From the Euclidean Algorithm for Solving a Key Equation for Dual Reed Solomon Codes to the Berlekamp-Massey Algorithm

Size: px
Start display at page:

Download "From the Euclidean Algorithm for Solving a Key Equation for Dual Reed Solomon Codes to the Berlekamp-Massey Algorithm"

Transcription

1 1 / 32 From the Eucldean Algorthm for Solvng a Key Equaton for Dual Reed Solomon Codes to the Berlekamp-Massey Algorthm Mara Bras-Amorós, Mchael E O Sullvan The Claude Shannon Insttute Workshop on Codng and Cryptography Cork,May18, 2009

2 Contents 2 / 32 1 Extended Eucldean algorthm (revsted) 2 Key equatons for Reed-Solomon codes (revsted) 3 Extended Eucldean algorthm for the new key equaton 4 From the Eucldean to the Berlekamp-Massey algorthm 5 Other research drectons

3 Bézout s Theorem 3 / 32 Bézout s Theorem Gven a, b F q[x] there exst f, g F q[x] such that f a + gb gcd(a, b) Extended Eucldean Algorthm Let r 2 a, r 1 b and, for 0 let the Eucldean dvson of r 2 by r 1 be r 2 q r 1 + r Defne f 2 1, g 2 0, f 1 0, g 1 1, and for 0 f f 2 q f 1 g g 2 q g 1 then for all 0 f a + g b r

4 4 / 32 Extended Eucldean algorthm The extended Eucldean algorthm can be expressed n matrx form as ALGORITHM: Intalze: «r 1 f 1 g 1 b 0 1 r 2 f 2 g 2 a 1 0 «whle deg(r ) 0: end whle q Quotent(r 2, r 1 ) «r f g q 1 r 1 f 1 g ««r 1 f 1 g 1 r 2 f 2 g 2 Return r 1

5 Extended Eucldean algorthm 5 / 32 Remark 1 deg(f ) > deg(f 1 ) whle deg(r ) < deg(r 1 ) deg(g ) > deg(g 1 ) (except maybe n the ntal steps); ««r f 2 det ( 1) +1 r 1 f 1 det ( 1) +1 b, so r 1 f 1 r 2 f 2 f r 1 ( 1) b + f 1 r, and, snce deg r < deg r 1 and deg f > deg f 1, then LT(f ) ( 1) LT(b)/LT(r 1 ) deg f deg b deg r 1 ««f g 3 det ( 1) +1 f 1 g det 1 ( 1), so f 1 g 1 f 2 g 2 f g 1 f 1 g ( 1) and the ntermedate Bézout coeffcents are coprme at each step

6 Extended Eucldean alg wth monc remanders 6 / 32 Defnton For all 1 defne the matrces «R F G 1/LC(r ) 0 R F G 0 ( 1) LC(r ) «r f g r 1 f 1 g 1 «Lemma For all 0, ««««R F G 1/LC( R 1 Q R 1) 0 Q 1 R 1 F 1 G 1, R F G 0 LC( R 1 Q R 1) 1 0 R 1 F 1 G 1 where Q s the quotent of R 1 by R 1

7 Extended Eucldean alg wth monc remanders 7 / 32 The extended Eucldean algorthm for the new matrces s ALGORITHM: Intalze: R 1 F 1 G 1 R 1 F 1 G 1 «1 0 LC(b) 0 LC(b) b 0 1 a 1 0 «whle deg(r ) 0: end whle Q Quotent( R 1, R 1 ) 0 1 «1 R F G 0 «@ LC( R 1 Q R 1 ) A Q 1 R 1 F 1 G 1 R F G LC( R 1 Q R 1 ) R 1 F 1 G 1 Return R 1 (aconstant multple of r 1 )

8 Extended Eucldean alg wth monc remanders The extended Eucldean algorthm for the new matrces s ALGORITHM: Intalze: R 1 F 1 G 1 R 1 F 1 G 1 «1 0 LC(b) 0 LC(b) b 0 1 a 1 0 «whle deg(r ) 0: end whle Q Quotent( R 1, R 1 ) 0 1 «1 R F G 0 «@ LC( R 1 Q R 1 ) A Q 1 R 1 F 1 G 1 R F G LC( R 1 Q R 1 ) R 1 F 1 G 1 Return R 1 (aconstant multple of r 1 ) If Q Q (0) + Q (1) x + + Q (l) x l then Q «1 Q (0) 0 1 «(1) 1 Q 0 1 x «««(l) 1 Q x l / 32

9 Extended Eucldean alg wth monc remanders The extended Eucldean algorthm for the new matrces s ALGORITHM: Intalze: R 1 F 1 G 1 R 1 F 1 G 1 «1 0 LC(b) 0 LC(b) b 0 1 a 1 0 «whle deg(r ) 0: end whle Q Quotent( R 1, R 1 ) 0 1 «1 R F G LC( R 1 Q R 1 ) R F G 0 LC( R 1 Q R 1 )! 1 Q (l) x l A 1 Q(0) 0 1 ««R 1 F 1 G 1 R 1 F 1 G 1! 1 Q (1) x 0 1! Return R 1 (aconstant multple of r 1 ) If Q Q (0) + Q (1) x + + Q (l) x l then Q «1 Q (0) 0 1 «(1) 1 Q 0 1 x «««(l) 1 Q x l / 32

10 Extended Eucldean alg wth monc remanders The extended Eucldean algorthm for the new matrces s ALGORITHM: Intalze: R 1 F 1 G 1 R 1 F 1 G 1 «1 0 LC(b) 0 LC(b) b 0 1 a 1 0 «whle deg(r ) 0: end whle Q Quotent( R 1, R 1 ) 0 1 «1 R F G LC( R 1 Q R 1 ) R F G 0 LC( R 1 Q R 1 )! 1 Q (l) x l A 1 Q(0) 0 1 ««R 1 F 1 G 1 R 1 F 1 G 1! 1 Q (1) x 0 1! Return R 1 (aconstant multple of r 1 ) LC(b) LC( R 1 Q R 1 ) Q (j) 9 they all are the LC of the left-most, top-most ; element n the prevous matrx 7 / 32

11 Extended Eucldean alg wth monc remanders 8 / 32 Splttng the matrx multplcatons we get ALGORITHM: Intalze: «R 1 F 1 G 1 b/lc(b) 0 1/LC(b) R 1 F 1 G 1 LC(b)a LC(b) 0 «whle deg(r ) 0: «R+1 F +1 G R +1 F+1 G ««R F G R F G whle deg(r ) deg( R ): R+1 F +1 G +1 R +1 F+1 G+1 «1 LC(R )x (deg(r ) deg( R )) 0 1! «R F G R F G end whle «R+1 F +1 G +1 1/LC(R ) 0 R +1 F+1 G+1 0 LC(R ) ««R F G R F G end whle

12 Extended Eucldean alg wth monc remanders 9 / 32 We ntroduced a bunch of ntermedate matrces Not all of them satsfy «R F G R F G «R F G 1/LC(r ) 0 R F G 0 ( 1) LC(r ) «r f g r 1 f 1 g 1 «But all of them satsfy F a + G b R, F a + G b R

13 Extended Eucldean alg wth monc remanders The same algorthm can be expressed as ALGORITHM: Intalze: «R 1 F 1 G 1 LC(b)a LC(b) 0 R 1 F 1 G 1 b/lc(b) 0 1/LC(b) «whle deg(r ) 0: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G end whle µ LC(R ) «R+1 F +1 G +1 1/µ 0 R +1 F+1 G+1 0 µ ««R F G R F G 10 / 32

14 Reed-Solomon Codes 11 / 32 Prmal Reed-Solomon Code Consder F a fnte feld of sze q p m, α a prmtve element n F, n q 1 the dentfcaton u (u 0, u 1,, u n 1 ) u(x) u 0 + u 1 x + + u n 1 x n 1 (denote u(α) u 0 + u 1 α + + u n 1 α n 1 ) The Reed-Solomon code of dmenson k C (k) s the cyclc code wth generator polynomal (x α)(x α 2 ) (x α n k ) It has generator and party check matrces α α 2 α n 1 1 α α 2 α n 1 1 α 2 α 4 α 2(n 1) G (k) 1 α 2 α 4 α 2(n 1), H (k) 1 α 3 α 6 α 3(n 1) C A C A 1 α k 1 α (k 1)2 α (k 1)(n 1) 1 α n k α (n k)2 α (n k)(n 1)

15 Prmal and dual Reed-Solomon Codes Prmal Reed-Solomon Code The Reed-Solomon code of dmenson k C (k) s the cyclc code wth generator polynomal (x α)(x α 2 ) (x α n k ) It has generator and party check matrces G (k) 0 B B B B α α 2 α n 1 1 α 2 α 4 α 2(n 1) 1 α k 1 α (k 1)2 α (k 1)(n 1) 1 C C C C C A, H (k) 0 B B B B B 1 α α 2 α n 1 1 α 2 α 4 α 2(n 1) 1 α 3 α 6 α 3(n 1) 1 α n k α (n k)2 α (n k)(n 1) 1 C C C C C C A Dual Reed-Solomon Code The dual Reed-Solomon code of dmenson k C(k) s the cyclc code wth generator polynomal (x α (k+1) ) (x α (n 1) )(x 1) It has generator and party check matrces G(k) 0 B B B B B 1 α α 2 α n 1 1 α 2 α 4 α 2(n 1) 1 α 3 α 6 α 3(n 1) 1 α k α 2k α k(n 1) 1 C C C C C C A, H(k) 0 B B B B α α 2 α n 1 1 α 2 α 4 α 2(n 1) 1 α n k 1 α (n k 1)2 α (n k 1)(n 1) 1 C C C C C A 12 / 32

16 13 / 32 Prmal and dual Reed-Solomon Codes Propertes Both codes have mnmum dstance d n k + 1 C(k) C (n k) If s a vector of dmenson k and c (c 0, c 1,, c n 1 ) G(k) C(k), c (c 0,c 1,, c n 1) G (k) C (k), then c (c0, αc1, α 2 c2, α n 1 cn 1), c(α ) c0+ αc1α + α 2 c2 α 2 + +α n 1 cn 1α (n 1) c0+ c1α +1 + c2α 2(+1) + +cn 1α (n 1)(+1) c(α ) c (α +1 )

17 Correcton of RS codes: key polynomals 14 / 32 Suppose c C (k) s the transmtted word, e s the error added to c wth t e d 1 2, and u c + e s the receved word Correcton of RS codes Error locator polynomal Λ Q e 0 (1 α x) Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x)

18 Correcton of RS codes: key polynomals 14 / 32 Suppose c C (k) s the transmtted word, e s the error added to c wth t e d 1 2, and u c + e s the receved word Correcton of RS codes Error locator polynomal Λ Q e 0 (1 α x) Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x) Error locaton Λ (α ) 0 Error evaluaton (Forney) e Ω (α ) Λ (α )

19 Correcton of RS codes: key polynomals 14 / 32 Suppose c C (k) s the transmtted word, e s the error added to c wth t e d 1 2, and u c + e s the receved word Correcton of RS codes Error locator polynomal Λ Q e 0 (1 α x) Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x) Error locaton Λ (α ) 0 Error evaluaton (Forney) e Ω (α ) Λ (α ) Syndrome polynomal S e (α) + e (α 2 )x + + e (α n )x n 1 Truncated syndrome polynomal S e (α) + + e (α n k )x n k 1

20 Correcton of RS codes: key equatons 15 / 32 Key equaton Λ S (1 x n )Ω Truncated key equaton (Berlekamp) Λ S Ω mod x n k

21 Correcton of RS codes: key equatons 15 / 32 Key equaton Λ S (1 x n )Ω Truncated key equaton (Berlekamp) Λ S Ω mod x n k Bézout-lke presentaton {z} Λ n k S {z} + m(x) x {z } {z } f a (known) g b (known) Ω {z} r

22 Correcton of RS codes: key equatons 15 / 32 Key equaton Λ S (1 x n )Ω Truncated key equaton (Berlekamp) Λ S Ω mod x n k Bézout-lke presentaton {z} Λ n k S {z} + m(x) x {z } {z } f a (known) g b (known) Ω {z} r Sugyama et al s algorthm solves ths by means of the ext Eucldean algorthm The bound on the degree of Ω states the end of the algorthm Coprmalty of Λ and Ω guarantees uncty

23 Correcton of RS codes: key polynomals 16 / 32 Suppose c C(k) s the transmtted word, e s the error added to c wth t e d 1, and u c + e s the receved word 2 Correcton of RS codes Correcton of DUAL RS codes Error locator polynomal Λ Q e 0 (1 α x) Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x) Error locaton Λ (α ) 0 Error evaluaton (Forney) e Ω (α ) Λ (α ) Syndrome polynomal S e (α) + e (α 2 )x + + e (α n )x n 1 Truncated syndrome polynomal S e (α) + + e (α n k )x n k 1

24 Correcton of RS codes: key polynomals 16 / 32 Suppose c C(k) s the transmtted word, e s the error added to c wth t e d 1, and u c + e s the receved word 2 Correcton of RS codes Correcton of DUAL RS codes Error locator polynomal Error locator polynomal Λ Q e 0 (1 α x) Λ Q e 0 (x α ) Error evaluator polynomal Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x) Ω P e 0 e Q e j 0,j (x α ) Error locaton Λ (α ) 0 Error evaluaton (Forney) e Ω (α ) Λ (α ) Syndrome polynomal S e (α) + e (α 2 )x + + e (α n )x n 1 Truncated syndrome polynomal S e (α) + + e (α n k )x n k 1

25 Correcton of RS codes: key polynomals 16 / 32 Suppose c C(k) s the transmtted word, e s the error added to c wth t e d 1, and u c + e s the receved word 2 Correcton of RS codes Correcton of DUAL RS codes Error locator polynomal Error locator polynomal Λ Q e 0 (1 α x) Λ Q e 0 (x α ) Error evaluator polynomal Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x) Ω P e 0 e Q e j 0,j (x α ) Error locaton Error locaton Λ (α ) 0 Λ(α ) 0 Error evaluaton (Forney) Error evaluaton (Forney) e Ω (α ) Λ (α ) Ω(α ) Λ (α ) Syndrome polynomal S e (α) + e (α 2 )x + + e (α n )x n 1 Truncated syndrome polynomal S e (α) + + e (α n k )x n k 1

26 Correcton of RS codes: key polynomals 16 / 32 Suppose c C(k) s the transmtted word, e s the error added to c wth t e d 1, and u c + e s the receved word 2 Correcton of RS codes Correcton of DUAL RS codes Error locator polynomal Error locator polynomal Λ Q e 0 (1 α x) Λ Q e 0 (x α ) Error evaluator polynomal Error evaluator polynomal Ω P e 0 e α Q e j 0,j (1 α x) Ω P e 0 e Q e j 0,j (x α ) Error locaton Error locaton Λ (α ) 0 Λ(α ) 0 Error evaluaton (Forney) Error evaluaton (Forney) e Ω (α ) Λ (α ) Ω(α ) Λ (α ) Syndrome polynomal S e (α) + e (α 2 )x + + e (α n )x n 1 Truncated syndrome polynomal Syndrome polynomal S e(α n 1 ) + e(α n 2 )x + + e(1)x n 1 Truncated syndrome polynomal S e (α) + + e (α n k )x n k 1 S e(α n k 1 )x k + + e(1)x n 1

27 Correcton of RS codes: key polynomals 17 / 32 If e and e are such that e(α ) e (α +1 ) then Λ x t Λ (1/x) Ω x t 1 Ω (1/x) S x n 1 S (1/x) S x n 1 S (1/x)

28 Correcton of RS codes: key equatons 18 / 32 Key equaton Key equaton Λ S (1 x n )Ω ΛS (x n 1)Ω Truncated key equaton (Berlekamp) Truncated key equaton Λ S Ω mod x n k deg(λ S (x n 1)Ω)< n d/2 Bézout-lke presentaton {z} Λ n k S {z} + m(x) x {z } {z } f a (known) g b (known) Ω {z} r Sugyama et al s algorthm solves ths by means of the ext Eucldean algorthm The bound on the degree of Ω states the end of the algorthm Coprmalty of Λ and Ω guarantees uncty

29 Correcton of RS codes: key equatons 18 / 32 Key equaton Key equaton Λ S (1 x n )Ω ΛS (x n 1)Ω Truncated key equaton (Berlekamp) Truncated key equaton Λ S Ω mod x n k deg(λ S (x n 1)Ω)< n d/2 Bézout-lke presentaton {z} Λ n k S {z} + m(x) x {z } {z } f a g b (known) (known) Ω {z} r n Bézout-lke presentaton {z} Λ {z} S {z} Ω (x {z 1) } f a g (known) b (known) m(x) {z } r Sugyama et al s algorthm solves ths by means of the ext Eucldean algorthm The bound on the degree of Ω states the end of the algorthm Coprmalty of Λ and Ω guarantees uncty

30 Correcton of RS codes: key equatons 18 / 32 Key equaton Key equaton Λ S (1 x n )Ω ΛS (x n 1)Ω Truncated key equaton (Berlekamp) Truncated key equaton Λ S Ω mod x n k deg(λ S (x n 1)Ω)< n d/2 Bézout-lke presentaton {z} Λ n k S {z} + m(x) x {z } {z } f a g b (known) (known) Ω {z} r n Bézout-lke presentaton {z} Λ {z} S {z} Ω (x {z 1) } f a g (known) b (known) m(x) {z } r Sugyama et al s algorthm solves ths by means of the ext Eucldean algorthm The bound on the degree of Ω states the end of the algorthm Coprmalty of Λ and Ω guarantees uncty Goal: solve ths by means of the ext Eucldean algorthm The key equaton tself states the end of the algorthm Coprmalty of Λ and Ω guarantees uncty

31 Correcton of RS codes: key equatons 19 / 32 Lemma Suppose that at most d 1 2 errors occurred Then Λ and Ω are the unque polynomals λ, ω satsfyng the followng propertes 1 deg(λ S ω(x n 1)) < n d/2 2 deg(λ) d/2 3 λ, ω are coprme 4 λ s monc

32 20 / 32 Extended Eucldean alg for the dual key equaton ALGORITHM: Intalze: «R 1 F 1 G 1 S 1 0 R 1 F 1 G 1 x n «whle deg(r ) n d/2: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G end whle else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G Return F, G

33 20 / 32 Extended Eucldean alg for the dual key equaton ALGORITHM: Intalze: «R 1 F 1 G 1 S 1 0 R 1 F 1 G 1 x n «whle deg(r ) n d/2: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G end whle else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G Return F, G 1 deg(f S G (x n 1)) deg(r ) < n d/2

34 20 / 32 Extended Eucldean alg for the dual key equaton ALGORITHM: Intalze: «R 1 F 1 G 1 S 1 0 R 1 F 1 G 1 x n «whle deg(r ) n d/2: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G end whle else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G Return F, G 2 deg(f ) n deg(r 1 ) n (n d/2) d/2

35 Extended Eucldean alg for the dual key equaton ALGORITHM: Intalze: «R 1 F 1 G 1 S 1 0 R 1 F 1 G 1 x n «whle deg(r ) n d/2: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G end whle else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G Return F, G «F G 3 F, G coprme Indeed, det 1 F ( G ) + G ( F ) 1 F G 20 / 32

36 Extended Eucldean alg for the dual key equaton ALGORITHM: Intalze: «R 1 F 1 G 1 S 1 0 R 1 F 1 G 1 x n «whle deg(r ) n d/2: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G end whle else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G Return F, G «R F 4 F s monc Indeed, det 1 F ( R ) + R ( F ) 1 R F 20 / 32

37 20 / 32 Extended Eucldean alg for the dual key equaton ALGORITHM: Intalze: «R 1 F 1 G 1 S 1 0 R 1 F 1 G 1 x n «whle deg(r ) n d/2: µ LC(R ) p deg(r ) deg( R ) f p 0 or µ 0 then «R+1 F +1 G +1 1 µx p R +1 F+1 G ««R F G R F G end whle else end f «R+1 F +1 G +1 x p µ R +1 F+1 G+1 1/µ 0 ««R F G R F G Return F, G Theorem: If t d 1 2 then the algorthm outputs Λ and Ω

38 From Eucldean to Berlekamp-Massey 21 / 32 The only reason to keep the polynomals R (and R ) s that we need to compute ther leadng coeffcents (the µ s) Lemma LC(R ) LC(F S) Proof On one hand, the remander R F S G (x n 1) F S x n G + G has degree at most n 1 for all 0 Ths means that all terms of x n G cancel wth terms of F S and that the leadng term of R must be ether a term of F S or a term of G or a sum of a term of F S and a term of G On the other hand, the algorthm only computes LC(R ) whle deg(r ) n d/2 We want to see that n ths case the leadng term of R has degree strctly larger than that of G Indeed, one can check that for 0, deg(g ) < deg(f ) and that all F s n the algorthm have degree at most d/2 So deg(g ) < deg(f ) d/2 n d/2 deg(r )

39 From Eucldean to Berlekamp-Massey ALGORITHM: Intalze: d 1 deg( S) d 1 n «F 1 G F 1 G «whle d n d/2: µ Coeffcent(F S, d ) p d d f p 0 or µ 0 then «F+1 G +1 1 µx p F +1 G d +1 d 1 d +1 d ««F G F G else end f «F+1 G +1 x p µ F +1 G+1 1/µ 0 d +1 d 1 d +1 d ««F G F G end whle 22 / 32

40 From Eucldean to Berlekamp-Massey 23 / 32 Ths last algorthm s the Berlekamp-Massey algorthm that solves the lnear recurrence tx Λ j e(α +j 1 ) 0 for all > 0 j0 Ths recurrence s derved from Λ S beng a polynomal and thus havng no x n 1 terms of negatve order n ts expresson as a Laurent seres n 1/x, and from the equalty S x n 1 1 e(1) + e(α) «+ e(α2 ) + x x x 2

41 Movng back to prmal Reed-Solomon codes 24 / 32 Suppose c C (k) s the transmtted word, e s the error added to c and u c + e s the receved word Then c (c 0,αc 1, α 2 c 2,,α n 1 c n 1) C(k) and e (e 0, αe 1, α 2 e 2,, α n 1 e n 1) has the same non-zero postons as e Let u : c + e (u0, αu1, α 2 u2,, α n 1 un 1) The error values e can be computed from the error values e added to u by u e e /α added to Now we can use the prevous algorthm wth S e(α n k 1 )x k + e(α n k 2 )x k e(1)x n 1 e (α n k )x k + e (α n k 1 )x k e (α)x n 1 u (α n k )x k + u (α n k 1 )x k u (α)x n 1 Once we have the error postons, we can compute the error values as e Ω(α ) α Λ (α )

42 25 / 32

43 Other research drectons: numercal semgroups 26 / 32 Defnton A numercal semgroup s a subset Λ of N 0 satsfyng 0 Λ Λ + Λ Λ N 0 \ Λ s fnte (genus:g: N 0 \ Λ )

44 Cash pont 27 / 32 Example The amounts of money one can obtan from a cash pont (dvded by 10)

45 Cash pont 28 / 32 amount amount/ mpossble! mpossble!

46 Countng 29 / 32 Let n g denote the number of numercal semgroups of genus g

47 Countng 29 / 32 Let n g denote the number of numercal semgroups of genus g n 0 1, snce the unque numercal semgroup of genus 0 s N 0

48 Countng 29 / 32 Let n g denote the number of numercal semgroups of genus g n 0 1, snce the unque numercal semgroup of genus 0 s N 0 n 1 1, snce the unque numercal semgroup of genus 1 s N 0 \ {1}

49 Countng 29 / 32 Let n g denote the number of numercal semgroups of genus g n 0 1, snce the unque numercal semgroup of genus 0 s N 0 n 1 1, snce the unque numercal semgroup of genus 1 s N 0 \ {1} n 2 2 Indeed the unque numercal semgroups of genus 2 are {0, 3, 4, 5,}, {0, 2, 4, 5,}

50 Conjecture n g /n g 1 φ 30 / 32 Conjecture 1 n g n g 1 + n g 2 2 lm g n g 1 +n g 2 n g 1 n 3 lm g g φ n g 1 At the moment t has not even been proved that n g s ncreasng

51 Conjecture n g /n g 1 φ n g ng ng 1 + g 1+n g 2 ng ng 2 ng n g / 32

52 Conjecture n g /n g 1 φ Behavor of n g 1+n g 2 n g ng 1+ng 2 ng g Behavor of n g n g 1 ng φ ng g 32 / 32

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Chapter 6. BCH Codes

Chapter 6. BCH Codes Wreless Informaton Transmsson System Lab Chapter 6 BCH Codes Insttute of Communcatons Engneerng Natonal Sun Yat-sen Unversty Outlne Bnary Prmtve BCH Codes Decodng of the BCH Codes Implementaton of Galos

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

High-Speed Decoding of the Binary Golay Code

High-Speed Decoding of the Binary Golay Code Hgh-Speed Decodng of the Bnary Golay Code H. P. Lee *1, C. H. Chang 1, S. I. Chu 2 1 Department of Computer Scence and Informaton Engneerng, Fortune Insttute of Technology, Kaohsung 83160, Tawan *hpl@fotech.edu.tw

More information

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i MTH 819 Algebra I S13 Homework 1/ Solutons Defnton A. Let R be PID and V a untary R-module. Let p be a prme n R and n Z +. Then d p,n (V) = dm R/Rp p n 1 Ann V (p n )/p n Ann V (p n+1 ) Note here that

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

ALGEBRA HW 7 CLAY SHONKWILER

ALGEBRA HW 7 CLAY SHONKWILER ALGEBRA HW 7 CLAY SHONKWILER 1 Whch of the followng rngs R are dscrete valuaton rngs? For those that are, fnd the fracton feld K = frac R, the resdue feld k = R/m (where m) s the maxmal deal), and a unformzer

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Math 261 Exercise sheet 2

Math 261 Exercise sheet 2 Math 261 Exercse sheet 2 http://staff.aub.edu.lb/~nm116/teachng/2017/math261/ndex.html Verson: September 25, 2017 Answers are due for Monday 25 September, 11AM. The use of calculators s allowed. Exercse

More information

Construction and number of self-dual skew codes over F _p 2

Construction and number of self-dual skew codes over F _p 2 Constructon and number of self-dual skew codes over F _p 2 Delphne Boucher To cte ths verson: Delphne Boucher. Constructon and number of self-dual skew codes over F _p 2. Advances n Mathematcs of Communcatons,

More information

NOTES ON SIMPLIFICATION OF MATRICES

NOTES ON SIMPLIFICATION OF MATRICES NOTES ON SIMPLIFICATION OF MATRICES JONATHAN LUK These notes dscuss how to smplfy an (n n) matrx In partcular, we expand on some of the materal from the textbook (wth some repetton) Part of the exposton

More information

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture.

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture. LECTURE V EDWIN SPARK 1. More on the Chnese Remander Theorem We begn by recallng ths theorem, proven n the preceedng lecture. Theorem 1.1 (Chnese Remander Theorem). Let R be a rng wth deals I 1, I 2,...,

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Differential Polynomials

Differential Polynomials JASS 07 - Polynomals: Ther Power and How to Use Them Dfferental Polynomals Stephan Rtscher March 18, 2007 Abstract Ths artcle gves an bref ntroducton nto dfferental polynomals, deals and manfolds and ther

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Decoding of the Triple-Error-Correcting Binary Quadratic Residue Codes

Decoding of the Triple-Error-Correcting Binary Quadratic Residue Codes Automatc Control and Informaton Scences, 04, Vol., No., 7- Avalable onlne at http://pubs.scepub.com/acs/// Scence and Educaton Publshng DOI:0.69/acs--- Decodng of the rple-error-correctng Bnary Quadratc

More information

MEM633 Lectures 7&8. Chapter 4. Descriptions of MIMO Systems 4-1 Direct Realizations. (i) x u. y x

MEM633 Lectures 7&8. Chapter 4. Descriptions of MIMO Systems 4-1 Direct Realizations. (i) x u. y x MEM633 Lectures 7&8 Chapter 4 Descrptons of MIMO Systems 4- Drect ealzatons y() s s su() s y () s u () s ( s)( s) s y() s u (), s y() s u() s s s y() s u(), s y() s u() s ( s)( s) s () ( s ) y ( s) u (

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solvng n Math (Math 43900) Fall 2013 Week four (September 17) solutons Instructor: Davd Galvn 1. Let a and b be two nteger for whch a b s dvsble by 3. Prove that a 3 b 3 s dvsble by 9. Soluton:

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Refined Coding Bounds for Network Error Correction

Refined Coding Bounds for Network Error Correction Refned Codng Bounds for Network Error Correcton Shenghao Yang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, N.T., Hong Kong shyang5@e.cuhk.edu.hk Raymond W. Yeung Department

More information

2 More examples with details

2 More examples with details Physcs 129b Lecture 3 Caltech, 01/15/19 2 More examples wth detals 2.3 The permutaton group n = 4 S 4 contans 4! = 24 elements. One s the dentty e. Sx of them are exchange of two objects (, j) ( to j and

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Math 594. Solutions 1

Math 594. Solutions 1 Math 594. Solutons 1 1. Let V and W be fnte-dmensonal vector spaces over a feld F. Let G = GL(V ) and H = GL(W ) be the assocated general lnear groups. Let X denote the vector space Hom F (V, W ) of lnear

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Some Consequences. Example of Extended Euclidean Algorithm. The Fundamental Theorem of Arithmetic, II. Characterizing the GCD and LCM

Some Consequences. Example of Extended Euclidean Algorithm. The Fundamental Theorem of Arithmetic, II. Characterizing the GCD and LCM Example of Extended Eucldean Algorthm Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3 We work backwards to wrte 3 as a lnear combnaton of 84 and 33: 3 = 18 15 [Now 3 s

More information

Signal space Review on vector space Linear independence Metric space and norm Inner product

Signal space Review on vector space Linear independence Metric space and norm Inner product Sgnal space.... Revew on vector space.... Lnear ndependence... 3.3 Metrc space and norm... 4.4 Inner product... 5.5 Orthonormal bass... 7.6 Waveform communcaton system... 9.7 Some examples... 6 Sgnal space

More information

Restricted Lie Algebras. Jared Warner

Restricted Lie Algebras. Jared Warner Restrcted Le Algebras Jared Warner 1. Defntons and Examples Defnton 1.1. Let k be a feld of characterstc p. A restrcted Le algebra (g, ( ) [p] ) s a Le algebra g over k and a map ( ) [p] : g g called

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Google PageRank with Stochastic Matrix

Google PageRank with Stochastic Matrix Google PageRank wth Stochastc Matrx Md. Sharq, Puranjt Sanyal, Samk Mtra (M.Sc. Applcatons of Mathematcs) Dscrete Tme Markov Chan Let S be a countable set (usually S s a subset of Z or Z d or R or R d

More information

CSE4210 Architecture and Hardware for DSP

CSE4210 Architecture and Hardware for DSP 4210 Archtecture and Hardware for DSP Lecture 1 Introducton & Number systems Admnstratve Stuff 4210 Archtecture and Hardware for DSP Text: VLSI Dgtal Sgnal Processng Systems: Desgn and Implementaton. K.

More information

} s ) was constructed [7]. C 0 with length n 0 and minimum distance d 0 over F q.

} s ) was constructed [7]. C 0 with length n 0 and minimum distance d 0 over F q. Ffty-Ffth Annual Allerton Conference Allerton House, UIUC, Illnos, USA October 3-6, 17 Mult-Erasure Locally Recoverable Codes Over Small Felds Pengfe Huang, Etan Yaakob, and Paul H Segel Electrcal and

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

PRIMES 2015 reading project: Problem set #3

PRIMES 2015 reading project: Problem set #3 PRIMES 2015 readng project: Problem set #3 page 1 PRIMES 2015 readng project: Problem set #3 posted 31 May 2015, to be submtted around 15 June 2015 Darj Grnberg The purpose of ths problem set s to replace

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Solutions to the 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010

Solutions to the 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010 Solutons to the 7st Wllam Lowell Putnam Mathematcal Competton Saturday, December 4, 2 Kran Kedlaya and Lenny Ng A The largest such k s n+ 2 n 2. For n even, ths value s acheved by the partton {,n},{2,n

More information

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND ANZIAM J. 45(003), 195 05 DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND YOUNG JOON AHN 1 (Receved 3 August, 001; revsed 7 June, 00) Abstract In ths paper

More information

Polynomials. 1 What is a polynomial? John Stalker

Polynomials. 1 What is a polynomial? John Stalker Polynomals John Stalker What s a polynomal? If you thnk you already know what a polynomal s then skp ths secton. Just be aware that I consstently wrte thngs lke p = c z j =0 nstead of p(z) = c z. =0 You

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Cocyclic Butson Hadamard matrices and Codes over Z n via the Trace Map

Cocyclic Butson Hadamard matrices and Codes over Z n via the Trace Map Contemporary Mathematcs Cocyclc Butson Hadamard matrces and Codes over Z n va the Trace Map N. Pnnawala and A. Rao Abstract. Over the past couple of years trace maps over Galos felds and Galos rngs have

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

A summation on Bernoulli numbers

A summation on Bernoulli numbers Journal of Number Theory 111 (005 37 391 www.elsever.com/locate/jnt A summaton on Bernoull numbers Kwang-Wu Chen Department of Mathematcs and Computer Scence Educaton, Tape Muncpal Teachers College, No.

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

2.29 Numerical Fluid Mechanics

2.29 Numerical Fluid Mechanics REVIEW Lecture 10: Sprng 2015 Lecture 11 Classfcaton of Partal Dfferental Equatons PDEs) and eamples wth fnte dfference dscretzatons Parabolc PDEs Ellptc PDEs Hyperbolc PDEs Error Types and Dscretzaton

More information