = Φx w {[ ] ˆn ˆn ik ˆn K = ˆn if a new integer becomes present between time K 1 and K otherwise where ˆn ik is the last component of ˆn K, the integer that arose between time K 1 and K, if there was one. Stacking the rst term and part of the third term of (3) and applying these substitutions, we arrive at [ ] [ ] [ ] Rww, R wx,k R wx,k Φ w zw, R wn,k ˆn K x K R xx,k R xx,kφ z x,k Rww,k w k R wx,k1 x k1 z w,k Rnn,K ˆn K z n,k z r,k After QR factorization and left multiplying, we propagate the smoother from time K to K 1: [ R ww, R ] [ ] [ ] wx, w z 0 R w, xx, x z x, K R ww,k w k R wx,k1 x k1 R wn,k1ˆn k1 z w,k R nn,k ˆn K z n,k z r,k 4

5 Unpacking the cost function, decrementing i by 1, we can repeat the last two steps of subsitution and QR factorization until i = 0 and the cost function looks as follows: R xx,0 x 0 z x,0 R nn,k ˆn K z n,k R ww,k w k R wx,kx k z w,k z r,k = 0 0 R nn,k ˆn K z n,k z r,k when minimized over x k 's and w k 's From this, it is clear that the minimum cost for both the lter and the smoother are the same, however the minimizing values of x k s and w ks will be dierent. The only dierence is that the dynamics are enforced going backward. A good analogy here is that between the ltering and smoothing stage, the minimization landscape is changing, however, the minimum value remains the same. References [1] K. M. Pesyna Jr., Z. M. Kassas, R. W. Heath Jr., and T. E. Humphreys, A phase-reconstruction technique for low-power centimeter-accurate mobile positioning, IEEE Transactions on Signal Processing, 013, submitted for review. 5

Orbit Determination Using TDMA Radio Navigation Data with Implicit Measurement Times. Ryan C. Dougherty and Mark L. Psiaki

Orbit Determination Using TDMA Radio Navigation Data with Implicit Measurement Times. Ryan C. Dougherty and Mark L. Psiaki AIAA Paper No. 211-6493 Orbit Determination Using TDMA Radio Navigation Data with Implicit Measurement Times Ryan C. Dougherty and Mark L. Psiaki Cornell University, Ithaca, New York, 14853-751 An orbit

More information

Sea Surface. Bottom OBS

Sea Surface. Bottom OBS ANALYSIS OF HIGH DIMENSIONAL TIME SERIES: OCEAN BOTTOM SEISMOGRAPH DATA Genshiro Kitagawa () and Tetsuo Takanami (2) () The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 06-8569

More information

The field of estimation addresses the question of how to form the best possible estimates of a system s

The field of estimation addresses the question of how to form the best possible estimates of a system s A Multipurpose Consider Covariance Analysis for Square-Root Information Filters Joanna C. Hinks and Mark L. Psiaki Cornell University, Ithaca, NY, 14853-7501 A new form of consider covariance analysis

More information

The Kalman filter is arguably one of the most notable algorithms

The Kalman filter is arguably one of the most notable algorithms LECTURE E NOTES «Kalman Filtering with Newton s Method JEFFREY HUMPHERYS and JEREMY WEST The Kalman filter is arguably one of the most notable algorithms of the 0th century [1]. In this article, we derive

More information

Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering. Funded by the NASA Aviation Safety Program June 16, 2003

Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering. Funded by the NASA Aviation Safety Program June 16, 2003 Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering Dan Simon Electrical Engineering Dept. Cleveland State University Cleveland, Ohio Donald L. Simon US Army Research Laboratory

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION M. Schwab, P. Noll, and T. Sikora Technical University Berlin, Germany Communication System Group Einsteinufer 17, 1557 Berlin (Germany) {schwab noll

More information

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.

More information

1 Matrices and Systems of Linear Equations

1 Matrices and Systems of Linear Equations Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 207, v 260) Contents Matrices and Systems of Linear Equations Systems of Linear Equations Elimination, Matrix Formulation

More information

Introduction to Unscented Kalman Filter

Introduction to Unscented Kalman Filter Introduction to Unscented Kalman Filter 1 Introdution In many scientific fields, we use certain models to describe the dynamics of system, such as mobile robot, vision tracking and so on. The word dynamics

More information

A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS

A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS César A Medina S,José A Apolinário Jr y, and Marcio G Siqueira IME Department o Electrical Engineering

More information

Sequential Estimation in Linear Systems with Multiple Time Delays

Sequential Estimation in Linear Systems with Multiple Time Delays INFORMATION AND CONTROL 22, 471--486 (1973) Sequential Estimation in Linear Systems with Multiple Time Delays V. SHUKLA* Department of Electrical Engineering, Sir George Williams University, Montreal,

More information

y(x n, w) t n 2. (1)

y(x n, w) t n 2. (1) Network training: Training a neural network involves determining the weight parameter vector w that minimizes a cost function. Given a training set comprising a set of input vector {x n }, n = 1,...N,

More information

output dimension input dimension Gaussian evidence Gaussian Gaussian evidence evidence from t +1 inputs and outputs at time t x t+2 x t-1 x t+1

output dimension input dimension Gaussian evidence Gaussian Gaussian evidence evidence from t +1 inputs and outputs at time t x t+2 x t-1 x t+1 To appear in M. S. Kearns, S. A. Solla, D. A. Cohn, (eds.) Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 999. Learning Nonlinear Dynamical Systems using an EM Algorithm Zoubin

More information

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02) Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 206, v 202) Contents 2 Matrices and Systems of Linear Equations 2 Systems of Linear Equations 2 Elimination, Matrix Formulation

More information

Performance Comparison of Two Implementations of the Leaky. LMS Adaptive Filter. Scott C. Douglas. University of Utah. Salt Lake City, Utah 84112

Performance Comparison of Two Implementations of the Leaky. LMS Adaptive Filter. Scott C. Douglas. University of Utah. Salt Lake City, Utah 84112 Performance Comparison of Two Implementations of the Leaky LMS Adaptive Filter Scott C. Douglas Department of Electrical Engineering University of Utah Salt Lake City, Utah 8411 Abstract{ The leaky LMS

More information

The DFT as Convolution or Filtering

The DFT as Convolution or Filtering Connexions module: m16328 1 The DFT as Convolution or Filtering C. Sidney Burrus This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License A major application

More information

Dynamic estimation methods compute two main outputs: Estimates of a system state vector and some

Dynamic estimation methods compute two main outputs: Estimates of a system state vector and some A Multipurpose Consider Covariance Analysis for Square-Root Information Smoothers Joanna C. Hins and Mar L. Psiai Cornell University, Ithaca, NY, 14853-7501 A new form of consider covariance analysis for

More information

A New Multiple Order Multichannel Fast QRD Algorithm and its Application to Non-linear System Identification

A New Multiple Order Multichannel Fast QRD Algorithm and its Application to Non-linear System Identification XXI SIMPÓSIO BRASILEIRO DE TELECOMUICAÇÕES-SBT 4, 6-9 DE SETEMBRO DE 4, BELÉM, PA A ew Multiple Order Multichannel Fast QRD Algorithm and its Application to on-linear System Identification António L L

More information

Particle lter for mobile robot tracking and localisation

Particle lter for mobile robot tracking and localisation Particle lter for mobile robot tracking and localisation Tinne De Laet K.U.Leuven, Dept. Werktuigkunde 19 oktober 2005 Particle lter 1 Overview Goal Introduction Particle lter Simulations Particle lter

More information

Crib Sheet : Linear Kalman Smoothing

Crib Sheet : Linear Kalman Smoothing Crib Sheet : Linear Kalman Smoothing Gabriel A. Terejanu Department of Computer Science and Engineering University at Buffalo, Buffalo, NY 14260 terejanu@buffalo.edu 1 Introduction Smoothing can be separated

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Optimal State Estimators for Linear Systems with Unknown Inputs

Optimal State Estimators for Linear Systems with Unknown Inputs Optimal tate Estimators for Linear ystems with Unknown Inputs hreyas undaram and Christoforos N Hadjicostis Abstract We present a method for constructing linear minimum-variance unbiased state estimators

More information

Distributed estimation based on multi-hop subspace decomposition

Distributed estimation based on multi-hop subspace decomposition Distributed estimation based on multi-hop subspace decomposition Luca Zaccarian 2,3 Joint work with A.R. del Nozal 1, P. Millán 1, L. Orihuela 1, A. Seuret 2 1 Departamento de Ingeniería, Universidad Loyola

More information

Optimal Distributed Lainiotis Filter

Optimal Distributed Lainiotis Filter Int. Journal of Math. Analysis, Vol. 3, 2009, no. 22, 1061-1080 Optimal Distributed Lainiotis Filter Nicholas Assimakis Department of Electronics Technological Educational Institute (T.E.I.) of Lamia 35100

More information

MULTICHANNEL FAST QR-DECOMPOSITION RLS ALGORITHMS WITH EXPLICIT WEIGHT EXTRACTION

MULTICHANNEL FAST QR-DECOMPOSITION RLS ALGORITHMS WITH EXPLICIT WEIGHT EXTRACTION 4th European Signal Processing Conference (EUSIPCO 26), Florence, Italy, September 4-8, 26, copyright by EURASIP MULTICHANNEL FAST QR-DECOMPOSITION RLS ALGORITHMS WITH EXPLICIT WEIGHT EXTRACTION Mobien

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

To keep things simple, let us just work with one pattern. In that case the objective function is defined to be. E = 1 2 xk d 2 (1)

To keep things simple, let us just work with one pattern. In that case the objective function is defined to be. E = 1 2 xk d 2 (1) Backpropagation To keep things simple, let us just work with one pattern. In that case the objective function is defined to be E = 1 2 xk d 2 (1) where K is an index denoting the last layer in the network

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Relative Irradiance. Wavelength (nm)

Relative Irradiance. Wavelength (nm) Characterization of Scanner Sensitivity Gaurav Sharma H. J. Trussell Electrical & Computer Engineering Dept. North Carolina State University, Raleigh, NC 7695-79 Abstract Color scanners are becoming quite

More information

A Comparitive Study Of Kalman Filter, Extended Kalman Filter And Unscented Kalman Filter For Harmonic Analysis Of The Non-Stationary Signals

A Comparitive Study Of Kalman Filter, Extended Kalman Filter And Unscented Kalman Filter For Harmonic Analysis Of The Non-Stationary Signals International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 1 A Comparitive Study Of Kalman Filter, Extended Kalman Filter And Unscented Kalman Filter For Harmonic Analysis

More information

WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH

WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH KENNETH M PESYNA, JR AND TODD E HUMPHREYS THE UNIVERSITY

More information

Incorporation of Time Delayed Measurements in a. Discrete-time Kalman Filter. Thomas Dall Larsen, Nils A. Andersen & Ole Ravn

Incorporation of Time Delayed Measurements in a. Discrete-time Kalman Filter. Thomas Dall Larsen, Nils A. Andersen & Ole Ravn Incorporation of Time Delayed Measurements in a Discrete-time Kalman Filter Thomas Dall Larsen, Nils A. Andersen & Ole Ravn Department of Automation, Technical University of Denmark Building 326, DK-2800

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

CHAPTER 6. Direct Methods for Solving Linear Systems

CHAPTER 6. Direct Methods for Solving Linear Systems CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to

More information

Outline. 1 Full information estimation. 2 Moving horizon estimation - zero prior weighting. 3 Moving horizon estimation - nonzero prior weighting

Outline. 1 Full information estimation. 2 Moving horizon estimation - zero prior weighting. 3 Moving horizon estimation - nonzero prior weighting Outline Moving Horizon Estimation MHE James B. Rawlings Department of Chemical and Biological Engineering University of Wisconsin Madison SADCO Summer School and Workshop on Optimal and Model Predictive

More information

October 7, :8 WSPC/WS-IJWMIP paper. Polynomial functions are renable

October 7, :8 WSPC/WS-IJWMIP paper. Polynomial functions are renable International Journal of Wavelets, Multiresolution and Information Processing c World Scientic Publishing Company Polynomial functions are renable Henning Thielemann Institut für Informatik Martin-Luther-Universität

More information

Kalman Filters with Uncompensated Biases

Kalman Filters with Uncompensated Biases Kalman Filters with Uncompensated Biases Renato Zanetti he Charles Stark Draper Laboratory, Houston, exas, 77058 Robert H. Bishop Marquette University, Milwaukee, WI 53201 I. INRODUCION An underlying assumption

More information

Moving Horizon Estimation (MHE)

Moving Horizon Estimation (MHE) Moving Horizon Estimation (MHE) James B. Rawlings Department of Chemical and Biological Engineering University of Wisconsin Madison Insitut für Systemtheorie und Regelungstechnik Universität Stuttgart

More information

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie WIENER FILTERING Presented by N.Srikanth(Y8104060), M.Manikanta PhaniKumar(Y8104031). INDIAN INSTITUTE OF TECHNOLOGY KANPUR Electrical Engineering dept. INTRODUCTION Noise is present in many situations

More information

Mathematics Revision Guide. Algebra. Grade C B

Mathematics Revision Guide. Algebra. Grade C B Mathematics Revision Guide Algebra Grade C B 1 y 5 x y 4 = y 9 Add powers a 3 a 4.. (1) y 10 y 7 = y 3 (y 5 ) 3 = y 15 Subtract powers Multiply powers x 4 x 9...(1) (q 3 ) 4...(1) Keep numbers without

More information

REDUCTION FORMULAS FOR THE SUMMATION OF RECIPROCALS IN CERTAIN SECOND-ORDER RECURRING SEQUENCES

REDUCTION FORMULAS FOR THE SUMMATION OF RECIPROCALS IN CERTAIN SECOND-ORDER RECURRING SEQUENCES REDUCTION FORMULAS FOR THE SUMMATION OF RECIPROCALS IN CERTAIN SECOND-ORDER RECURRING SEQUENCES R. S. Melham Department of Mathematical Sciences, University of Technology, Sydney PO Box 23, Broadway, NSW

More information

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu ESTIMATOR STABILITY ANALYSIS IN SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu Institut de Robtica i Informtica Industrial, UPC-CSIC Llorens Artigas 4-6, Barcelona, 88 Spain {tvidal, cetto,

More information

Distributed Consensus Optimization

Distributed Consensus Optimization Distributed Consensus Optimization Ming Yan Michigan State University, CMSE/Mathematics September 14, 2018 Decentralized-1 Backgroundwhy andwe motivation need decentralized optimization? I Decentralized

More information

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists Vectors, Linear Combinations, and Matrix-Vector Mulitiplication In this section, we introduce vectors, linear combinations, and matrix-vector multiplication The rest of the class will involve vectors,

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S,

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, Group, Rings, and Fields Rahul Pandharipande I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ

More information

Lie Groups for 2D and 3D Transformations

Lie Groups for 2D and 3D Transformations Lie Groups for 2D and 3D Transformations Ethan Eade Updated May 20, 2017 * 1 Introduction This document derives useful formulae for working with the Lie groups that represent transformations in 2D and

More information

Linear Equations Matrices and Determinants

Linear Equations Matrices and Determinants Linear Equations Matrices and Determinants Introduction The primary purpose of this topic is to develop the mathematical discipline that is necessary to solve a complex problem that requires many numerical

More information

The Riccati transformation method for linear two point boundary problems

The Riccati transformation method for linear two point boundary problems Chapter The Riccati transformation method for linear two point boundary problems The solution algorithm for two point boundary value problems to be employed here has been derived from different points

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018

Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018 Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218! Nonlinearity of adaptation! Parameter-adaptive filtering! Test for whiteness of the residual!

More information

ONLINE TRACKING OF THE DEGREE OF NONLINEARITY WITHIN COMPLEX SIGNALS

ONLINE TRACKING OF THE DEGREE OF NONLINEARITY WITHIN COMPLEX SIGNALS ONLINE TRACKING OF THE DEGREE OF NONLINEARITY WITHIN COMPLEX SIGNALS Danilo P. Mandic, Phebe Vayanos, Soroush Javidi, Beth Jelfs and 2 Kazuyuki Aihara Imperial College London, 2 University of Tokyo {d.mandic,

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Rate-Distortion Based Temporal Filtering for. Video Compression. Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801

Rate-Distortion Based Temporal Filtering for. Video Compression. Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801 Rate-Distortion Based Temporal Filtering for Video Compression Onur G. Guleryuz?, Michael T. Orchard y? University of Illinois at Urbana-Champaign Beckman Institute, 45 N. Mathews Ave., Urbana, IL 68 y

More information

Ultra sonic? Heat and Temp.? Force and Disp.? Where is the best location? Void

Ultra sonic? Heat and Temp.? Force and Disp.? Where is the best location? Void Inverse Problems in Engineering: Theory and Practice 3rd Int. Conference on Inverse Problems in Engineering June 3-8, 999, Port Ludlow, WA, USA ME0 OPTIMIZATION OF MEASUREMENTS FOR INVERSE PROBLEM Kenji

More information

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Simo Särkkä E-mail: simo.sarkka@hut.fi Aki Vehtari E-mail: aki.vehtari@hut.fi Jouko Lampinen E-mail: jouko.lampinen@hut.fi Abstract

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 3 1 Attempt to verify experimentally the calculation from class that

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

Matrices and Determinants

Matrices and Determinants Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help

More information

Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion

Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

Gaussian Processes for Sequential Prediction

Gaussian Processes for Sequential Prediction Gaussian Processes for Sequential Prediction Michael A. Osborne Machine Learning Research Group Department of Engineering Science University of Oxford Gaussian processes are useful for sequential data,

More information

Temporal Backpropagation for FIR Neural Networks

Temporal Backpropagation for FIR Neural Networks Temporal Backpropagation for FIR Neural Networks Eric A. Wan Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract The traditional feedforward neural network is a static

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

Magnetometer-based Attitude and Rate Estimation for a Spacecraft with Wire Booms

Magnetometer-based Attitude and Rate Estimation for a Spacecraft with Wire Booms Journal of Guidance, Control, and Dynamics Vol. 28, No. 4, July August 25, pp. 584 593 Magnetometer-based Attitude and Rate Estimation for a Spacecraft with Wire Booms Todd E. Humphreys, Mark L. Psiaki,

More information

Open Economy Macroeconomics: Theory, methods and applications

Open Economy Macroeconomics: Theory, methods and applications Open Economy Macroeconomics: Theory, methods and applications Lecture 4: The state space representation and the Kalman Filter Hernán D. Seoane UC3M January, 2016 Today s lecture State space representation

More information

Identification of Nonlinear Dynamic Systems with Multiple Inputs and Single Output using discrete-time Volterra Type Equations

Identification of Nonlinear Dynamic Systems with Multiple Inputs and Single Output using discrete-time Volterra Type Equations Identification of Nonlinear Dnamic Sstems with Multiple Inputs and Single Output using discrete-time Volterra Tpe Equations Thomas Treichl, Stefan Hofmann, Dierk Schröder Institute for Electrical Drive

More information

Comparison of DDE and ETDGE for. Time-Varying Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong

Comparison of DDE and ETDGE for. Time-Varying Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong Comparison of DDE and ETDGE for Time-Varying Delay Estimation H. C. So Department of Electronic Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong Email : hcso@ee.cityu.edu.hk

More information

A First Course in Linear Algebra

A First Course in Linear Algebra A First Course in Li... Authored by Mr. Mohammed K A K... 6.0" x 9.0" (15.24 x 22.86 cm) Black & White on White paper 130 pages ISBN-13: 9781502901811 ISBN-10: 1502901811 Digital Proofer A First Course

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

1 Introduction Reduced-rank linear ltering has been proposed for array processing and radar applications to enable accurate estimation of lter coecien

1 Introduction Reduced-rank linear ltering has been proposed for array processing and radar applications to enable accurate estimation of lter coecien Adaptive Reduced-Rank Interference Suppression Based on the Multistage Wiener Filter Michael L. Honig y J. Scott Goldstein z Abstract A class of adaptive reduced-rank interference suppression algorithms

More information

Chapter 2 Algorithms for Periodic Functions

Chapter 2 Algorithms for Periodic Functions Chapter 2 Algorithms for Periodic Functions In this chapter we show how to compute the Discrete Fourier Transform using a Fast Fourier Transform (FFT) algorithm, including not-so special case situations

More information

1/30/2012. Reasoning with uncertainty III

1/30/2012. Reasoning with uncertainty III Reasoning with uncertainty III 1 Temporal Models Assumptions 2 Example First-order: From d-separation, X t+1 is conditionally independent of X t-1 given X t No independence of measurements Yt Alternate

More information

Lecture Notes: Solving Linear Systems with Gauss Elimination

Lecture Notes: Solving Linear Systems with Gauss Elimination Lecture Notes: Solving Linear Systems with Gauss Elimination Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Echelon Form and Elementary

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

ECON 331 Homework #2 - Solution. In a closed model the vector of external demand is zero, so the matrix equation writes:

ECON 331 Homework #2 - Solution. In a closed model the vector of external demand is zero, so the matrix equation writes: ECON 33 Homework #2 - Solution. (Leontief model) (a) (i) The matrix of input-output A and the vector of level of production X are, respectively:.2.3.2 x A =.5.2.3 and X = y.3.5.5 z In a closed model the

More information

On the solution of incompressible two-phase ow by a p-version discontinuous Galerkin method

On the solution of incompressible two-phase ow by a p-version discontinuous Galerkin method COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2006; 22:741 751 Published online 13 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.846

More information

Examples. 2-input, 1-output discrete-time systems: 1-input, 1-output discrete-time systems:

Examples. 2-input, 1-output discrete-time systems: 1-input, 1-output discrete-time systems: Discrete-Time s - I Time-Domain Representation CHAPTER 4 These lecture slides are based on "Digital Signal Processing: A Computer-Based Approach, 4th ed." textbook by S.K. Mitra and its instructor materials.

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

PARALLEL MULTIPLICATION IN F 2

PARALLEL MULTIPLICATION IN F 2 PARALLEL MULTIPLICATION IN F 2 n USING CONDENSED MATRIX REPRESENTATION Christophe Negre Équipe DALI, LP2A, Université de Perpignan avenue P Alduy, 66 000 Perpignan, France christophenegre@univ-perpfr Keywords:

More information

Subsequences and the Bolzano-Weierstrass Theorem

Subsequences and the Bolzano-Weierstrass Theorem Subsequences and the Bolzano-Weierstrass Theorem A subsequence of a sequence x n ) n N is a particular sequence whose terms are selected among those of the mother sequence x n ) n N The study of subsequences

More information

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r Intervalwise Receding Horizon H 1 -Tracking Control for Discrete Linear Periodic Systems Ki Baek Kim, Jae-Won Lee, Young Il. Lee, and Wook Hyun Kwon School of Electrical Engineering Seoul National University,

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

SAGE-based Estimation Algorithms for Time-varying Channels in Amplify-and-Forward Cooperative Networks

SAGE-based Estimation Algorithms for Time-varying Channels in Amplify-and-Forward Cooperative Networks SAGE-based Estimation Algorithms for Time-varying Channels in Amplify-and-Forward Cooperative Networks Nico Aerts and Marc Moeneclaey Department of Telecommunications and Information Processing Ghent University

More information

A Robust PCA by LMSER Learning with Iterative Error. Bai-ling Zhang Irwin King Lei Xu.

A Robust PCA by LMSER Learning with Iterative Error. Bai-ling Zhang Irwin King Lei Xu. A Robust PCA by LMSER Learning with Iterative Error Reinforcement y Bai-ling Zhang Irwin King Lei Xu blzhang@cs.cuhk.hk king@cs.cuhk.hk lxu@cs.cuhk.hk Department of Computer Science The Chinese University

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis CS 593 / 791 Computer Science and Electrical Engineering Dept. West Virginia University 20th January 2006 Outline 1 Discretizing the heat equation 2 Outline 1 Discretizing the heat

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Boxlets: a Fast Convolution Algorithm for. Signal Processing and Neural Networks. Patrice Y. Simard, Leon Bottou, Patrick Haner and Yann LeCun

Boxlets: a Fast Convolution Algorithm for. Signal Processing and Neural Networks. Patrice Y. Simard, Leon Bottou, Patrick Haner and Yann LeCun Boxlets: a Fast Convolution Algorithm for Signal Processing and Neural Networks Patrice Y. Simard, Leon Bottou, Patrick Haner and Yann LeCun AT&T Labs-Research 100 Schultz Drive, Red Bank, NJ 07701-7033

More information

Partial LLL Reduction

Partial LLL Reduction Partial Reduction Xiaohu Xie School of Computer Science McGill University Montreal, Quebec, Canada H3A A7 Email: xiaohu.xie@mail.mcgill.ca Xiao-Wen Chang School of Computer Science McGill University Montreal,

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Let's contemplate a continuous-time limit of the Bernoulli process:

Let's contemplate a continuous-time limit of the Bernoulli process: Mathematical Foundations of Markov Chains Thursday, September 17, 2015 2:04 PM Reading: Lawler Ch. 1 Homework 1 due Friday, October 2 at 5 PM. Office hours today are moved to 6-7 PM. Let's revisit the

More information

Chapter 4 Systems of Linear Equations; Matrices

Chapter 4 Systems of Linear Equations; Matrices Chapter 4 Systems of Linear Equations; Matrices Section 5 Inverse of a Square Matrix Learning Objectives for Section 4.5 Inverse of a Square Matrix The student will be able to identify identity matrices

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

EFFICIENT COMPUTATION OF TERMS OF LINEAR RECURRENCE SEQUENCES OF ANY ORDER

EFFICIENT COMPUTATION OF TERMS OF LINEAR RECURRENCE SEQUENCES OF ANY ORDER #A39 INTEGERS 8 (28) EFFIIENT OMPUTATION OF TERMS OF LINEAR REURRENE SEQUENES OF ANY ORDER Dmitry I. Khomovsky Lomonosov Moscow State University, Moscow, Russia khomovskij@physics.msu.ru Received: /2/6,

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 24: H2 Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 4, 2011 E. Frazzoli (MIT) Lecture 24: H 2 Synthesis May

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information