Energetics of Hydrogen Storage Reactions: The Power of DFT. Jan Herbst Materials and Processes Laboratory GM R&D Center

Size: px
Start display at page:

Download "Energetics of Hydrogen Storage Reactions: The Power of DFT. Jan Herbst Materials and Processes Laboratory GM R&D Center"

Transcription

1 Energetics of Hydrogen Storage Reactions: The Power of DFT Jan Herbst Materials and Processes Laboratory GM R&D Center

2 ACKNOWLEDGEMENTS Fellow explorer: Lou Hector Sometime shipmate: Wes Capehart

3 Outline Challenge Motivation Methodology LaNi 5, LaNi 5 H 7 : benchmark results LaNi 5 H n, LaCo 5 H n : can DFT predict preferred H sites, filling sequence, maximum H concentration? LiNH 2 + LiH Li 2 NH + H 2 : energetics of a novel hydrogen storage reaction Summary

4 Challenge

5

6 CHALLENGE (cont d) Gravimetric Energy Density vs. Volumetric Energy Density of Fuel Cell Hydrogen Storage Systems System Energy per Unit Weight (MJ/kg) Compressed gas 10,000 psi Liquid hydrogen Minimum Performance Goal High-temperature hydride (e.g., MgH2) Medium-temperature hydride (e.g., NaAlH 4 ) Low-temperature hydride (e.g., LaNi 5 H 6 or FeTiH 2 ) Gasoline Ultimate Technology Goal System Energy per Unit Volume (MJ/liter)

7 CHALLENGE (cont d) HYDROGEN STORAGE PARAMETER GOALS METRIC GOAL System energy per unit weight for conventional > 6 MJ/kg vehicles with 300-mile range System energy per unit volume for conventional > 6 MJ/l vehicles with 300-mile range Usable energy consumed in releasing H 2 <5 % H 2 Release Temperature ~80 ºC Refueling Time <5 minutes H 2 Ambient Release Temp Range -40/+45 ºC Durability (to maintain 80% capacity) 150,000 miles

8 Motivation Assess the capability of density functional theory (DFT) for modeling properties of solid hydrides, including electronic structure, enthalpies of formation, hydrogen site preferences, and maximum hydrogen occupancy

9 Calculational Methodology (briefly!) Vienna ab initio simulation package (VASP) Projector-augmented wave (PAW) potentials

10 Benchmark Results: LaNi 5, LaNi 5 H 7

11 LaNi 5 and LaNi 5 H 7 Crystal Structures LaNi 5 hexagonal CaCu 5 P6/mmm (LaNi 5 H 7 ) 2 hexagonal P6 3 mc

12 LaNi 5 H 7 : Energy vs Volume E(V) -56 LaNi 5 H 7 E(V) (ev/lani 5 H 7 ) V/V expt

13 Crystal Structure Parameters for LaNi 5 and LaNi 5 H 7 LaNi 5 Calc Expt a (Å) c (Å) B (GPa) , 139 LaNi 5 H 7 Calc Expt Calc Expt Calc Expt La (2a) z H1 (2b) z a (Å) Ni1 (2b) z H2 (6c) x c (Å) Ni2 (2b) z z Ni3 (6c) x H3 (6c) x z z

14 4 LaNi 5 Band Structures of LaNi 5 and LaNi 5 H ε F Energy (ev) 4 2 Γ Γ Γ K M Γ A L H A LaNi 5 H ε F Γ Γ K M Γ A L H A Γ

15 δρ = ρ(lani 5 H 7 ) ρ(lani 5 H 0 ) - ρ (7H non-int) LaNi 5 H 7 (P6 3 mc) 8 [0001] 6 4 La H2 Ni1 H1 Ni3 H3 H1 Ni2 H2 La δρ(x)/å 3 2 Ni3 H3 (b) [1230]

16 LaNi 5 H 7 Electron Localization Function (ELF) LaNi 5 H 7 (P6 3 mc) 8 H2 Ni3 H1 1 ELF [0001] 4 La Ni1 H Ni2 La H1 Ni3 H [1230] (b)

17 ELF for NaCl 8 ELF 6 Na [001] Cl [100] 0

18 ELF for Na Metal h [001] Na Na ELF [110]

19 ELF for Diamond 4 ELF [001] 0 C C C [110]

20 Enthalpies of Formation Η Η(LaNi 5 H 7 ) = 2/7[E(LaNi 5 H 7 ) E(LaNi 5 ) ] E(H 2 ) = 40 kj/mole H 2 expt: other calcs: 57 (1998); 45 (2001) 1 kj/mole H 2 = 0.01 ev/h 2 Η(LaNi 5 ) = E(LaNi 5 ) E(La) 5 E(Ni) = 168 kj/mole LaNi 5 expt: 159 ± 8; 166

21 Elastic Constants of LaNi GPa LaNi5 (expt) LaNi5 (calc) 50 0 c11 c12 c13 c33 c44

22 Results: LaNi 5 H n, LaCo 5 H n

23 ??? For a given crystal structure, can DFT identify the sites preferred by hydrogen? establish the filling sequence of hydrogen sites? provide an estimate of the maximum hydrogen concentration?

24 LaCo 5 and LaCo 5 H 4 Crystal Structures LaCo 5 hexagonal CaCu 5 P6/mmm (LaCo 5 H 4 ) 2 base-centered orthorhombic Cmmm

25 Strategy Focus on LaNi 5 H n (P6 3 mc structure) and LaCo 5 H n (Cmmm structure) Calculate H(LaNi 5 H n ) = E(LaNi 5 H n ) E(LaNi 5 ) (n/2)e(h 2 ) H(LaCo 5 H n ) = E(LaCo 5 H n ) E(LaCo 5 ) (n/2)e(h 2 ) for various hydrogen configurations and occupancies Examined 38 hydrogen configurations in LaNi 5 H n, 93 configurations in LaCo 5 H n

26 Site-dependent Enthalpies of Formation in LaNi 5 H n 2a H(LaNi 5 H n ) (ev/hydrogen atom) a2b 2a2b 1 2b 2 2b 1 2b 2 2b 3 2b 2a6c 12d 2b12d LaNi 5 H n P6 3 mc structure 6c 1 6c 2 12d 2b 1 2b 2 6c 2b 1 2b 2 6c 1 6c 2 6c c 1 6c 2 2b6c 1 6c 2 6c 1 6c 2 6c 3 2b6c 1 6c 2 6c n in LaNi 5 H n

27 Site-dependent Enthalpies of Formation in LaCo 5 H n 1.5 4k H(LaCo 5 H n ) (ev/hydrogen atom) d 2b2d 2b 4l 4j 4g 4i 8p 8q 1 8q 2 4h 4e4h 4h16r 8o16r LaCo 5 H n Cmmm structure 4e4h 1 4h 2 8o 2b8o16r 4e8o16r 4e4h8o16r 2b4e8o16r n in LaCo 5 H n

28 Energetics of a Novel Hydrogen Storage Reaction: LiNH 2 + LiH Li 2 NH + H 2

29 Crystal Structures LiNH 2 amide tetragonal I-4 Li 2 NH imide orthorhombic Ima2

30 Densities of States Li amide Li imide 4 ε F 4 ε F 3 LiNH 2 3 Li 2 NH states/ev f.u H Li states/ev f.u H Li N N E (ev) E (ev)

31 ELF for LiNH 2 Å 6 4 Li H 1 ELF 2 0 Li H N H N H H N H Li Li Å

32 Li ELF for Li 2 NH Li L Å Li32N16H16 6 Li Li Li 1 ELF Li Li Li N H Li H Li N Å

33 T = 0: H 0 = H el + H ZPE Enthalpies of Formation H 0 (LiNH 2 ) = H el (LiNH 2 ) + H ZPE (LiNH 2 ) = [E el (LiNH 2 ) E el (Li) ½E el (N 2 ) E el (H 2 )] + [E ZPE (LiNH 2 ) E ZPE (Li) - ½E ZPE (N 2 ) E ZPE (H 2 )] T = 298K: H 298 = H 0 + δ H 298 δ H 298 (LiNH 2 ) = E ph (LiNH 2 ) E ph (Li) ½[7/2 kt + E vib (N 2 )] [7/2 kt +E vib (H 2 )]

34 Enthalpies of Formation H 298 and Reaction H R LiNH 2 LiH Li 2 NH H el H ZPE δ H H 298 kj/mole H 298 expt kj/mole LiNH 2 + LiH Li 2 NH + H 2 H R = H 298 (Li 2 NH) H 298 (LiNH 2 ) H 298 (LiH) H R (components, expt) = = 45 kj/mole H R (calc) = = 74 kj/mole H R (direct expt) = 66 kj/mole H 298 expt (Li 2 NH) = 222 kj/mole likely inaccurate

35 Summary DFT is capable of accurately describing properties of metallically-bonded hydrides such as LaNi 5 H n and LaCo 5 H n, as well as complex hydrides such as LiNH 2 and Li 2 NH Large, growing body of DFT results on other systems: binary hydrides, NaAlH 4, LiAlH 4, LiBH 4, etc. Session U14: Modeling Thursday 3/24 8a No question regarding the power of DFT for known hydrides ** Going forward: one goal is the imaginative use of DFT to spur discovery of technologically viable hydrogen storage materials

1.1. Storage of hydrogen

1.1. Storage of hydrogen 1.1. Storage of hydrogen 1.1.1. Why to store hydrogen? Three isotopes of hydrogen are known, hydrogen or protium (H), deuterium (D), and the unstable tritium (T). All the isotopes of hydrogen form covalent

More information

New High-pressure Phases of Lithium and Sodium Aluminum Tetrahydrides and their Implications to Hydrogen Storage

New High-pressure Phases of Lithium and Sodium Aluminum Tetrahydrides and their Implications to Hydrogen Storage New High-pressure Phases of Lithium and Sodium Aluminum Tetrahydrides and their Implications to Hydrogen Storage P. VAJEESTON, P. RAVINDRAN, A. KJEKSHUS, H. FJELLVÅG Department of Chemistry, University

More information

Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents

Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents J. Karl Johnson 1,3, Sudhakar V. Alapati 2, Bing Dai 1, Jinchen Liu 1, David S. Sholl 2,3 1 University of Pittsburgh,

More information

DFT modeling of novel materials for hydrogen storage

DFT modeling of novel materials for hydrogen storage DFT modeling of novel materials for hydrogen storage Tejs Vegge 1, J Voss 1,2, Q Shi 1, HS Jacobsen 1, JS Hummelshøj 1,2, AS Pedersen 1, JK Nørskov 2 1 Materials Research Department, Risø National Laboratory,

More information

Applications of the variable-composition structure prediction

Applications of the variable-composition structure prediction Applications of the variable-composition structure prediction Chaohao Hu School of Materials Science and Engineering Guilin University of Electronic Technology August 7, 2013, GUET, China Contents Why

More information

University of Eldoret May 13, 2013.

University of Eldoret May 13, 2013. Materials for the hydrogen energy economy: Magnesium hydride (MgH 2 ) and Lithium hydride (LiH) Magero Denis Makau Nicholas Amolo George Lusweti Kituyi University of Eldoret May 13, 2013. Introduction

More information

Tim Mason, E.H. Majzoub Center for Nanoscience, Department of Physics and Astronomy University of Missouri, St. Louis, MO Advisor: Eric Majzoub

Tim Mason, E.H. Majzoub Center for Nanoscience, Department of Physics and Astronomy University of Missouri, St. Louis, MO Advisor: Eric Majzoub First-principles Study of Novel Conversion Reactions for High-capacity Li-ion Battery Anodes Tim Mason, E.H. Majzoub Center for Nanoscience, Department of Physics and Astronomy University of Missouri,

More information

Van der Waals DFT Study of the Energetics of Alkali Metal Intercalation in Graphite

Van der Waals DFT Study of the Energetics of Alkali Metal Intercalation in Graphite 1 Van der Waals DFT Study of the Energetics of Alkali Metal Intercalation in Graphite Zhaohui Wang, Sverre M. Selbacħ and Tor Grande Department of Material Science and Engineering Trondheim, Nov. 29, 2013

More information

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems Hong-Cai Joe Zhou Department of Chemistry Texas A&M University 2 US primary energy consumption by fuel, 1980-2035 (quadrillion Btu per year)

More information

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles Andrew Goudy Delaware State University 2 N. Dupont Highway Dover, DE 99 Phone: (32) 857-6534 Email: agoudy@desu.edu DOE Managers Ned Stetson

More information

Crystal structure of KAlH 4 from first principle calculations

Crystal structure of KAlH 4 from first principle calculations Journal of Alloys and Compounds 363 (2004) L7 L11 Letter Crystal structure of KAlH 4 from first principle calculations P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg Department of Chemistry, University

More information

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics Physical Chemistry Chemical Physics www.rsc.org/pccp Volume 15 Number 35 21 September 2013 Pages 14513 14824 ISSN 1463-9076 PERSPECTIVE Song New perspectives on potential hydrogen storage materials using

More information

Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles

Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles Donald J. Siegel and C. Wolverton Physical and Environmental Sciences Department, Ford Motor Company, MD3083/RIC, Dearborn,

More information

Effective interactions between the N-H bond orientations in lithium imide and a proposed ground-state structure

Effective interactions between the N-H bond orientations in lithium imide and a proposed ground-state structure Effective interactions between the N-H bond orientations in lithium imide and a proposed ground-state structure Tim Mueller and Gerbrand Ceder* Department of Materials Science and Engineering, Massachusetts

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design The Basics of Density Functional Theory Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg December 03, 2010 Outline Formalism 1 Formalism Definitions

More information

Computational Insights on Functional Materials for Clean Energy Storage

Computational Insights on Functional Materials for Clean Energy Storage Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1073 Computational Insights on Functional Materials for Clean Energy Storage Modeling, Structure and

More information

On the Possibility of Metastable Metallic Hydrogen

On the Possibility of Metastable Metallic Hydrogen On the Possibility of Metastable Metallic Hydrogen Jeffrey M. McMahon Department of Physics & Astronomy March 14, 2017 Jeffrey M. McMahon (WSU) March 14, 2017 1 / 19 The Problem of Metallic Hydrogen In

More information

First-Principles Study of Hydrogen Storage on Li 12 C 60

First-Principles Study of Hydrogen Storage on Li 12 C 60 Published on Web 07/06/2006 First-Principles Study of Hydrogen Storage on Li 12 C 60 Qiang Sun,*,, Puru Jena, Qian Wang, and Manuel Marquez Contribution from the INEST Group, Research Center, Philip Morris

More information

FUEL CELLS: INTRODUCTION

FUEL CELLS: INTRODUCTION FUEL CELLS: INTRODUCTION M. OLIVIER marjorie.olivier@fpms.ac.be 19/5/8 A SIMPLE FUEL CELL Two electrochemical half reactions : H 1 O H + + H + e + + e H O These reactions are spatially separated: Electrons:

More information

Body Centered Cubic Magnesium Niobium Hydride with Facile Room Temperature Absorption and Four Weight Percent Reversible Capacity

Body Centered Cubic Magnesium Niobium Hydride with Facile Room Temperature Absorption and Four Weight Percent Reversible Capacity Electronic Supplementary Information (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 212 Supporting Information Body Centered Cubic Magnesium Niobium Hydride with

More information

Generation of Thermal Scattering Laws for YH 2 using Ab Initio Methods

Generation of Thermal Scattering Laws for YH 2 using Ab Initio Methods Generation of Thermal Scattering Laws for YH 2 using Ab Initio Methods Michael L. Zerkle Bettis Atomic Power Laboratory WPEC SG42 Meeting May 18, 2015 May 18-19, 2015 WPEC SG42 Slide 1 Outline Motivation

More information

Structural stability of the ternary compound Ti 6 Si 2 B in the Ti-Si-B system

Structural stability of the ternary compound Ti 6 Si 2 B in the Ti-Si-B system Structural stability of the ternary compound Ti 6 Si 2 B in the Ti-Si-B system Catherine Colinet a, Jean-Claude Tedenac b a Science et Ingénierie des Matériaux et Procédés, UMR 5266, CNRS INP Grenoble

More information

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Molybdenum compound MoP as an efficient electrocatalyst for hydrogen evolution

More information

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials Michael Hirscher Max Planck Institute for Intelligent Systems Stuttgart, Germany MH2018 November 1, 2018 Outline IEA Hydrogen

More information

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom Hydrogen Adsorption and Storage on Porous Materials K. M. Thomas. School of Chemical Engineering and Advanced Materials H2FC SUPERGEN Conference Birmingham University, 16-18 th December 2013 Newcastle

More information

First-principles computational study of hydrogen storage in silicon clathrates

First-principles computational study of hydrogen storage in silicon clathrates MATER. RES. LETT., 201 VOL. 6, NO. 1, 72 7 https://doi.org/.0/2166331.2017.1396261 ORIGINAL REPORT First-principles computational study of hydrogen storage in silicon clathrates Kwai S. Chan a, Michael

More information

List of Papers. This thesis is based on the following papers, which are referred to in the text by their Roman numerals.

List of Papers. This thesis is based on the following papers, which are referred to in the text by their Roman numerals. To My Family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I II III IV V A comparative investigation of H 2 adsorption strength

More information

Hydrogen Storage and Production at Low Temperatures from Borohydrides

Hydrogen Storage and Production at Low Temperatures from Borohydrides Hydrogen Storage and Production at Low Temperatures from Borohydrides C.M.Rangel, R.A.Silva, V.R.Fernandes INETI - Department of Materials and Production Technologies Electrochemistry of Materials Unit

More information

IEA HIA Task 32: Hydrogen-based energy storage. Michael Hirscher Max Planck Institute for Intelligent Systems Germany

IEA HIA Task 32: Hydrogen-based energy storage. Michael Hirscher Max Planck Institute for Intelligent Systems Germany H Y D R O G E N I M P L E M E N T I N G A G R E E M E N T IEA HIA Task 32: Hydrogen-based energy storage Michael Hirscher Max Planck Institute for Intelligent Systems Germany WHEC 2014, Gwangju, Korea,

More information

Ground-and excited-state properties of inorganic solids from full-potential density-functional calculations

Ground-and excited-state properties of inorganic solids from full-potential density-functional calculations . Journal of Solid State Chemistry 176 (3) 338 374 Ground-and excited-state properties of inorganic solids from full-potential density-functional calculations P. Ravindran, R. Vidya, P. Vajeeston, A. Kjekshus,

More information

Supporting Information. Structure and electronic properties of a continuous random network model of amorphous zeolitic imidazolate framework (a-zif)

Supporting Information. Structure and electronic properties of a continuous random network model of amorphous zeolitic imidazolate framework (a-zif) Supporting Information Structure and electronic properties of a continuous random network model of amorphous zeolitic imidazolate framework () Puja Adhikari, Mo Xiong, Neng Li *, Xiujian Zhao, Paul Rulis,

More information

Pressure-induced decomposition of solid hydrogen sulfide

Pressure-induced decomposition of solid hydrogen sulfide Pressure-induced decomposition of solid hydrogen sulfide Defang Duan, Xiaoli Huang, Fubo Tian, Da Li, Hongyu, Yu, Yunxian Liu, Yanbin Ma, Bingbing Liu, Tian Cui a) State Key Laboratory of Superhard Materials,

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Atomistic Origin of Brittle Failure of Boron Carbide from Large Scale Reactive Dynamics Simulations; Suggestions toward Improved Ductility Qi An and William A. Goddard III * Materials

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage"

GECP Hydrogen Project: Nanomaterials Engineering for Hydrogen Storage GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage" PI: KJ Cho Students and Staff Members: Zhiyong Zhang, Wei Xiao, Byeongchan Lee, Experimental Collaboration: H. Dai, B. Clemens, A.

More information

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation 1 1 First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation Maarten K. Sabbe, Gonzalo Canduela, Marie- Françoise Reyniers, Guy B. Marin Introduction: benzene hydrogenation

More information

Anharmonic energy in periodic systems

Anharmonic energy in periodic systems Anharmonic energy in periodic systems Bartomeu Monserrat University of Cambridge Electronic Structure Discussion Group 13 March 213 Vibrational properties overview Harmonic phonons are a very good approximation.

More information

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann.

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann. Supporting information The Unusual and the Expected in the Si/C Phase Diagram Guoying Gao, N. W. Ashcroft and Roald Hoffmann Table of Contents Computational Methods...S1 Hypothetical Structures for Si

More information

Raman studies on potential hydrogen storage materials

Raman studies on potential hydrogen storage materials Raman studies on potential hydrogen storage materials The Hydrogen & Fuel Cell Researcher Conference University of Birmingham 17 th December 2013 Daniel Reed, David Book School of Metallurgy and Materials

More information

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure ydrogen Storage and Delivery in a Liquid Carrier Infrastructure Guido P. Pez, Alan C. Cooper, ansong Cheng, Bernard A. Toseland and Karen Campbell Corporate Science and Technology Center, Air Products

More information

Quantum chemical calculations and MD simulations for Be

Quantum chemical calculations and MD simulations for Be start Quantum chemical calculations and MD simulations for Be Institute of Ion Physics University of Innsbruck Michael Probst Michael Stefan Alexander Ivan Andreas Györoek Huber Kaiser Sukuba Mauracher

More information

Hydrogen storage. (I) Metal hydrides and ammonia borane.

Hydrogen storage. (I) Metal hydrides and ammonia borane. Hydrogen storage. (I) Metal hydrides and ammonia borane. Alexander Abramov Postdoctoral researcher Science Institute, University of Iceland Dunhaga 3, 107 Reykjavik, Iceland e-mail: alex (at) theochem.org

More information

Journal of Alloys and Compounds

Journal of Alloys and Compounds Journal of Alloys and Compounds 512 (2012) 296 310 Contents lists available at SciVerse ScienceDirect Journal of Alloys and Compounds j our na l ho me p ag e: www.elsevier.com/locate/jallcom Thermodynamic

More information

Supporting information for: A Chiral Gas-Hydrate Structure Common to the. Carbon Dioxide-Water and Hydrogen-Water. Systems

Supporting information for: A Chiral Gas-Hydrate Structure Common to the. Carbon Dioxide-Water and Hydrogen-Water. Systems Supporting information for: A Chiral Gas-Hydrate Structure Common to the Carbon Dioxide-Water and Hydrogen-Water Systems Daniel M. Amos, Mary-Ellen Donnelly, Pattanasak Teeratchanan, Craig L. Bull, Andrzej

More information

MODIFIED LITHIUM BOROHYDRIDE FOR MOBILE HYDROGEN STORAGE

MODIFIED LITHIUM BOROHYDRIDE FOR MOBILE HYDROGEN STORAGE International Journal of Technology (2011) 1: 28 36 ISSN 2086 9614 IJTech 2011 MODIFIED LITHIUM BOROHYDRIDE FOR MOBILE HYDROGEN STORAGE Suwarno 1,2 * 1 Mechanical Engineering Department, Institut Teknologi

More information

Phonon wavefunctions and electron phonon interactions in semiconductors

Phonon wavefunctions and electron phonon interactions in semiconductors Phonon wavefunctions and electron phonon interactions in semiconductors Bartomeu Monserrat bm418@cam.ac.uk University of Cambridge Quantum Monte Carlo in the Apuan Alps VII QMC in the Apuan Alps VII Bartomeu

More information

Modeling of hydrogen storage materials by density-functional calculations

Modeling of hydrogen storage materials by density-functional calculations Journal of Power Sources 159 (2006) 88 99 Modeling of hydrogen storage materials by density-functional calculations P. Ravindran, P. Vajeeston, R. Vidya, H. Fjellvåg, A. Kjekshus Department of Chemistry,

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

A semi-empirical approach to accurate standard enthalpies of formation for solid hydrides

A semi-empirical approach to accurate standard enthalpies of formation for solid hydrides Submitted to PRB A semi-empirical approach to accurate standard enthalpies of formation for solid hydrides A. Klaveness, A. Kjekshus, H. Fjellvåg, and P. Ravindran Center for Materials Science and Nanotechnology,

More information

CO 2 abatement by two-dimensional MXene carbides

CO 2 abatement by two-dimensional MXene carbides for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) CO 2 abatement by two-dimensional MXene carbides Ángel Morales-García,

More information

Nanostructured complex hydride systems. for solid state hydrogen storage

Nanostructured complex hydride systems. for solid state hydrogen storage Nanostructured complex hydride systems for solid state hydrogen storage by Minchul Jang A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor

More information

Interatomic bonding 1

Interatomic bonding 1 Interatomic bonding 1 Bonding forces of atoms All forces playing role in bonding are electrostatic Coulomb forces. Nuclei attract electrons, but nuclei repulse each other as well as electrons do. So, bonding

More information

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Supplementary Material Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Youngjae Kim, Won Seok Yun, and J. D. Lee* Department

More information

Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes

Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes Article Subscriber access provided by VIRGINIA COMMONWEALTH UNIV Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes Qian Wang, Qiang Sun, Puru Jena, and Yoshiyuki Kawazoe J. Chem. Theory Comput.,

More information

CHAPTER-9 NCERT SOLUTIONS

CHAPTER-9 NCERT SOLUTIONS CHAPTER-9 NCERT SOLUTIONS Question 9.1: Justify the position of hydrogen in the periodic table on the basis of its electronic configuration. Hydrogen is the first element of the periodic table. Its electronic

More information

Surface Complexes in Catalysis

Surface Complexes in Catalysis Surface Complexes in Catalysis David Karhánek Ústav organické technologie, VŠCHT Praha Institut für Materialphysik, Universität Wien XXXVII Symposium on Catalysis, Prague, October 7-8, 2005. Research Methodologies:

More information

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chapter 5 THERMO THERMO chemistry 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chemical Equations 1 st WRITE the Chemical Equation 2 nd BALANCE the Chemical Equation

More information

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application Jingying Liu,, Yunzhou Xue,,, Ziyu Wang,, Zai-Quan Xu, Changxi Zheng, Bent Weber, Jingchao Song, Yusheng Wang, Yuerui

More information

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D.

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D. Supporting Information The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang,

More information

Team H2 Final Report ENMA490. Norena Beaty, Nick Faenza, Tanner Hamann, Owen McGovern, Santiago Miret, and Mark Reese

Team H2 Final Report ENMA490. Norena Beaty, Nick Faenza, Tanner Hamann, Owen McGovern, Santiago Miret, and Mark Reese Team H2 Final Report ENMA490 Norena Beaty, Nick Faenza, Tanner Hamann, Owen McGovern, Santiago Miret, and Mark Reese Current Energy System Unsustainable Fossil fuels vs. hydrogen Nanoparticle Catalysts

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Name: Date: Grade. Work Session # 12: Intermolecular Forces

Name: Date: Grade. Work Session # 12: Intermolecular Forces Name: Date: Grade Work Session # 12: Intermolecular Forces All questions below must be answered during the lab. Show all work and express your answers with appropriate units and the correct number of significant

More information

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) Materials and Methods: SUPPLEMENTARY INFORMATION Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) All the crystals, with nominal composition FeTe0.5Se0.5, used in

More information

Predicting New Materials for Hydrogen Storage Application. Author to whom correspondence should be addressed;

Predicting New Materials for Hydrogen Storage Application. Author to whom correspondence should be addressed; Materials 2009, 2, 2296-2318; doi:10.3390/ma2042296 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Predicting New Materials for Hydrogen Storage Application Ponniah Vajeeston,

More information

Nanostructured TM-Boron Based Hydrides for Solid State Hydrogen Storage (TM-transition metal) Amirreza Shirani Bidabadi

Nanostructured TM-Boron Based Hydrides for Solid State Hydrogen Storage (TM-transition metal) Amirreza Shirani Bidabadi Nanostructured TM-Boron Based Hydrides for Solid State Hydrogen Storage (TM-transition metal) by Amirreza Shirani Bidabadi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors*

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* N. A. W. Holzwarth Wake Forest University, Winston-Salem, NC, USA, 27109 Motivation and background information

More information

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A PART 1: KEY TERMS AND SYMBOLS IN THERMOCHEMISTRY System and surroundings When we talk about any kind of change, such as a chemical

More information

A prospect for LiBH 4 as on-board hydrogen storage

A prospect for LiBH 4 as on-board hydrogen storage Central European Journal of Chemistry A prospect for LiBH 4 as on-board hydrogen storage Review I. Saldan Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Geesthacht 21502, Germany Abstract:

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

Aluminum Chloride as effective dopant in Amide-based systems

Aluminum Chloride as effective dopant in Amide-based systems Multifunctionality of metal hydrides for energy storage developments and perspectives 8 th -2 st September - Warsaw University of Technology - POLAND Aluminum Chloride as effective dopant in Amide-based

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 017 Supporting Information Self-Supported Nickel Phosphosulphide Nanosheets

More information

High-pressure storage of hydrogen fuel: ammonia borane and its related

High-pressure storage of hydrogen fuel: ammonia borane and its related SLAC-PUB-1609 High-pressure storage of hydrogen fuel: ammonia borane and its related compounds Yu Lin 1,*, Wendy L Mao 1,2 1 Department of Geological and Environmental Sciences, Stanford University, Stanford,

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Version A UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, 2015 5-6 pm (60 minutes) Version A DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Kevin Wang (1), Pilar Ariza (2), and Michael Ortiz (3) (1) Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and

More information

Ab initio Berechungen für Datenbanken

Ab initio Berechungen für Datenbanken J Ab initio Berechungen für Datenbanken Jörg Neugebauer University of Paderborn Lehrstuhl Computational Materials Science Computational Materials Science Group CMS Group Scaling Problem in Modeling length

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, 2015 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

High-Pressure Equation of State of Cesium Fluoride to 120 GPa

High-Pressure Equation of State of Cesium Fluoride to 120 GPa Proc. 17th Int. Conf. on High Pressure in Semiconductor Physics & Workshop on High-pressure Study on Superconducting JJAP Conf. Proc. 6, https://doi.org/10.7567/jjapcp.6.011101 High-Pressure Equation of

More information

Shapes of molecules & ions

Shapes of molecules & ions .1..5 Shapes of molecules & ions 54 minutes 50 marks Page 1 of 6 Q1. (a) The shape of the molecule BCl and that of the unstable molecule CCl are shown below. (i) Why is each bond angle exactly 10 in BCl?

More information

Hydrogen storage. (II) Hydrogen hydrates and hydrogen clathrates of ammonia borane.

Hydrogen storage. (II) Hydrogen hydrates and hydrogen clathrates of ammonia borane. Hydrogen storage. (II) Hydrogen hydrates and hydrogen clathrates of ammonia borane. Alexander Abramov Postdoctoral researcher Science Institute, University of Iceland Dunhaga 3, 107 Reykjavik, Iceland

More information

Hydrogen content of CeCl 3 -doped sodium alanate powder samples measured in-situ by ATR-FTIR-spectroscopy and gravimetry during desorption

Hydrogen content of CeCl 3 -doped sodium alanate powder samples measured in-situ by ATR-FTIR-spectroscopy and gravimetry during desorption Hydrogen content of CeCl 3 -doped sodium alanate powder samples measured in-situ by ATR-FTIR-spectroscopy and gravimetry during desorption Ingo Franke, Hans-Dieter Bauer, Birgit Scheppat International

More information

N09/4/CHEMI/HP2/ENG/TZ0/XX+ CHEMISTRY HIGHER level. Tuesday 3 November 2009 (afternoon) Candidate session number. 2 hours 15 minutes

N09/4/CHEMI/HP2/ENG/TZ0/XX+ CHEMISTRY HIGHER level. Tuesday 3 November 2009 (afternoon) Candidate session number. 2 hours 15 minutes N09/4/CHEMI/HP/ENG/TZ0/XX+ 8809610 CHEMISTRY HIGHER level Paper Tuesday 3 November 009 (afternoon) hours 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number in

More information

Definitions and Basic Concepts

Definitions and Basic Concepts Chemical Thermodynamics: Energy Changes in Chemical Systems Conversion of energy from one form to another Transfer of energy from one place to another Why do we care about Thermodynamics? Practical applications:

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY Chemistry 112 Spring 27 Prof. Metz Exam 1 KEY 1. Ammonia, NH 3, has a much higher boiling point than phosphine, PH 3. This is because: (A) NH 3 has a lower molecular weight than PH 3. (B) NH 3 is extensively

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY Chemistry 112 Spring 27 Prof. Metz Exam 1 KEY 1. The predominant intermolecular attractive force in solid sodium is: (A) ionic (B) covalent (C) metallic (D) dipole-dipole (E) induced dipole-induced dipole

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY Chemistry 112 Spring 27 Prof. Metz Exam 1 KEY 1. The predominant intermolecular attractive force in solid sodium is: (A) covalent (B) metallic (C) ionic (D) dipole-dipole (E) induced dipole-induced dipole

More information

CHEM3.4 Demonstrate understanding of thermochemical principles and the properties of particles and substances

CHEM3.4 Demonstrate understanding of thermochemical principles and the properties of particles and substances CHEM3.4 Demonstrate understanding of thermochemical principles and the properties of particles and substances We have covered the underlined part so far. This is: Electron configurations with s, p, d orbitals

More information

First-Principles Determination of the Structure of Magnesium Borohydride

First-Principles Determination of the Structure of Magnesium Borohydride First-Principles Determination of the Structure of Magnesium Borohydride Xiang-Feng Zhou, 1, 2, Artem R. Oganov, 2, 3 Guang-Rui Qian, 2 and Qiang Zhu 2 1 School of Physics and Key Laboratory of Weak-Light

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

WITH QUANTUM LIQUID DFT SIMULATIONS ON MATERIALS FOR HYDROGEN STORAGE

WITH QUANTUM LIQUID DFT SIMULATIONS ON MATERIALS FOR HYDROGEN STORAGE Sergei Yurchenko WITH QUANTUM LIQUID DFT SIMULATIONS ON MATERIALS FOR HYDROGEN STORAGE 1 (27) Materials for hydrogen storage Complex hydride Carbon-based material Noncarbonaceous nanotube Metal-organic

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo High Temperature High Pressure Properties of Silica From Quantum Monte Carlo K.P. Driver, R.E. Cohen, Z. Wu, B. Militzer, P. Lopez Rios, M. Towler, R. Needs, and J.W. Wilkins Funding: NSF, DOE; Computation:

More information

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number.

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number. N10/4/CHEMI/SP2/ENG/TZ0/XX 88106105 CHEMISTRY STANDARD LEVEL PAPER 2 Thursday 11 November 2010 (afternoon) 1 hour 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

Gateway 125,126,130 Fall 2006 Exam 2 KEY p1. Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu)

Gateway 125,126,130 Fall 2006 Exam 2 KEY p1. Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu) Gateway 125,126,130 Fall 2006 Exam 2 KEY p1 Gateway General Chemistry 125/126/130 Exam 2 October 31, 2006 (8:00-10:00pm) Name KEY Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu)

More information

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus Supporting Information for: The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, Sandia National Laboratories, Albuquerque,

More information