1 Boas, problem p.564,

Size: px
Start display at page:

Download "1 Boas, problem p.564,"

Transcription

1 Physics 6C Solutions to Homewor Set # Fall 0 Boas, problem p.564,.- Solve the following differential equations by series and by another elementary method and chec that the results agree: xy = xy +y () by series: substituting the power series y(x) = a nx n in () we have ( ( xy xy y = 0 x na n x ) x n a n x ) n a n x n = 0 () calling n = m+ and substituting, n= (m+)a m+ x m+ a n x n+ a n x n = 0 (3) [(m+)a m+ a m x m+ a 0 a m+ x m+ = 0 (4) The only term with a 0-th power of x is a 0, which tells us a 0 = 0. Asing for the coefficient of the (m+)-th power of x in (4) to be zero we get So the solution for () is a m+ = m a m = mm a m =... = m! a (5) y(x) = a m+ x m+ = a m! xm+ (6) Factoring out one power of x, one recognizes the power series of the exponential e x and writes the solution as y(x) = a xe x (7) by separation of variables: which is the same as in (7). dy y = (+ x )dx = lny = x+lnx+lnc = y(x) = cxex (8) Boas, problem p.564,.-0 Solve the following differential equations by series and by another elementary method and chec that the results agree: y 4xy +(4x )y = 0 (9)

2 by series: substituting the power series y(x) = a nx n in (9) we have n(n )a n x n 4x na n x n +(4x ) a n x n = 0 (0) n= a +6a 3 x+ (n+)(n+)a n+ x n 4a x 4 na n x n +4 a n x n+ a 0 a x a n x n = 0 a +6a 3 x 4a x a 0 a x+ [(n+)(n+)a n+ (+n)a n +4a n x n = 0 the first terms give while the recursion formula is a = a 0, a 3 = a () (n+)(n+)a n+ (+n)a n +4a n = 0, for n. () Consider first the case of n = p even. Using (), we can use the recursion formula to obtain a 4. By repeated use of the recursion formula, we can obtain a 6, a 8,... After computing a few values, it appears that the general form is a p = a 0 p!. (3) Note that (3) is also valid for p = 0 and p =. To test the validity of (3), we insert this equation into (): (p+)(p+) (+4p) 4? + = 0. (4) (p+)! p! (p )! Simple algebra verifies the validity of the equation above. Next, consider the case of n = p+ odd. Using (), we can use the recursion formula to obtain a 5. By repeated use of the recursion formula, we can obtain a 7, a 9,... After computing a few values, it appears that the general form is a p+ = a p!. (5) Note that (3) is also valid for p = 0 and p =. To test the validity of (5), we insert this equation into (): (p+)(p+3) (3+4p) 4? + = 0. (6) (p+)! p! (p )! Simple algebra verifies the validity of the equation above. Hence, we conclude that y(x) = a n x n = a p x p + a p+ x p+ = a 0 x p p! +a x p+ p! [x p [x p = a 0 +a x p! p! = (a 0 +a x)e x. (7)

3 reduction of the order: one checs that the equation is solved by y 0 (x) = e x ; then we loo for another solution of the form y(x) = u(x)y 0 (x): y = u y 0 +uy 0, y = u y 0 +u y 0 +uy 0 (8) y 4xy +(4x )y = u[y 0 4xy 0 +(4x )y 0 +u y 0 +u y 0 4xu y 0 = 0 (9) e x [u 4xu +4xu = 0 = u = 0 = u = A+Bx (0) 3 Boas, problem p.586,.-5 Solve the following differential equations by the method of Frobenius: y = (A+Bx)e x () xy +y +y = 0 () Substituting the generalized power series y(x) = a nx n+s in () we have x (n+s)(n+s )a n x n+s + (n+s)a n x n+s + a n x n+s = 0 (3) the n = 0 term gives [s(s )a 0 +sa 0 x n+s = 0 = s s = 0 = s = 0, (4) while the other terms are [(n+s)(n+s )a n +(n+s)a n +a n x n+s = 0 (5) n= (6) For s = 0 we have a n = n= [n(n )a n +a n x n = 0 (7) n(n ) a n =... = ( ) n n!(n )!! a 0 (8) Where the double factorial is m!! = m(m )(m 4)... Also, we note that (n)! = n(n )(n )(n 3)... = n (n )!!n!. Inserting these coefficients bac in the series gives y(x) = For s = n= a n x n = we have instead ( x) n n!(n )!! a 0 = [n(n+)a n +a n x n = 0 = a n = ( 4x) n ( ) n ( x) n a 0 = a 0 (n)! (n)! n(n+) a n =... = = y(x) = a 0 ( ) n ( x) n+ (n+)! The general solution is then given by the linear combination of (9), (3): = a 0 cos(x / ). (9) ( ) n n!(n+)!! a 0 (30) = a 0 sin(x / ) (3) y = Acos(x / )+Bsin(x / ) (3) 3

4 4 Boas, problem p.587,.-4 Solve y = y by the Frobenius method. We tae the generalized power series y(x) = a nx n+s so that y +y = [(n+s)(n+s )a n x n+s +a n x n+s Taing the n = 0 term gives s(s )a 0 = 0, that is, s = 0,. For s = 0 we have = 0 (33) n(n )a n +a n = 0 = a n = a n n(n ) = { an+ = ( )n (n+)! a a n = ( )n (n)! a 0 (34) These two series are those defining the sine and the cosine, so that we have found the well nown result y = a 0 cosx+a sinx. If we now tae s = we have (n+)nb n +b n = 0 = b n = b n n(n+) (35) The solution for b 0 0 is then y(x) = b n x n+ = b sinx+b 0 n= ( ) n (n)! xn (36) In this expression we are missing the x 0 term that would give the expansion of the cosine, and one easily chec that this is not a solution of the differential equation. That happens because in (33) for s = the first term coefficient reads (n+)(n+0)b n ; then, b 0 coefficient has a 0 in front, which cancels it out from the rest of the problem, so we are calculating the solution modulo the constant b 0. 5 Boas, problem p.567,.- Show that P l ( ) = ( ) l. Using eq. (.6) on p. 565 of Boas, the general solution to the Legendre differential equation is: [ l(l +) y(x) = a 0 x l(l+)(l )(l +3) + x 4...! 4! [ (l )(l +) +a x x 3 (l )(l +)(l 3)(l +4) + x (37) 3! 5! If l is even, then the Legendre polynomial is defined to be the polynomial proportional to a 0 (up to an overall normalization determined by convention). If l is odd, then the Legendre polynomial is defined to be the polynomial proportional to a (up to an overall normalization determined by convention). It immediately follows that if l is even, then P l (x) is an even function of x, whereas if l is odd, then P l (x) is an odd function of x. This means that P l ( x) = ( ) l P l (x). (38) The normalization convention for the Legendre polynomials defines P l () =. Hence, inserting x = into (38) yields P l ( ) = ( ) l (39) 4

5 Note that eq. (38) is also an immediate consequence of the Rodrigues formula, and provides another way of deriving (39). 6 Boas, problem p.567,.-4 We will solve Legendre equation d l P l (x) = l l! dx l(x ) l, (40) ( x )y xy +l(l+)y = 0 (4) using the method of reduction of order: given the nown solution P l (x), we loo for an independent solution of the form y(x) = P l (x)v(x) and then solve for v(x) in (4): ( x )(v P l +v P l +vp l ) x(v P l +vp l )+l(l +)P l = 0 (4) ( x )(v P l (x)+v P l (x)) xp l(x)v = 0 = ( x )P l (x)v +(( x )P l (x) xp l(x))v = 0 = v v = xp l(x) ( x )P l x ( x = )P l (x) x P l = P l x +x P l (43) P l which is solved by lnv = ln( x) ln(+x) lnp l = ln dx v(x) = ( x)(+x)pl The second solution of the Legendre equation is then We evaluate this expression for the two cases l = 0,: ( x)(+x)pl, that is, (44) (45) Q l (x) = P l (x)v(x) (46) l = 0: P 0 (x) =, so the other solution is Q 0 (x) = dx ( x)(+x) = ( dx x + ) = +x +x ln x (47) l = : P (x) = x, so the other solution is Q (x) = x dx ( x)(+x)x = x = x ( dx x + +x + ) x = (48) +x ln (49) x 5

6 7 Boas, problem p.568,.3- We will use the hint in problem.3-6: if we write where D u, D v are operators that act only separately on u,v, we have n ( ) n n ( D n ud v n uv = d n dx nuv = (D u +D v ) n uv = =0 d dx uv = D(uv) = (D u +D v )uv (50) =0 ) D uud n v v = n =0 ( n ) d dn dxudx n v where we have used the expansion ( of the ) n-th power of a binomial formed by the two operators D u,d v n (which commute with each other). = n(n )...(n +)! is the binomial coefficient. 8 Boas, problem p.569,.4- By Rodrigues formula P l (x) = l l! dx l(x ) l (5) we have, after applying Leibniz rule (5) P l (x) = l l! l =0 ( l d l ) d (5) dl dx(x+)ldx l (x )l (53) Now, every time we differentiate (x ) l we lower the exponent by one; in particular, when we differentiate l times, we are left with a constant; when we calculate P l () any factor of (x ) will become zero, so that the only non zero contribution comes from the 0-th term in the sum: this gives P l () = l l! l l! = (54) wheretheterm l comes from (x+) l for x = and dl (x ) l = l dl (x ) l = l(l ) dl (x ) l = dx l dx l dx l... = l!. 9 Boas, problem p.569,.4-4 We want to prove that Substituting Rodrigues formula (5) we have x m d l x m P l (x)dx = 0, for m < l (55) x m P l (x)dx = l l! dx l(x ) l dx (56) x m dl dx l (x ) l m dl mx dx l (x ) l dx = (57) m dl = 0 mx dx l (x ) l m dl + m(m )x dx l (x ) l dx =... (58) 6

7 in the first passage we have neglected the constant and integrated by parts; in the second passage, we l l! see that the first term is null because after we have differentiated (l ) times we will still have at least one factor of (x ) and one of (x+) (as you can quicly chec by using Leibniz rule), which are zero when evaluated at ±. The same happens for all the other terms evaluated at ±, so that, after we have integrated by parts m times (assuming m < l), we are left with d l m m! dx l m(x ) l dx = m! d l m dx l m (x ) l = 0 (59) for the same argument we used above. Note that this does not hold for m > l, because in that case between (58) and (59) we reach a step in which l = 0 and we have x m (x ) l 0 0 Boas, problem p.574,.5-0 Express the following polynomial as a linear combination of the Legendre polynomials: The first five Legendre polynomials are: f(x) = x 4 (60) P 0 =, P = x, P = (3x ), P 3 = (5x3 3x), P 4 = 8 (35x4 30x +3) (6) We aregoing toexpandx 4 as a linear combination of thelegendrepolynomials, withunnowncoefficients; these will be found imposing that the factors for the different powers of x coincide. Because we have x 4, f(x) = 4 0 c np n must contain P 4 ; in particular, c 4 = 8 35, so that the coefficient of x4 is. Then we must put to zero the coefficient of x 3 : x 3 only appears in P 3 so we can put c 3 = 0. Right now, our function is written as f(x) = c n P n P 4(x) (6) Now we fix to zero the coefficient of x : it appears in P 4 and P and it is 0 3 c = 0 = c = 4 7 A term linear in x appears only in P, so we can set c = 0. Finally, the constant term is given by c 0 c c 4 = 0 = c 0 = 5 (63) Then we have found x 4 = 5 P 0(x)+ 4 7 P (x) P 4(x) (64) 7

8 Boas, problem p.577,.6-6 We want to show that P l and P l are orthogonal on [-, in two ways: we can use the fact that the Legendre polynomials are either even or odd functions of x (depending on whether l is even or odd, respectively), as shown in problem 5. Then, if P l is odd, its derivative P l is even, and vice versa. In general, if f(x) is an even function of x and g(x) is an odd function of x, then a a f(x)g(x) = 0. (65) This is easily proven by changing the integration variable to y = x, in which case a a f(x)g(x) = a +a f( y)g( y)dy = a a f( y)g( y)dy = a a f(y)g(y)dy, (66) As the integral is equal to minus itself, it must be equal to zero. Hence, we conclude that P l (x)p l (x) = 0. (67) we can also use the result of problem 9: remember that P l is a polynomial of order l and P l is a polynomial of order (l ). Then P l (x)p l (x) (68) is given by a sum of terms which have the form c n xm P l (x)dx, where m = 0,,...,l, that is, m < l, so they are all zero and the two functions are orthogonal. Boas, problem p.65,.3- The generating functional of the Legendre polynomials is Φ(x,h) = = h l P xh+h l (x); (69) l=0 for x = 0 this gives Φ(0,h) = h l P l (0) = But the function Φ(0,h) loos exactly lie the power of a binomial: l=0 Φ(0,h) = (+h ) / = Here we can read the Legendre polynomials in zero as +h = c l h l, (70) ( ) / h n (7) n P n+ (0) = 0 ; (7) ( ) / P n (0) = = ( )...( n+) = ( n )(n )!! n (n)! n. (73) n! 8

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

2009 A-level Maths Tutor All Rights Reserved

2009 A-level Maths Tutor All Rights Reserved 2 This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents the derivative formula 3 tangents & normals 7 maxima & minima 10

More information

Math WW08 Solutions November 19, 2008

Math WW08 Solutions November 19, 2008 Math 352- WW08 Solutions November 9, 2008 Assigned problems 8.3 ww ; 8.4 ww 2; 8.5 4, 6, 26, 44; 8.6 ww 7, ww 8, 34, ww 0, 50 Always read through the solution sets even if your answer was correct. Note

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre

More information

1 Arithmetic calculations (calculator is not allowed)

1 Arithmetic calculations (calculator is not allowed) 1 ARITHMETIC CALCULATIONS (CALCULATOR IS NOT ALLOWED) 1 Arithmetic calculations (calculator is not allowed) 1.1 Check the result Problem 1.1. Problem 1.2. Problem 1.3. Problem 1.4. 78 5 6 + 24 3 4 99 1

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From q-series Michael Gri th History and q-integers The idea of q-series has existed since at least Euler. In constructing the generating function for the partition function, he developed the basic idea of

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Math 2233 Homework Set 7

Math 2233 Homework Set 7 Math 33 Homework Set 7 1. Find the general solution to the following differential equations. If initial conditions are specified, also determine the solution satisfying those initial conditions. a y 4

More information

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n Assignment 4 Arfken 5..2 We have the sum Note that the first 4 partial sums are n n(n + ) s 2, s 2 2 3, s 3 3 4, s 4 4 5 so we guess that s n n/(n + ). Proving this by induction, we see it is true for

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

Series Solutions of ODEs. Special Functions

Series Solutions of ODEs. Special Functions C05.tex 6/4/0 3: 5 Page 65 Chap. 5 Series Solutions of ODEs. Special Functions We continue our studies of ODEs with Legendre s, Bessel s, and the hypergeometric equations. These ODEs have variable coefficients

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Indefinite Integration

Indefinite Integration Indefinite Integration 1 An antiderivative of a function y = f(x) defined on some interval (a, b) is called any function F(x) whose derivative at any point of this interval is equal to f(x): F'(x) = f(x)

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1)

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1) IB Mathematics HL Year Unit : Completion of Algebra (Core Topic ) Homewor for Unit Ex C:, 3, 4, 7; Ex D: 5, 8, 4; Ex E.: 4, 5, 9, 0, Ex E.3: (a), (b), 3, 7. Now consider these: Lesson 73 Sequences and

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Physics 116C Solutions to the Practice Final Exam Fall The method of Frobenius fails because it works only for Fuchsian equations, of the type

Physics 116C Solutions to the Practice Final Exam Fall The method of Frobenius fails because it works only for Fuchsian equations, of the type Physics 6C Solutions to the Practice Final Exam Fall 2 Consider the differential equation x y +x(x+)y y = () (a) Explain why the method of Frobenius method fails for this problem. The method of Frobenius

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

Further Mathematical Methods (Linear Algebra) 2002

Further Mathematical Methods (Linear Algebra) 2002 Further Mathematical Methods (Linear Algebra) Solutions For Problem Sheet 9 In this problem sheet, we derived a new result about orthogonal projections and used them to find least squares approximations

More information

14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit

14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit EE 0 Engineering Mathematics III Solutions to Tutorial. For n =0; ; ; ; ; verify that P n (x) is a solution of Legendre's equation with ff = n. Solution: Recall the Legendre's equation from your text or

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

MATH 118, LECTURES 27 & 28: TAYLOR SERIES MATH 8, LECTURES 7 & 8: TAYLOR SERIES Taylor Series Suppose we know that the power series a n (x c) n converges on some interval c R < x < c + R to the function f(x). That is to say, we have f(x) = a 0

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES We have: Seen how to interpret derivatives as slopes and rates of change Seen how to estimate derivatives of functions given by tables of values Learned how

More information

Handbook of Ordinary Differential Equations

Handbook of Ordinary Differential Equations Handbook of Ordinary Differential Equations Mark Sullivan July, 28 i Contents Preliminaries. Why bother?...............................2 What s so ordinary about ordinary differential equations?......

More information

Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work.

Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work. Dr. Sophie Marques MAM100S Tutorial 8 August 017 1. Divide 1. 6x + x 15 by 3x + 5. 6x + x 15 = (x 3)(3x + 5) + 0. 1a 4 17a 3 + 9a + 7a 6 by 3a 1a 4 17a 3 + 9a + 7a 6 = (4a 3 3a + a + 3)(3a ) + 0 3. 1a

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

For more information visit

For more information visit If the integrand is a derivative of a known function, then the corresponding indefinite integral can be directly evaluated. If the integrand is not a derivative of a known function, the integral may be

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

ECM Calculus and Geometry. Revision Notes

ECM Calculus and Geometry. Revision Notes ECM1702 - Calculus and Geometry Revision Notes Joshua Byrne Autumn 2011 Contents 1 The Real Numbers 1 1.1 Notation.................................................. 1 1.2 Set Notation...............................................

More information

Ordinary differential equations Notes for FYS3140

Ordinary differential equations Notes for FYS3140 Ordinary differential equations Notes for FYS3140 Susanne Viefers, Dept of Physics, University of Oslo April 4, 2018 Abstract Ordinary differential equations show up in many places in physics, and these

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer.

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer. . Correct The Mistake Determine whether these equations are false, and if so write the correct answer. ( x ( x (a ln + ln = ln(x (b e x e y = e xy (c (d d dx cos(4x = sin(4x 0 dx xe x = (a This is an incorrect

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Mathematics for Chemistry: Exam Set 1

Mathematics for Chemistry: Exam Set 1 Mathematics for Chemistry: Exam Set 1 June 18, 017 1 mark Questions 1. The minimum value of the rank of any 5 3 matrix is 0 1 3. The trace of an identity n n matrix is equal to 1-1 0 n 3. A square matrix

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

Math Reading assignment for Chapter 1: Study Sections 1.1 and 1.2.

Math Reading assignment for Chapter 1: Study Sections 1.1 and 1.2. Math 3350 1 Chapter 1 Reading assignment for Chapter 1: Study Sections 1.1 and 1.2. 1.1 Material for Section 1.1 An Ordinary Differential Equation (ODE) is a relation between an independent variable x

More information

Math 113: Quiz 6 Solutions, Fall 2015 Chapter 9

Math 113: Quiz 6 Solutions, Fall 2015 Chapter 9 Math 3: Quiz 6 Solutions, Fall 05 Chapter 9 Keep in mind that more than one test will wor for a given problem. I chose one that wored. In addition, the statement lim a LR b means that L Hôpital s rule

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

14 Fourier analysis. Read: Boas Ch. 7.

14 Fourier analysis. Read: Boas Ch. 7. 14 Fourier analysis Read: Boas Ch. 7. 14.1 Function spaces A function can be thought of as an element of a kind of vector space. After all, a function f(x) is merely a set of numbers, one for each point

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information

Solutions to Problem Sheet for Week 8

Solutions to Problem Sheet for Week 8 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Wee 8 MATH1901: Differential Calculus (Advanced) Semester 1, 017 Web Page: sydney.edu.au/science/maths/u/ug/jm/math1901/

More information

1. Find the Taylor series expansion about 0 of the following functions:

1. Find the Taylor series expansion about 0 of the following functions: MAP 4305 Section 0642 3 Intermediate Differential Equations Assignment 1 Solutions 1. Find the Taylor series expansion about 0 of the following functions: (i) f(z) = ln 1 z 1+z (ii) g(z) = 1 cos z z 2

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

f(x, y) = 1 sin(2x) sin(2y) and determine whether each is a maximum, minimum, or saddle. Solution: Critical points occur when f(x, y) = 0.

f(x, y) = 1 sin(2x) sin(2y) and determine whether each is a maximum, minimum, or saddle. Solution: Critical points occur when f(x, y) = 0. Some Answers to Exam Name: (4) Find all critical points in [, π) [, π) of the function: f(x, y) = sin(x) sin(y) 4 and determine whether each is a maximum, minimum, or saddle. Solution: Critical points

More information

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page. The limaçon r = + sin θ came up on Quiz. Find the area inside the loop of it. Solution. The loop is the section of the graph in between its two

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II. MTH 142 Practice Exam Chapters 9-11 Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus

More information

Chapter 4. Series Solutions. 4.1 Introduction to Power Series

Chapter 4. Series Solutions. 4.1 Introduction to Power Series Series Solutions Chapter 4 In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation adds a new story to the old

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

4 Holonomic Recurrence Equations

4 Holonomic Recurrence Equations 44 4 Holonomic Recurrence Equations The main algorithmic idea to find hypergeometric term representations of hypergeometric series goes bac to Celine Fasenmyer (who is often called Sister Celine: Her idea

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Assignment # 8, Math 370, Fall 2018 SOLUTIONS:

Assignment # 8, Math 370, Fall 2018 SOLUTIONS: Assignment # 8, Math 370, Fall 018 SOLUTIONS: Problem 1: Solve the equations (a) y y = 3x + x 4, (i) y(0) = 1, y (0) = 1, y (0) = 1. Characteristic equation: α 3 α = 0 so α 1, = 0 and α 3 =. y c = C 1

More information

Mathematics for Chemistry: Exam Set 1

Mathematics for Chemistry: Exam Set 1 Mathematics for Chemistry: Exam Set 1 March 19, 017 1 mark Questions 1. The maximum value of the rank of any 5 3 matrix is (a (b3 4 5. The determinant of an identity n n matrix is equal to (a 1 (b -1 0

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Section 5.2 Series Solution Near Ordinary Point

Section 5.2 Series Solution Near Ordinary Point DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Solutions to Second Midterm(pineapple)

Solutions to Second Midterm(pineapple) Math 125 Solutions to Second Midterm(pineapple) 1. Compute each of the derivatives below as indicated. 4 points (a) f(x) = 3x 8 5x 4 + 4x e 3. Solution: f (x) = 24x 7 20x + 4. Don t forget that e 3 is

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

2003 Mathematics. Advanced Higher. Finalised Marking Instructions

2003 Mathematics. Advanced Higher. Finalised Marking Instructions 2003 Mathematics Advanced Higher Finalised Marking Instructions 2003 Mathematics Advanced Higher Section A Finalised Marking Instructions Advanced Higher 2003: Section A Solutions and marks A. (a) Given

More information

2u 2 + u 4) du. = u 2 3 u u5 + C. = sin θ 2 3 sin3 θ sin5 θ + C. For a different solution see the section on reduction formulas.

2u 2 + u 4) du. = u 2 3 u u5 + C. = sin θ 2 3 sin3 θ sin5 θ + C. For a different solution see the section on reduction formulas. Last updated on November, 3. I.a A x + C, I.b B t + C, I.c C tx + C, I.d I xt + C, J x t + C. I4.3 sin x cos x dx 4 sin x dx 8 cos 4x dx x 8 3 sin 4x+C. I4.4 Rewrite the integral as cos 5 θ dθ and substitute

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1) Chapter 3 3 Introduction Reading assignment: In this chapter we will cover Sections 3.1 3.6. 3.1 Theory of Linear Equations Recall that an nth order Linear ODE is an equation that can be written in the

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

lnbfhf IF Tt=Yy=Y LECTURE: 3-6DERIVATIVES OF LOGARITHMIC FUNCTIONS EY = em EY = by = =1 by Y '= 4*5 off (4 45) b "9b

lnbfhf IF Tt=Yy=Y LECTURE: 3-6DERIVATIVES OF LOGARITHMIC FUNCTIONS EY = em EY = by = =1 by Y '= 4*5 off (4 45) b 9b LECTURE: 36DERIVATIVES OF LOGARITHMIC FUNCTIONS Review: Derivatives of Exponential Functions: d ex dx ex d dx ax Ma a Example 1: Find a formula for the derivatives of the following functions (a) y lnx

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Math221: HW# 7 solutions

Math221: HW# 7 solutions Math22: HW# 7 solutions Andy Royston November 7, 25.3.3 let x = e u. Then ln x = u, x2 = e 2u, and dx = e 2u du. Furthermore, when x =, u, and when x =, u =. Hence x 2 ln x) 3 dx = e 2u u 3 e u du) = e

More information

Math 480 The Vector Space of Differentiable Functions

Math 480 The Vector Space of Differentiable Functions Math 480 The Vector Space of Differentiable Functions The vector space of differentiable functions. Let C (R) denote the set of all infinitely differentiable functions f : R R. Then C (R) is a vector space,

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Fall Math 3410 Name (Print): Solution KEY Practice Exam 2 - November 4 Time Limit: 50 Minutes

Fall Math 3410 Name (Print): Solution KEY Practice Exam 2 - November 4 Time Limit: 50 Minutes Fall 206 - Math 340 Name (Print): Solution KEY Practice Exam 2 - November 4 Time Limit: 50 Minutes This exam contains pages (including this cover page) and 5 problems. Check to see if any pages are missing.

More information

Worksheet 7, Math 10560

Worksheet 7, Math 10560 Worksheet 7, Math 0560 You must show all of your work to receive credit!. Determine whether the following series and sequences converge or diverge, and evaluate if they converge. If they diverge, you must

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

Even and odd functions

Even and odd functions Connexions module: m15279 1 Even and odd functions Sunil Kumar Singh This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Even and odd functions are

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information