Note 1: Pythagoras Theorem. The longest side is always opposite the right angle and is called the hypotenuse (H).

Size: px
Start display at page:

Download "Note 1: Pythagoras Theorem. The longest side is always opposite the right angle and is called the hypotenuse (H)."

Transcription

1 Trigonometry

2 Note 1: Pythagoras Theorem The longest side is always opposite the right angle and is called the hypotenuse (H). O H x

3 Note 1: Pythagoras Theorem In a right-angled triangle the square of the hypotenuse is equal to the sum of the squares on the other two sides. a H hypotenuse a 2 + b 2 = H 2 b

4 e.g. Pythagoras Theorem Find the side marked d a 2 + b 2 = H 2 7 cm 4 cm d d d 2 = d 2 = 49 d 2 = d 2 = 33 d = 33 d = 5.74 cm (3sf)

5 e.g. Pythagoras Theorem cone has a base diameter of 10 cm and a slant height of 15 cm. What is its vertical height? a 2 + b 2 = H 2 x x 2 = x 2 = 225 x 2 = 200 x = 200 5cm x = 14.1 cm (3 sf) 10 cm

6 Visual Proof of Pythagorean Theorem

7 e.g. Pythagoras Theorem Solve for x. x (x-2) (x-2) = x 2 x 2-4x = x 2-4x = 0-4x + 68 = 0-4x = -68 x = x = 17 8 GMM Pg Ex.27.01

8 1. Find the length of a diagonal of a rectangular box of length 12cm, width 5cm and height 4 cm. 2. ship sails 20 km due North and then 35 due East. How far is it from its starting point? 40.3 km 13.6 cm 3. The diagonal of a rectangle exceeds the length by 2 cm. If the width of the rectangle is 10 cm, find the length. 24 cm 4. n aircraft flies equal distances SE and then SW to finish 120 km due South of its starting point. How long is each part of its journey? 84.9 km

9 Note 1: Trig Ratios (Sine, Cosine, Tangent) Recall: The longest side is always opposite the right angle and is called the hypotenuse (H). The side opposite the marked angle of 35 is called the opposite (O) The other side is called the adjacent () O H 35

10 Note 1: Sine, Cosine, Tangent How we label our triangle depends on which angle we are concerned with. Now..the side opposite the marked angle of 55 is called the opposite (O) The other side is called the adjacent () 55 H O

11 Note 1: Sine, cosine, tangent In similar triangles, it is clear that the ratio will be the same in both triangles O H 6 = 2 = Opp Hyp

12 Note 1: Sine, Cosine, Tangent Three important functions are: sin θ = O H H cos θ = tan θ = O S O H C H T O θ O H For any angle x the values for sin x, cos x and tan x can be found using either a calculator or tables

13 e.g. Label the sides of these triangle as opposite to θ (O), adjacent () or hypotenuse. O B θ H θ H C O θ O H H θ D O

14 Try these! Write trigonometric ratios (in fraction form) for each of the following triangles 3 α 9 5 B β C 5 5 θ x 5 D

15 Starter (Extention) - Pythagoras Theorem Solve for x. 4 (x + 2) [4(x+2)] 2 + (x+3) 2 = 25 2 (4x + 8) 2 + (x+3) 2 = 25 2 (16x 2 +64x + 64) + (x 2 +6x+9) = x 2 +70x + 73 = x 2 +70x -552 = 0 (x+3) 25 Using quadratic formula or GDC, X = 4 G-Solv x = , x = 4 GMM Pg Ex Ex 27.03

16 Using Technology scientific or graphics calculator can be used to obtain accurate values of trig ratios. Use a calculator to find the value of each of the following correct to 4 decimal places. a.) sin 30 b.) cos54 c.) tan89 = = =

17 Using Technology To find an angle, when you know the ratio of two sides we use the inverse trig functions. a.) sin θ = b.) cos θ = c.) tan θ = ¾ θ =sin θ =cos θ =tan θ = 6.2 θ = 56.9 θ = 36.9

18 Note 2: Find side length of a right angled triangle If the size of one angle and the length of one side of a right angled triangle are given, the length of any other side can be found using: S O H C H T O Find x in the equation cos 20 = 3 x 3 x 20 x = 3cos 20 x = 2.82 multiply both sides of the equation by 3 evaluate using the calculator

19 e.g. Calculate the length of the labelled sides 7 cm 29 x y x cos 29 = x both sin 29 = 7 sides by 7 7cos 29 = x x = cm 7sin 29 = y y 7 y = cm 4 sf 58 s cos 58 = 50 s sin 58 = t m t 50cos 58 = s s = m 50sin 58 = t t = m

20 e.g. Calculate the length of the labelled side x tan 25.4 = x H O 3 sf x tan 25.4 = cm x = 4.75 cm z cm sin 31.3 = 7.4 Z z sin 31.3 = 7.4 H O z = 7.4 sin 31.3 z = 14.2 cm

21 e.g. Calculate the length of the labelled sides 30 cm 52 x y x y cos 52 = sin 52 = cos 52 = x x = cm 30sin 52 = y y = cm 4 sf.5 m 78 s t cos 78 = s 0.5 sin 78 = t cos 78 = s.5 sin 78 = t s = m t = m GMM Pg 402 Ex 28.01

22 e.g. Find the length marked x a.) Find BD from triangle BDC BD tan 32 = 10 b.) Now find x from from triangle BD 10 tan 32 = BD x B sin 38 = BD x 38 D cm C x = BD sin 38 x = 10 tan 32 sin 38 x = 3.85 cm (3 sf)

23 Note 3: Finding an unknown angle S O H C H T O If we know the length of any two sides in a right angled triangle, it is possible to calculate the size of the other angles: 3 5 x 1.) Choose the correct trig formula to use based on what sides are given 2.) Substitute side lengths into formula 3.) Change fraction to a decimal 4.) Work out angle using one of the inverse trig keys Find x in the equation sin x = 5 3 sin x = 0.6 x = sin -1.6 x = 36.9 (1 dp)

24 e.g. Finding an unknown angle 7 sin x = sin x = 0.7 x Find x (2 dp) 22 tan x = 16 tan x = S O H C H T O x = tan -1 ( ) x x = sin -1 ( ) x = (2 dp) x = (2 dp)

25 e.g. Finding an unknown angle S O H C H T O Find x 5 x cos x = cos x = tan x = 12 tan x = x = tan -1 ( ) x x = cos -1 ( ) x = 60.0 (1 dp) x = 71.1 (1 dp) GMM Pg 404 Ex 28.02

26 Starter a.) Use pythagoras theorem to find the unknown side. b.) Solve for θ 6 8 θ θ 24

27 Starter - Finding ngles ramp is 10 m long. It has been constructed so that it rises to a point 1.2 m above the ground. a.) Draw a diagram and place the measurements 10 m and 1.2 m on the correct sides. b.) Use trig to calculate the angle between the ramp and the ground. 1. sinθ = 10 2 θ = sin θ = m θ 1.2 m

28 e.g. Calculate the height of this regular pyramid = D = D 2 D = 20 m x = 26 2 x 2 = x 2 = x 2 = 576 x = 24 x Gamma Ex28.03 pg odd Ex29.01 pg odd

29 Note 4: Bearings bearing is an angle measured clockwise from North. It is given using 3 digits. e.g. The bearing of B from is 052 The bearing of from B is 232 N N 52 B 232

30 4 km 5 km θ tan θ = 4 5 = 0.8 θ = tan = 38.7 = 039 ( or ) Remember that bearings always have 3 digits (between 000 and 360 )

31 e.g. ship sails 22 km from on a bearing of 042, and a further 30 km on a bearing of 090 to arrive at B. What is the distance and bearing of B from? a.) Draw a clear diagram and label all points D N E 30 km B 42 b.) Find DE and D DE D sin 42 = cos 42 = sin 42 = DE 22 cos 42 = D DE = km F D = km

32 e.g. ship sails 22 km from on a bearing of 042, and a further 30 km on a bearing of 090 to arrive at B. What is the distance and bearing of B from? a.) Draw a clear diagram and label all points D N E 42 c.) Using ΔBF, 30 km B 2 = F 2 + BF 2 (Pythagoras Theorem) B 2 = B 2 = B = 47.6 km (3 sf) B F F = DE + EB = = km BF = D = km

33 D e.g. ship sails 22 km from on a bearing of 042, and a further 30 km on a bearing of 090 to arrive at B. What is the distance and bearing of B from? N 42 a.) Draw a clear diagram and label all points E 30 km B km km d.) The bearing of B from is given by the angle DB. <DB = <BF F tan BF = = BF = BF = tan B is 47.6 km from on BF = 69.9 a bearing of F NuLake Read pg Pg

34 Starter β First find the angle, β 130 tan β = 58 β = tan T β = 66 + β = 90 = = 24

Mathematics Revision Guide. Shape and Space. Grade C B

Mathematics Revision Guide. Shape and Space. Grade C B Mathematics Revision Guide Shape and Space Grade C B 1 A of = b h 2 Area 6cm = 10 6 2 = 60 2 8cm = 30cm 2 6cm 12cm A of = (a+b) h 2 = (6+12) 5 2 = (18) 5 2 = 90 2 = 4 2 7cm 1 6cm A of = π r r = π 6 6 =

More information

SOH CAH TOA. b c. sin opp. hyp. cos adj. hyp a c. tan opp. adj b a

SOH CAH TOA. b c. sin opp. hyp. cos adj. hyp a c. tan opp. adj b a SOH CAH TOA sin opp hyp b c c 2 a 2 b 2 cos adj hyp a c tan opp adj b a Trigonometry Review We will be focusing on triangles What is a right triangle? A triangle with a 90º angle What is a hypotenuse?

More information

Here is a sample problem that shows you how to use two different methods to add twodimensional

Here is a sample problem that shows you how to use two different methods to add twodimensional LAB 2 VECTOR ADDITION-METHODS AND PRACTICE Purpose : You will learn how to use two different methods to add vectors. Materials: Scientific calculator, pencil, unlined paper, protractor, ruler. Discussion:

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

Unit Circle. Return to. Contents

Unit Circle. Return to. Contents Unit Circle Return to Table of Contents 32 The Unit Circle The circle x 2 + y 2 = 1, with center (0,0) and radius 1, is called the unit circle. Quadrant II: x is negative and y is positive (0,1) 1 Quadrant

More information

Physics 20 Lesson 10 Vector Addition

Physics 20 Lesson 10 Vector Addition Physics 20 Lesson 10 Vector Addition I. Vector Addition in One Dimension (It is strongly recommended that you read pages 70 to 75 in Pearson for a good discussion on vector addition in one dimension.)

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Trigonometric Functions. Copyright Cengage Learning. All rights reserved. 4 Trigonometric Functions Copyright Cengage Learning. All rights reserved. 4.3 Right Triangle Trigonometry Copyright Cengage Learning. All rights reserved. What You Should Learn Evaluate trigonometric

More information

Pythagoras Theorem. What it is: When to use: What to watch out for:

Pythagoras Theorem. What it is: When to use: What to watch out for: Pythagoras Theorem a + b = c Where c is the length of the hypotenuse and a and b are the lengths of the other two sides. Note: Only valid for right-angled triangles! When you know the lengths of any two

More information

SOLVING TRIGONOMETRIC EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: A-Level Year 1 / AS SOLVING TRIGONOMETRIC EQUATIONS Version : 3.3 Date: 13-09-2018

More information

15 x. Substitute. Multiply. Add. Find the positive square root.

15 x. Substitute. Multiply. Add. Find the positive square root. hapter Review.1 The Pythagorean Theorem (pp. 3 70) Dynamic Solutions available at igideasmath.com Find the value of. Then tell whether the side lengths form a Pythagorean triple. c 2 = a 2 + b 2 Pythagorean

More information

Core Mathematics 2 Trigonometry (GCSE Revision)

Core Mathematics 2 Trigonometry (GCSE Revision) Core Mathematics 2 Trigonometry (GCSE Revision) Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 1 1 Trigonometry The sine and cosine rules, and the area of a triangle

More information

2014 Summer Review for Students Entering Algebra 2. TI-84 Plus Graphing Calculator is required for this course.

2014 Summer Review for Students Entering Algebra 2. TI-84 Plus Graphing Calculator is required for this course. 1. Solving Linear Equations 2. Solving Linear Systems of Equations 3. Multiplying Polynomials and Solving Quadratics 4. Writing the Equation of a Line 5. Laws of Exponents and Scientific Notation 6. Solving

More information

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

2012 GCSE Maths Tutor All Rights Reserved

2012 GCSE Maths Tutor All Rights Reserved 2012 GCSE Maths Tutor All Rights Reserved www.gcsemathstutor.com This book is under copyright to GCSE Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents angles

More information

Edexcel New GCE A Level Maths workbook Trigonometry 1

Edexcel New GCE A Level Maths workbook Trigonometry 1 Edecel New GCE A Level Maths workbook Trigonometry 1 Edited by: K V Kumaran kumarmaths.weebly.com 1 Trigonometry The sine and cosine rules, and the area of a triangle in the form 21 ab sin C. kumarmaths.weebly.com

More information

October 15 MATH 1113 sec. 51 Fall 2018

October 15 MATH 1113 sec. 51 Fall 2018 October 15 MATH 1113 sec. 51 Fall 2018 Section 5.5: Solving Exponential and Logarithmic Equations Base-Exponent Equality For any a > 0 with a 1, and for any real numbers x and y a x = a y if and only if

More information

Pythagoras theorem (8 9)

Pythagoras theorem (8 9) Pythagoras theorem (8 9) Contents 1 The theorem 1 1.1 Using Pythagoras in context........................... 2 1.2 Distance between points............................. 4 1.3 Harder questions.................................

More information

Have both a magnitude and direction Examples: Position, force, moment

Have both a magnitude and direction Examples: Position, force, moment Force Vectors Vectors Vector Quantities Have both a magnitude and direction Examples: Position, force, moment Vector Notation Vectors are given a variable, such as A or B Handwritten notation usually includes

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

MATH 109 TOPIC 3 RIGHT TRIANGLE TRIGONOMETRY. 3a. Right Triangle Definitions of the Trigonometric Functions

MATH 109 TOPIC 3 RIGHT TRIANGLE TRIGONOMETRY. 3a. Right Triangle Definitions of the Trigonometric Functions Math 09 Ta-Right Triangle Trigonometry Review Page MTH 09 TOPIC RIGHT TRINGLE TRIGONOMETRY a. Right Triangle Definitions of the Trigonometric Functions a. Practice Problems b. 5 5 90 and 0 60 90 Triangles

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters!

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters! Vectors Chapter 3 Vector and Vector Addition Sometimes direction matters! (vector) Force Velocity Momentum Sometimes it doesn t! (scalar) Mass Speed Time Arithmetic Arithmetic works for scalars. 2 apples

More information

Math 2 Trigonometry. People often use the acronym SOHCAHTOA to help remember which is which. In the triangle below: = 15

Math 2 Trigonometry. People often use the acronym SOHCAHTOA to help remember which is which. In the triangle below: = 15 Math 2 Trigonometry 1 RATIOS OF SIDES OF A RIGHT TRIANGLE Trigonometry is all about the relationships of sides of right triangles. In order to organize these relationships, each side is named in relation

More information

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

8-2 Trigonometric Ratios

8-2 Trigonometric Ratios 8-2 Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Write each fraction as a decimal rounded to the nearest hundredth. 1. 2. 0.67 0.29 Solve each equation. 3. 4. x = 7.25

More information

2. Pythagorean Theorem:

2. Pythagorean Theorem: Chapter 4 Applications of Trigonometric Functions 4.1 Right triangle trigonometry; Applications 1. A triangle in which one angle is a right angle (90 0 ) is called a. The side opposite the right angle

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

Sect 7.4 Trigonometric Functions of Any Angles

Sect 7.4 Trigonometric Functions of Any Angles Sect 7.4 Trigonometric Functions of Any Angles Objective #: Extending the definition to find the trigonometric function of any angle. Before we can extend the definition our trigonometric functions, we

More information

(+4) = (+8) =0 (+3) + (-3) = (0) , = +3 (+4) + (-1) = (+3)

(+4) = (+8) =0 (+3) + (-3) = (0) , = +3 (+4) + (-1) = (+3) Lesson 1 Vectors 1-1 Vectors have two components: direction and magnitude. They are shown graphically as arrows. Motions in one dimension form of one-dimensional (along a line) give their direction in

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ.

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ. Trigonometric ratios, Mixed Exercise 9 b a Using area of ABC acsin B 0cm 6 8 sinθ cm So 0 4sinθ So sinθ 0 4 θ 4.6 or 3 s.f. (.) As θ is obtuse, ABC 3 s.f b Using the cosine rule b a + c ac cos B AC 8 +

More information

Crash Course in Trigonometry

Crash Course in Trigonometry Crash Course in Trigonometry Dr. Don Spickler September 5, 003 Contents 1 Trigonometric Functions 1 1.1 Introduction.................................... 1 1. Right Triangle Trigonometry...........................

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

Unit IV: Introduction to Vector Analysis

Unit IV: Introduction to Vector Analysis Unit IV: Introduction to Vector nalysis s you learned in the last unit, there is a difference between speed and velocity. Speed is an example of a scalar: a quantity that has only magnitude. Velocity is

More information

The function x² + y² = 1, is the algebraic function that describes a circle with radius = 1.

The function x² + y² = 1, is the algebraic function that describes a circle with radius = 1. 8.3 The Unit Circle Outline Background Trig Function Information Unit circle Relationship between unit circle and background information 6 Trigonometric Functions Values of 6 Trig Functions The Unit Circle

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Free download from not for resale. Apps 1.1 : Applying trigonometric skills to triangles which do not have a right angle.

Free download from   not for resale. Apps 1.1 : Applying trigonometric skills to triangles which do not have a right angle. Apps 1.1 : Applying trigonometric skills to triangles which do not have a right angle. Area of a triangle using trigonometry. Using the Sine Rule. Using the Cosine Rule to find a side. Using the Cosine

More information

REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ

REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ INVERSE FUNCTIONS Two functions are inverses if they undo each other. In other words, composing one function in the other will result in simply x (the

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Assignment 1 and 2: Complete practice worksheet: Simplifying Radicals and check your answers

Assignment 1 and 2: Complete practice worksheet: Simplifying Radicals and check your answers Geometry 0-03 Summary Notes Right Triangles and Trigonometry These notes are intended to be a guide and a help as you work through Chapter 8. These are not the only thing you need to read, however. Rely

More information

Square Root Functions 10.1

Square Root Functions 10.1 Square Root Functions 10.1 Square Root Function contains the square root of the variable. Parent Function: f ( x) = Type of Graph: Curve Domain: x 0 Range: y 0 x Example 1 Graph f ( x) = 2 x and state

More information

Chapter 8 Test Wednesday 3/28

Chapter 8 Test Wednesday 3/28 Chapter 8 Test Wednesday 3/28 Warmup Pg. 487 #1-4 in the Geo book 5 minutes to finish 1 x = 4.648 x = 40.970 x = 6149.090 x = -5 What are we learning today? Pythagoras The Rule of Pythagoras Using Pythagoras

More information

I.G.C.S.E. Trigonometry 01. You can access the solutions from the end of each question

I.G.C.S.E. Trigonometry 01. You can access the solutions from the end of each question I.G..S.E. Trigonometry 01 Index: Please click on the question number you want Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 You can access the solutions from the end of each

More information

Primary Trigonometric Ratios

Primary Trigonometric Ratios What s important in this lesson: Suggested time: 75 minutes Primary Trigonometric Ratios MFM2P1 Unit4 Lesson3 StudentinstructionSheet Questions for the teacher: 2. Assessment and Evaluation Sheet 1. The

More information

Trigonometry Learning Strategies. What should students be able to do within this interactive?

Trigonometry Learning Strategies. What should students be able to do within this interactive? Trigonometry Learning Strategies What should students be able to do within this interactive? Identify a right triangle. Identify the acute reference angles. Recognize and name the sides, and hypotenuse

More information

1 The six trigonometric functions

1 The six trigonometric functions Spring 017 Nikos Apostolakis 1 The six trigonometric functions Given a right triangle, once we select one of its acute angles, we can describe the sides as O (opposite of ), A (adjacent to ), and H ().

More information

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019 A-Level Mathematics TRIGONOMETRY G. David Boswell - R2S Explore 2019 1. Graphs the functions sin kx, cos kx, tan kx, where k R; In these forms, the value of k determines the periodicity of the trig functions.

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Trig Functions Learning Outcomes

Trig Functions Learning Outcomes 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Solve problems about trig functions in all quadrants of a unit

More information

Chapter 2: Trigonometry

Chapter 2: Trigonometry Chapter 2: Trigonometry Section 2.1 Chapter 2: Trigonometry Section 2.1: The Tangent Ratio Sides of a Right Triangle with Respect to a Reference Angle Given a right triangle, we generally label its sides

More information

Unit 2 - The Trigonometric Functions - Classwork

Unit 2 - The Trigonometric Functions - Classwork Unit 2 - The Trigonometric Functions - Classwork Given a right triangle with one of the angles named ", and the sides of the triangle relative to " named opposite, adjacent, and hypotenuse (picture on

More information

Trigonometry Math 076

Trigonometry Math 076 Trigonometry Math 076 133 Right ngle Trigonometry Trigonometry provides us with a way to relate the length of sides of a triangle to the measure of its angles. There are three important trigonometric functions

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 1.1 Pythagorean Theorem and its Converse 1. 194. 6. 5 4. c = 10 5. 4 10 6. 6 5 7. Yes 8. No 9. No 10. Yes 11. No 1. No 1 1 1. ( b+ a)( a+ b) ( a + ab+ b ) 1 1 1 14. ab + c ( ab + c ) 15. Students must

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

Mathematics Stage 5 MS5.1.2 Trigonometry. Applying trigonometry

Mathematics Stage 5 MS5.1.2 Trigonometry. Applying trigonometry Mathematics Stage 5 MS5.1.2 Trigonometry Part 2 Applying trigonometry Number: M43684 Title: MS5.1.2 Trigonometry This publication is copyright New South Wales Department of Education and Training (DET),

More information

Directions: Examine the Unit Circle on the Cartesian Plane (Unit Circle: Circle centered at the origin whose radius is of length 1)

Directions: Examine the Unit Circle on the Cartesian Plane (Unit Circle: Circle centered at the origin whose radius is of length 1) Name: Period: Discovering the Unit Circle Activity Secondary III For this activity, you will be investigating the Unit Circle. You will examine the degree and radian measures of angles. Note: 180 radians.

More information

08/01/2017. Trig Functions Learning Outcomes. Use Trig Functions (RAT) Use Trig Functions (Right-Angled Triangles)

08/01/2017. Trig Functions Learning Outcomes. Use Trig Functions (RAT) Use Trig Functions (Right-Angled Triangles) 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Solve problems about trig functions in all quadrants of a unit

More information

Algebra 1B. Unit 9. Algebraic Roots and Radicals. Student Reading Guide. and. Practice Problems

Algebra 1B. Unit 9. Algebraic Roots and Radicals. Student Reading Guide. and. Practice Problems Name: Date: Period: Algebra 1B Unit 9 Algebraic Roots and Radicals Student Reading Guide and Practice Problems Contents Page Number Lesson 1: Simplifying Non-Perfect Square Radicands 2 Lesson 2: Radical

More information

26. [Pythagoras / Trigonometry]

26. [Pythagoras / Trigonometry] 6. [Pythagoras / Trigonometry] Skill 6. Solving simple quadratic equations. Calculate the square numbers on the right-hand side of the equation. Evaluate and simplify the right-hand side of the equation.

More information

Geometry. of Right Triangles. Pythagorean Theorem. Pythagorean Theorem. Angles of Elevation and Depression Law of Sines and Law of Cosines

Geometry. of Right Triangles. Pythagorean Theorem. Pythagorean Theorem. Angles of Elevation and Depression Law of Sines and Law of Cosines Geometry Pythagorean Theorem of Right Triangles Angles of Elevation and epression Law of Sines and Law of osines Pythagorean Theorem Recall that a right triangle is a triangle with a right angle. In a

More information

Trigonometric ratios:

Trigonometric ratios: 0 Trigonometric ratios: The six trigonometric ratios of A are: Sine Cosine Tangent sin A = opposite leg hypotenuse adjacent leg cos A = hypotenuse tan A = opposite adjacent leg leg and their inverses:

More information

Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp ) Page! 1 of! 14

Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp ) Page! 1 of! 14 Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp 541-544) Page! 1 of! 14 Attendance Problems. Write each fraction as a decimal rounded to the nearest hundredths. 2 7 1.! 2.! 3 24 Solve each equation.

More information

3.1 Fundamental Identities

3.1 Fundamental Identities www.ck.org Chapter. Trigonometric Identities and Equations. Fundamental Identities Introduction We now enter into the proof portion of trigonometry. Starting with the basic definitions of sine, cosine,

More information

How to rotate a vector using a rotation matrix

How to rotate a vector using a rotation matrix How to rotate a vector using a rotation matrix One of the most useful operations in computer graphics is the rotation of a vector using a rotation matrix. I want to introduce the underlying idea of the

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

MATH 2412 Sections Fundamental Identities. Reciprocal. Quotient. Pythagorean

MATH 2412 Sections Fundamental Identities. Reciprocal. Quotient. Pythagorean MATH 41 Sections 5.1-5.4 Fundamental Identities Reciprocal Quotient Pythagorean 5 Example: If tanθ = and θ is in quadrant II, find the exact values of the other 1 trigonometric functions using only fundamental

More information

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.1 TRIGONOMETRY 1 (Angles & trigonometric functions) by A.J.Hobson 3.1.1 Introduction 3.1.2 Angular measure 3.1.3 Trigonometric functions UNIT 3.1 - TRIGONOMETRY 1 - ANGLES

More information

Name Date Period Notes Formal Geometry Chapter 8 Right Triangles and Trigonometry 8.1 Geometric Mean. A. Definitions: 1.

Name Date Period Notes Formal Geometry Chapter 8 Right Triangles and Trigonometry 8.1 Geometric Mean. A. Definitions: 1. Name Date Period Notes Formal Geometry Chapter 8 Right Triangles and Trigonometry 8.1 Geometric Mean A. Definitions: 1. Geometric Mean: 2. Right Triangle Altitude Similarity Theorem: If the altitude is

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 144 p 1 Math 144 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value

More information

Old Math 120 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 120 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 10 Exams David M. McClendon Department of Mathematics Ferris State University 1 Contents Contents Contents 1 General comments on these exams 3 Exams from Fall 016 4.1 Fall 016 Exam 1...............................

More information

Geometry Unit 7 - Notes Right Triangles and Trigonometry

Geometry Unit 7 - Notes Right Triangles and Trigonometry Geometry Unit 7 - Notes Right Triangles and Trigonometry Review terms: 1) right angle ) right triangle 3) adjacent 4) Triangle Inequality Theorem Review topic: Geometric mean a = = d a d Syllabus Objective:

More information

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below: Vectors Extending the concepts of kinematics into two and three dimensions, the idea of a vector becomes very useful. By definition, a vector is a quantity with both a magnitude and a spatial direction.

More information

A. Incorrect. Solve for a variable on the bottom by first moving it to the top. D. Incorrect. This answer has too many significant figures.

A. Incorrect. Solve for a variable on the bottom by first moving it to the top. D. Incorrect. This answer has too many significant figures. MCAT Physics - Problem Drill 03: Math for Physics Question No. 1 of 10 1. Solve the following equation for time, with the correct number of significant figures: Question #01 m 15.0 m 2.5 = s time (A) 0.17

More information

Jan 1 4:08 PM. We write this in a shorter manner for simplicity. leg

Jan 1 4:08 PM. We write this in a shorter manner for simplicity. leg Review Pythagorean Theorem Jan 1 4:08 PM We write this in a shorter manner for simplicity. leg hyp leg or a c b Note, the last statement can be misleading if the letters used are not in the correct position.

More information

Geometry Warm Up Right Triangles Day 8 Date

Geometry Warm Up Right Triangles Day 8 Date Geometry Warm Up Right Triangles Day 8 Name Date Questions 1 4: Use the following diagram. Round decimals to the nearest tenth. P r q Q p R 1. If PR = 12 and m R = 19, find p. 2. If m P = 58 and r = 5,

More information

CHAPTERS 5-7 TRIG. FORMULAS PACKET

CHAPTERS 5-7 TRIG. FORMULAS PACKET CHAPTERS 5-7 TRIG. FORMULAS PACKET PRE-CALCULUS SECTION 5-2 IDENTITIES Reciprocal Identities sin x = ( 1 / csc x ) csc x = ( 1 / sin x ) cos x = ( 1 / sec x ) sec x = ( 1 / cos x ) tan x = ( 1 / cot x

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Warm Up 1. What is the third angle measure in a triangle with angles measuring 65 and 43? 72

Warm Up 1. What is the third angle measure in a triangle with angles measuring 65 and 43? 72 Warm Up 1. What is the third angle measure in a triangle with angles measuring 65 and 43? 72 Find each value. Round trigonometric ratios to the nearest hundredth and angle measures to the nearest degree.

More information

Functions and their Graphs

Functions and their Graphs Chapter One Due Monday, December 12 Functions and their Graphs Functions Domain and Range Composition and Inverses Calculator Input and Output Transformations Quadratics Functions A function yields a specific

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

CHAPTER 10 TRIGONOMETRY

CHAPTER 10 TRIGONOMETRY CHAPTER 10 TRIGONOMETRY EXERCISE 39, Page 87 1. Find the length of side x in the diagram below. By Pythagoras, from which, 2 25 x 7 2 x 25 7 and x = 25 7 = 24 m 2. Find the length of side x in the diagram

More information

Name: for students entering. Algebra 2/Trig* For the following courses: AAF, Honors Algebra 2, Algebra 2

Name: for students entering. Algebra 2/Trig* For the following courses: AAF, Honors Algebra 2, Algebra 2 Name: Richard Montgomery High School Department of Mathematics Summer Math Packet for students entering Algebra 2/Trig* For the following courses: AAF, Honors Algebra 2, Algebra 2 (Please go the RM website

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Pythagoras and Trigonometry Pythagoras 1 Grade 5 Objective: Know and use Pythagoras's theorem for right-angled triangles Question 1 ABC is a right

More information

Algebra. Trigonometry

Algebra. Trigonometry MBF3C Exam Review January 14, 2014 Exam Date / Time/ Room: January 28, 2014 8:30 10:30am Room 243 *Calculators can t be shared* * You need to bring a working scientific calculator* - no SmartPhone or ipod

More information

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto COLLEGE PHYSICS Chapter 3: Two-Dimensional Kinematics Lesson 7 Video Narrated by Jason Harlow, Physics Department, University of Toronto VECTORS A quantity having both a magnitude and a direction is called

More information

I.G.C.S.E. Trigonometry. You can access the solutions from the end of each question

I.G.C.S.E. Trigonometry. You can access the solutions from the end of each question I.G..S.E. Trigonometry Index: Please click on the question number you want Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 You can access the solutions from the end of each question Question

More information

AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR AP PHYSICS 1 STUDENTS

AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR AP PHYSICS 1 STUDENTS AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR 2014-2015 AP PHYSICS 1 STUDENTS 1. Read Chapter 1 of Textbook (Giancoli pp.1-17). Make a list of questions about any topics you would like clarified on

More information

Integration by Triangle Substitutions

Integration by Triangle Substitutions Integration by Triangle Substitutions The Area of a Circle So far we have used the technique of u-substitution (ie, reversing the chain rule) and integration by parts (reversing the product rule) to etend

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y = Review exercise The equation of the line is: y y x x y y x x y 8 x+ 6 8 + y 8 x+ 6 y x x + y 0 y ( ) ( x 9) y+ ( x 9) y+ x 9 x y 0 a, b, c Using points A and B: y y x x y y x x y x 0 k 0 y x k ky k x a

More information