TWO MARKS WITH ANSWER

Size: px
Start display at page:

Download "TWO MARKS WITH ANSWER"

Transcription

1 TWO MARKS WITH ANSWER MA65/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS REGULATION: UNIT I PARTIAL DIFFERENTIAL EQUATIONS Formtio o rti dirti utio Sigur itgr -- Soutio o tdrd t o irt ordr rti dirti utio - Lgrg ir utio -- Lir rti dirti utio o cod d highr ordr with cott coicit o oth homogou d ohomogou t. Form th PDE imitig d rom N/D 4,A/M A:... Sutitut d i, w gt. 4. Fid th PDE o th mi o hr hvig thir ctr o th i = =.N/D A : Th utio o uch hr i r Prti dirtitig with rct to d, w gt... Simir...

2 From d. Form th rti dirti utio r M/J A:... r Prti dirtitig with rct to d, w gt Sutitut d i, w gt r r [ r i rticur cott ] 4. Fid th Prti dirti utio o hr who ctr i o th i. N/D A: Eutio o uch hr... r c Prti dirtitig with rct to d, w gt c c c d c c c From d, 5. Form th rti dirti utio imitig th ritrr uctio rom. N/D, M/J A:

3 Giv rio c writt,... Lt u, v i o th orm u, v... Th imitio o φ rom giv u u v v... u u v v... 4 Uig 4 i, w gt 6. Fid th rti dirti utio o cuttig u itrct rom th d. A: Th utio o uch i... Prti dirtitig with rct to, w gt... Prti dirtitig with rct to, w gt

4 From d, 7. Form PDE imitig th uctio rom th rtio. N/D4,N/D A: Prti dirtitig with rct to d, w gt,... ' '... ' ' gt w d From 8.Form th PDE rom M/J 4,N/D A: Sutitut d i, w gt 9. Di ordr o.d.. N/D A: Th ordr o.d. i th ordr o th hight rti drivtiv occurrig i it.

5 . Form th.d. o th orm t g t N/D,N/D A: '' '' ' ' '' ''..... ' ' t g t t t g t t t g t r t g t t g t From d 4 t. Form th rti dirti utio imitig rom, M/J 4 A:...,,...., v u orm th i o v u Lt Th imitio o rom giv..... v u v u v u v u... 4 Uig 4 i, w gt......form th PDE rom = +. M/J 4,N/D A:

6 Sutitut d i, w gt.form th rti dirti utio imitig th ritrr uctio rom,. N/D 4 A:,.... Lt u, v i o th orm u, v... Th imitio o rom giv u u v v... u u Uig 4 i, w gt v v Sov A: M/J 4

7 Giv 4... g g 5. Sov =. M/J4 A: Thi i C.I. Thr i o S.I

8 6. Fid th comt outio o + = N/D4 A:. Thi i o th t Thror th tri outio i. To id th comt itgr C.I Su vu i Su i, w gt 7.Fid th igur itgr o th rti dirti utio i = A: N/D,N/D 9 Thi i o th t Thi C.I i To id th igur itgr Su & i,w gt which i th S.I. 8. Fid th C.I o M/J,N/D A: Thi i CLAIRAUT S t.thror th comt itgr C.I i

9 9.Fid th comt itgr o =. N/D,N/D,A/M 5 A: =. Lt which i C.I..Fid th comt itgr o + = M/J,M/J,N/D A:. Thi i o th t Thror th tri outio i To id th comt itgr C.I. Su vu i Su i, w gt.sov th rti dirti utio = A/M A:

10 . Sov N/D A: Giv Rcd Th A.E i Th outio.sov th utio D D' A/M,N/D A: Giv D D' Rcd Th A.E i Th outio 4. Sov D 7DD' 6D' =. M/J A: Giv D 7DD' 6D' =. Rcd Th A.E i Th outio

11 5.Sov A : Giv D D D Rcd Th A.E i Th outio 6. Sov D D' A: 4 4 A/M,M/J 4 A.E i 7.Sov D D D. N/D A: Giv D D D Rcd Th A.E i Th outio 8. Fid th P.I o D DD' D' =. N/D A : Giv D DD' D' =. Rcd D= d

12 9.Fid th rticur itgr o D D' DD ' N/D A : Giv D D' DD' Rcd, d.form th PDE imitig d rom N/D, M/J, A/M,M/J A :... Sutitut d i, w gt. 4 UNIT II FOURIER SERIES Diricht coditio Gr Fourir ri Odd d v uctio H rg i ri H rg coi ri Com orm o Fourir ri Prv idtit Hrmoic i.. Writ th Diricht coditio or uctio to dd Fourir ri or Stt th uicit coditio or uctio to rd Fourir ri. M/J4,N/D4,M/J,M/J,N/D,N/D,N/D A: A uctio did i, c dd iiit trigoomtric ri o th orm = co i rovidd

13 i i did d ig vud ct oi t iit umr o oit i,. ii i riodic i,. iii d r icwi cotiuou i,. iv h o or iit umr o mim or miim i,.. Writ th Fourir coicit i, c c. A: Th Fourir ri or th uctio i th itrv c, c i giv = co i c d c c co d c c i d c whr Th vu, d r kow Eur ormu or Fourir coicit.. Giv th rio or th Fourir ri co-icit or th uctio did i,.a/m,n/d. i A: Giv = i - = -i- = --i = i - = = i i v uctio.. 4. Fid th vu o i th Fourir ri io o i,.n/d A: Giv d

14 d = = =. 5. Fid th vu o i th ri o i,. N/D A: Giv i, coidr,=, = = d d * = d = d 6. I, th id. N/D, A: 7. I A: = i oit o dicotiuit um o th Fourir ri = 4 = = co dduc tht.... N/D4, A/M 6 Hr w coidr th itrv,. i oit o cotiuit LHS = RHS = 4 co coidr = &u = co co co = 4...

15 co co co = 4... = 4... = 4... = Oti th irt trm o th Fourir ri or th uctio,.n/d 9 A: Giv, Firt trm o th Fourir ri d d [, = d i v uctio = = 9. Fid th cott trm i th Fourir io o co i, M/J,N/D,SEP9 A: Cott trm = = co i v uctio d co d co d

16 co d d =. rm : Cott t. I Fid th vu o i th Fourir io o. A: Giv,, Itrv=, =, d i d i i i d d i i d d co co = co. Fid th um o th Fourir ri or,, t =. N/D A: Giv,, t =. Hr = i oit o dicotiuit.

17 Sum = = =. I co 4 i, th dduc tht vu o N/D4 A: co i Giv 4 = i oit o dicotiuit coidr = LHS = RHS = co = Writ dow th orm o th Fourir ri o odd uctio i, d ocitd Eur ormu or Fourir coicit. N/D A: Th Fourir ri o odd uctio i, i i Whr,, i d. 4. I i v uctio i th itrv,, wht i th vu o?. MAY 4 A: I i v uctio i th itrv,,th vu o. 5. Fid i = i dd Fourir ri i,. MAY4,SEP9 A: Giv i,,

18 d i v uctio = d = d i,, = d =. 6. Fid th h rg i ri or k i, MAY 4 A: Giv = k i, Th h rg i ri i, i i i d k i d k k co, 4k, i i i v i odd,,5... 4k i 7. Fid th h rg i ri or i th itrv MAY4,N/D,SEP9 A: Giv = i, Th h rg i ri i, i i

19 i d i d co, 4, i i i v i odd,, i 8. Fid th h rg i ri or i th itrv A: Giv = i, Th h rg i ri i, i i d i Su i d 4 co co 4 co 4 =, 8, i i i v i odd 8 i,, Fid th h rg i ri io o = i, N/D A: Giv = i, Th h rg i ri i, i i

20 d i Su i d co co co =, i 4, i i v i odd 4 i,,5.... Th coi ri or = i or < < i giv i = co dduc tht... = N/D A: Giv i co co i, Hr i oit o cotiuit coidr = i i co co co co co co co 4 co Prov tht h rg coi ri o i, A: h th vu.

21 Giv i, d d = = 6. Th h rg i ri 8k k i, i i. Dduc th vu o,, A: Giv = k i, Th H rg i ri i,,5... 8k i k = 8k i,,5... i, i,,i Su k k 8 i 8k 8k 5 + i + i k k i 8k + i 8k 5 + i... 5 k 4 8k + 8k 8 + k... 5 k 4 8k... 5 k 4 8k I th h rg i io o co i, id th vu o. A:

22 Giv = co i, d i d co i d co i i = ico d i = co co =,co = = co co 4. Stt Prv Idtit Prv Thorm. N/D4,N/D,SEP9 A: I th Fourir ri corrodig to covrg uiorm to i, th d 5. Di Root M Sur vu o uctio ovr th itrv,. M/J,N/D,N/D,M/J,SEP9 A: Root m ur vu o th uctio = ovr th itrv, i did RMS = d or d. 6. Fid th R.M.S. Vu o i th itrv -, A: Giv = i -, d

23 d d 4 = = 5 5 = Fid th R.M.S. Vu o i th itrv, N/D4,N/D A: i, RMS = d = d = 5 5 = 5 5 = 5 8. Fid th R.M.S. Vu o i th itrv, N/D4,N/D,N/D A: Giv = i, RMS = d = d = = = 9. Writ th com orm o th Fourir ri o or.writ dow th com Fourir ri, ttig th ormu or coicit C. M/J A: Com orm o Fourir ri o i, c c i i C

24 whr C C C i d. Di Hrmoic i. M/J, M/J A : Th roc o idig th Fourir ri or uctio giv umric vu i kow hrmoic i.. Stt th cod hrmoic i Fourir ri io. N/D A : Scod hrmoic i Fourir ri io i th itrv, i giv ow: co i co i Whr [m vu o i, ] [m vu o co i, ] [m vu o i i, ] [m vu o co i, ] [m vu o i i, ]

25 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS Ciictio o PDE Mthod o rtio o vri Soutio o o dimio wv utio O dimio ht coductio Std tt outio o two dimio utio o ht coductio cudig iutd dg. u u. Ci th rti dirti utio 4. [Nov/Dc 9] t A: Th d u u u u u ordr.d. i A, B, C,,, u,, u u 4 A 4, B & C t B - 4AC Th utio i roic. u u. Ci th rti dirti utio [Nov/Dc ] t A: u u A, B & C t B - 4AC Th utio i roic.. Ci th rti dirti utio u u. [M/Ju ] A: A, B & C B - 4AC -4 For >, B 4AC, th utio i itic For <, B 4AC, th utio i hroic. 4. Ci th rti dirti utio A:. [Nov/Dc 4] A -, B - & C B - 4AC 4 4

26 For, =, B 4AC, th utio i itic For, > or, <, B 4AC, th utio i hroic. 5. Ci th rti dirti utio or,. A: [Nov/Dc 4] Th d u u u u u ordr.d. i A, B, C,,, u,, B 4AC 4 4 i w oitiv i. I, i gtiv. B B 4AC v 4AC. Thror th utio i itic u u u 6. Ci [Nov/Dc ] A: A, B & C B - 4AC 4 B 4AC Th utio i roic. u u u 7. Ci 8 [Nov/Dc ] A: A 8, B & C - B B - 4AC 4AC Th utio i hroic 4 96

27 8. Wht r th umtio md to driv o dimio wv utio? [M/Ju 4] A: Th m o th trig r uit gth i cott. Th trig i rct tic d do ot or ritc to dig. c Th tio cud trtchig th trig or iig it t th d oit i o rg tht th ctio o th grvittio orc o th trig c gctd. d Th trig rorm m trvr motio i vrtic, tht i vr rtic o th trig rmi m i out vu. 9. Wht r th w umd to driv o dimio ht utio? [M/Ju 4] A: Ht ow rom highr tmrtur to owr tmrtur. Th mout o ht ruird to roduc giv tmrtur chg i od i roortio to th m o th od d to th tmrtur chg. c Th rt t which ht ow through r i roortio to th r d to th tmrtur grdit orm to th r.. Writ th iiti coditio o th wv utio i th trig h iiti dicmt ut o iiti vocit. [Ari/M ] A: i, t or t ii, t or t, iii t iv, k. Writ dow oi outio o o dimio wv utio A : t 4 i, t c c c c [Nov/Dc 9, Nov/Dc, M/Ju 4, Nov/Dc 4] t ii, t c5 co c6 i c7 co t c8 i t iii, t c c c t 9 c. I th d o trig o gth r id d th midoit o th trig i drw id through hight h d th trig i rd rom rt, tt th iiti d oudr coditio. [M/Ju ] A : i, t or t ii, t or t

28 , iii t iv,,,. I td tt coditio driv th outio o o dimio ht ow utio. [Nov/Dc 4] A: Wh td tt coditio it th ht ow utio i iddt o tim t. u t u d u Th ht ow utio com or d d d u d d d du d du d du c du c d d du c d u = c c 4. Writ dow th thr oi outio o o dimio ht utio. [Nov/Dc, Nov/Dc 4, M/Ju, Nov/Dc ] A: Th thr oi outio o o dimio ht utio r u, t c c c u, t c4 c5 c6 t t u, t c7 c8 co c9 i 5. Wht i th ic dirc tw th outio o o dimio wv utio d o dimio ht utio with rct to th tim? [M/Ju ]

29 A: Soutio o th o dimio wv utio i o riodic i tur. But outio o th o dimio ht utio i ot o riodic i tur. 6. I th wv utio A: c t, wht do c td or? [Nov/Dc ] c T m m Tio r uit gth o th trig 7. I th o dimio ht utio ut c u,wht i A: Wht i i c?or [M/Ju ] u u? [M/Ju 4] t K i kow diuivit o th mtri o th r 8. A tight trtchd trig with id d oit = d = iiti i oitio giv, i.i it i rd rom rt i thi oitio, writ th oudr coditio. [Ari/M ] A: Boudr coditio r i, t or t ii, t or t Iiti coditio r, iii t iv, i 9. Mod th oudr vu rom: A uiorm tic trig o gth 6 cm i ujctd to cott tio o kg. Th d id d th iiti dicmt i 6, < < 6,whi th iiti vocit i ro. A: [M/Ju ] Th wv utio i t c Boudr coditio r i, t or t ii 6, t or t

30 Iiti coditio r, iii t iv, 6, 6. A rod 4 cm og with iutd id h it d A d B kt t ⁰C d 6⁰C rctiv. Fid th td tt tmrtur t octio 5 cm rom A. A: Wh th td tt coditio it th ht ow utio i [Ar/M ] u u = c c Th oudr coditio r u = u4 = 6 Aig i, w gt u = c = Sutitutig c = i, w gt u = c Aig i, w gt u 4 = c 4 6 c c 4 4 Sutitutig c i, w gt u Th td tt tmrtur t octio 5 cm rom A u O d o th rod o gth cm i kt t ⁰C d othr d o th rod i kt t 5⁰C uti td coditio rvi. Fid th td tt tmrtur. [M/Ju 4] A: Wh th td tt coditio it th ht ow utio i

31 u u = c c Th oudr coditio r u = u = 5 Aig i, w gt u = c = Sutitutig c = i, w gt u = c Aig i, w gt u = c 5 c 5 c Sutitutig c i, w gt u. Wh th d o rod o gth cm r mitid t th tmrtur o ⁰C d ⁰C rctiv uti td tt coditio rvi. Fid th td tt tmrtur o th rod. [Nov/Dc, Stmr 9] A: Wh th td tt coditio it th ht ow utio i u u = c c Th oudr coditio r u = u = Aig i, w gt u = c = Sutitutig c = i, w gt u = c

32 Aig i, w gt u = c c c Sutitutig c i, w gt u. A iutd rod o gth h it d A d B kt t ⁰C d 8⁰C rctiv. Fid th td tt outio o th rod. [Nov/Dc ] A: Wh th td tt coditio it th ht ow utio i u Th oudr coditio r u = c c u = u = 8 Aig i, w gt u = c = Sutitutig c = i, w gt u = Aig i, w gt c u = c 8 c 8 c 8 Sutitutig c 8 8 i, w gt u 4. Di td tt coditio o ht ow. [Nov/Dc ] A: Th tt i which th tmrtur do ot vr with rct to tim t i cd td tt. Thror wh td tt coditio it, u, t com u.

33 5. Wht i th td tt ht utio i two dimio Crti orm? [M/Ju, M/Ju, Nov/Dc ] A: u u 6. Writ th oudr coditio or -D ht utio i td tt coditio. [Nov/Dc ] A: Th oudr coditio r i u, or ii u, or iii iv u, or d u, or 7. Writ thr oi outio o td tt two dimio ht utio. A: i u, c c c co c i 4 ii u, c co c c c 5 6 i 7 8 iii u, c c c c 9 [Ari/M, Nov/Dc ] 8. Writ dow th thr oi outio o Lc utio i two dimio. A: i u, c c c co c i 4 ii u, c co c c c 5 6 i 7 8 iii u, c c c c 9 [M/Ju, Ari/M ] 9. A t i oudd th i =,=,= d =. It c r iutd. Th dg coicidig with - i i kt t C. Th dg coicidig with - i i kt t 5 C. Th othr two dg r kt t C. Writ th oudr coditio tht r dd or ovig two dimio ht ow utio. [Nov/Dc, Nov/Dc ] A: Th oudr coditio r i u, or

34 ii iii iv u, or u, 5 or d u, or. Writ th oudr coditio or th oowig rom. A rctgur t i oudd th i =, =, = d =. It urc r iutd. Th tmrtur og = d = r kt t C d th othr t C. [Nov/Dc ] A : Th oudr coditio r i u, or ii iii iv u, or u, or d u, or UNIT IV FOURIER TRANSFORMS Sttmt o Fourir itgr thorm Fourir trorm ir Fourir i d coi trorm Prorti Trorm o im uctio Covoutio thorm Prv idtit.. Stt Fourir itgr thorm. M/J,N/D,N/D4,M/J 4,N/D,M/J A: Fourir itgr ormu i, t co t dt d. Stt th coditio or th itc o Fourir trorm o uctio.m/j A: i w did d ig vud ct t iit umr o oit i,. i riodic i,., d r icwi cotiuou i,. d covrg.. Writ th Fourir trorm ir. N/D,N/D. A: Th Fourir trorm o i did

35 F[ ] i d Th ivr Fourir trorm dotd F F F d i Th utio d r cd Fourir trorm ir.. i did 4. Writ th Fourir coi trorm ir. A: Th iiit Fourir coi trorm o i did F c [ ] co d Th ivr Fourir coi trorm dotd F F. i did F c co d Th utio d r cd Fourir coi trorm ir. F c 5. Prov tht F [ co ] c A: Th Fourir coi trorm o i did F c c F c [ ] co d F c [ co ] co co d co co d co d Fc [ co ] Fc Fc 6.Writ th Fourir i trorm ir. A: co d Th iiit Fourir i trorm o i did F [ ] i d Th ivr Fourir i trorm dotd F F. i did F i d Th utio d r cd Fourir i trorm ir.

36 7.Di Covoutio thorm o Fourir Trorm? N/D,MAY,APR9, SEP 9 A: I F d G r th Fourir trorm o d g rctiv th th Fourir trorm o th covoutio o d g i th roduct o thir Fourir trorm. i.., F[ * g ] F. G 8. Di rciroc with rct to Fourir trorm. N/D A: I trorm o uctio i u to th th uctio i cd rciroc. Em: Th Fourir trorm o rciroc with rct to Fourir trorm. i.hc i cd 9. I F i th Fourir trorm o, id th Fourir trorm o F whr. OR Stt d rov Chg o c o rort o Fourir trorm. M/J 4, M/J,A/M A: Th Fourir trorm o i did F[ ] F[ ] Put d i d i d d d d = F F [ ] = F,, i d i d,

37 .Wht i th Fourir trorm o, i th Fourir trorm o i F? orstt hitig thorm o Fourir trorm. N/D,A/M 5, N/D,N/D4, M/J,A/M A: Th Fourir trorm o i did F[ ] i d F[ ] Put d d F[ ] = i d i i,, i F i i d i d d.i F i th Fourir trorm o, how tht th Fourir trorm o i i F. or Stt hitig thorm o Fourir trorm. N/D 4,N/D A: Th Fourir trorm o i did F[ ] i d F[ i ] i F[ i ] = F. i d i i d.i F c i th Fourir coi trorm, rov tht th Fourir Coi Trorm c i F. A/M A:

38 F [ ] co d F c [ ] co d Put d d d d,, F [ ] c d co co d F c Fc [ ] Fc. Prov tht coi trorm i ir i tur. A: To rov : F [ g ] F G C C Th Fourir coi trorm o i did F c [ ] co d C F C [ g ] g co d co d g co d F c G c 4. Stt Prv idtit or Fourir trorm?n/d,m/j 4,N/D,M/J A:,N/D Lt F th Fourir trorm o. Th d F d

39 5. Stt Prv idtit or Fourir i d coi trorm. A: Prv idtit or Fourir i trorm d F d Prv idtit or Fourir coi trorm d F C d 6. Stt th Modutio thorm.orstt d rov modutio thorm or Fourir Trorm.or I F{} =, id F{ co }. N/D,N/D 4,M/J A: Th Fourir trorm o i did F[ ] i d F[ co ] i co d i i i d F[ co ] F F i d i d 7. I F i th Fourir Trorm o, th rov tht F. N/D A: Th Fourir trorm o i did F[ ] i d Tkig com cojuct o oth id w gt

40 i F[ ] d ut : d d : i F[ ] d F[ ] F i d i d 8.Prov tht FS d F C d. A/M A: Th Fourir coi trorm o i did Hc F C d d F S [ ] F C co d d d d d co d co d i d F C co d i d F S Show tht FC d F S d. 9.Fid th i trorm o -, >. N/D 4, M/J,M/J,N/D,M/J A: Th Fourir i trorm o i did

41 i ] [ i i ] [ d F d d F.Fid th i trorm o -. M/J,MAY8 A: 9 i ] [ i ] [ d F d F. Fid th Fourir Si Trorm o = /. N/D,M/J 4,A/M 5 A:. i ] [ i ] [ d F d F. Fid th Fourir coi Trorm o -,. A/M A: co ] [ co ] [ d FC d F C. Fid th Fourir coi Trorm o -. N/D,D9 A: co ] [ co ] [ d FC d F C 4.Fid th Fourir coi Trorm o -. N/D A: 4 co ] [ co ] [ d F C d F C 5.Fid th Fourir coi Trorm o 5 5. N/D. A :

42 co co 5 co co 5 co 5 ] [5 co ] [ d d d d d F d F C C Fid th Fourir trorm o,. N/D A: d F i ] [ ] [ d d F i i Hr = i i d d i i d d i i i i i i i i i, i i ] [ F

43 7. Fid th Fourir trorm o ik &,,. N/D,MAY A: d F i ] [ i ik d d k i k i k i k i k i k i i i k i i k i k i ] [ F k i k i k i 8. I F F, rov tht F d d F. A : d F i ] [ d i d d d d F d d i i i d i d i d i d d d F d d d F d d i i i

44 d d i F F i d d or F F d 9.Fid th Fourir trorm o A :,,. N/D Th Fourir trorm o i did F[ ] i d i i i d d d i d i d i d i i d i i i i i i i i F[ ].Fid th i trorm o -. A: F [ ] F [ ] i d i d 4. Fid th Fourir coi trorm o i co A: F C [ ] co d APRIL APRIL = co d co d

45 = co co d.co d = co co d = i i UNIT V - TRANSFORMS AND DIFFERENCE EQUATIONS - trorm - Emtr rorti Ivr - trorm uig rti rctio d ridu Covoutio thorm - Formtio o dirc utio Soutio o dirc utio uig trorm. Di -Trorm. [ N/D 9, 8] A: Lt uc did or =,,, th -trorm i did =, com umr =F Thi i cd two idd or itr -trorm... Prov -Trorm i ir trorm. [M/J ] A: g = g g g = = g g = g. I id [ ] A: F [A/M 5] 4. Stt th iiti vu thorm o -Trorm. [N/D 4, M/J ]

46 A: I F, th imf 5. Stt th i vu thorm o -Trorm N/D A: I t F th im t = im F t. 6. Stt th covoutio thorm o -trormtio. [M/J,M/J 4,A/M 5] A: I d G i * g F. G ii t * gt F. G F r th -Trorm o d g th 7. Fid A: i or k othrwi k. k 8. Fid [N/D 4, N/D, N/D ] A: = og

47 og og og 9. Fid [ ]. M/J4,A/M,N/D,SEP9 A: =.Fid i [ N/D 8,A/M ] A: co i W Kow tht i ut co i i =.Fid th - trorm o othrwi or! [ M/J,N/D ] A:!!

48 = +!! = +!! =. Fid th - trorm o! [ N/D ] A:!!! = + = +!! =.Fid th - trorm o. N/D,M/J 4 A: d X.. 4 d d d. 4 4.Fid. [N/D 4,M/J ] A:

49 = =. 5.Fid N/D 4 A: 6. Fid co θ N/D A: W. K. T. Put = iθ i i

50 co ii i i co i co i i i co i co i co i i X i i co i co i co i co i co i co co [i ] co i i Eutig th r d imgir rt, w gt co co ] co, co i ] [i 7.Fid [ M/J,M/J ] A: B A Puttig =, w gt A = -, Puttig =, w gt B=. Thror Form th dirc utio rom th rtio B A A:

51 A B A B. A B. A. B. A B 9. A. 9B. Eimitig A d B, w gt Form th dirc utio grtd [ N/D 8, A/M ] A: 4 Eimitig d, w gt Fid th dirc utio tiid A:. N/D 4 4. Eimitig A d B, w gt i.,

52 .I A B A:.Fid th dirc utio. A B A B A B A A B A A B A B, A, A Hr Thror.Form dirc utio imitig th ritrr cott A rom A. A: A. A. A. [ N/D ].Form dirc utio imitig ritrr cott rom A. U. A: [ N/D ] A. U U A. A. U U U 4.Form th dirc utio rom th rtio A: i.,.. i., - giv 5. Sov giv [ M/J ] A:

53 Lt,,. 6. Sov giv tht =. [ N/D ] A:,, Lt. F id. 4 4 A: 7. I, 4 4 F, B iiti vu thorm, t F

54 4 4 t t 4 4 t Di th uit t uc. Writ it trorm. [ N/D ] A: A dicrt uit t uctio i did,, :{,,,,...} u.... u u 9. Fid uig covoutio thorm. N/D A:. r r r... trm Fid th - trorm o

55 A: W kow tht Thror Sic

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Wedge clamp, double-acting for dies with tapered clamping edge

Wedge clamp, double-acting for dies with tapered clamping edge Wg c, ou-ctg or th tr cg g Acto: cg o th tr cg g or cg o o r or cg o jcto oug ch A B Hr g cg rt Buhg Dg: Dou-ctg g c or cg o r or or or cg jcto oug ch. Th g c cot o hyruc oc cyr to gu houg. Th cg ot ro

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Problem Session (3) for Chapter 4 Signal Modeling

Problem Session (3) for Chapter 4 Signal Modeling Pobm Sssio fo Cht Sig Modig Soutios to Pobms....5. d... Fid th Pdé oimtio of scod-od to sig tht is giv by [... ] T i.. d so o. I oth wods usig oimtio of th fom b b b H fid th cofficits b b b d. Soutio

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Rectangular Waveguides

Rectangular Waveguides Rtgulr Wvguids Wvguids tt://www.tllguid.o/wvguidlirit.tl Uss To rdu ttutio loss ig rquis ig owr C ort ol ov rti rquis Ats s ig-ss iltr Norll irulr or rtgulr W will ssu losslss rtgulr tt://www..surr..u/prsol/d.jris/wguid.tl

More information

COMSACO INC. NORFOLK, VA 23502

COMSACO INC. NORFOLK, VA 23502 YMOL 9. / 9. / 9. / 9. YMOL 9. / 9. OT:. THI RIG VLOP ROM MIL--/ MIL-TL-H, TYP II, L ITH VITIO OLLO:. UPO RULT O HOK TTIG, HOK MOUT (ITM, HT ) HV IR ROM 0.0 THIK TO 0.090 THIK LLO Y MIL-TL-H, PRGRPH...

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Order Statistics from Exponentiated Gamma. Distribution and Associated Inference

Order Statistics from Exponentiated Gamma. Distribution and Associated Inference It J otm Mth Scc Vo 4 9 o 7-9 Od Stttc fom Eottd Gmm Dtto d Aoctd Ifc A I Shw * d R A Bo G og of Edcto PO Bo 369 Jddh 438 Sd A G og of Edcto Dtmt of mthmtc PO Bo 469 Jddh 49 Sd A Atct Od tttc fom ottd

More information

Skyup's Media. Interpolation is the process of finding a function whose graph passes thr

Skyup's Media. Interpolation is the process of finding a function whose graph passes thr Itpotio is th pocss of fidig fuctio whos gph psss th pimttio, d tis to costuct fuctio which cos fits thos d cuv fittig o gssio sis. Itpotio is spcific cs of cuv fittig, i which th. I foowig subsctio, w

More information

Helping every little saver

Helping every little saver Spt th diffc d cut hw u c fid I c spt thigs! Hlpig v littl sv Hw d u p i? I ch Just pp it f u chs. T fid u lcl ch just visit s.c.uk/ch If u pig i chqu, it c tk ud 4 wkig ds t cl Ov th ph Just cll Tlph

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART B. 3) Form the partial differential equation by eliminating the arbitrary functions

UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART B. 3) Form the partial differential equation by eliminating the arbitrary functions UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART B 1) Form th artial diffrntial quation b liminating th arbitrar functions f and g in z f ( x ) g( x ) ) Form th artial diffrntial quation b liminating th arbitrar

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class rhtr irt Cl.S. POSTAG PAD Cllnd, Ohi Prmit. 799 Cn't ttnd? P thi n t frind. \ ; n l *di: >.8 >,5 G *' >(n n c. if9$9$.jj V G. r.t 0 H: u ) ' r x * H > x > i M

More information

ESS 265 Spring Quarter 2005 Time Series Analysis: Some Fundamentals of Spectral Analysis

ESS 265 Spring Quarter 2005 Time Series Analysis: Some Fundamentals of Spectral Analysis ESS 65 Srig Qurtr 5 Tim Sris ysis: Som Fudmts of Sctr ysis Lctur My, 5 Fourir Sris y riodic fuctio ttt whr ωt is th riod c xrssd s Fourir sris t c cos t s si t ω ω t must stisfy th coditio T t dt < y rso

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Grain Reserves, Volatility and the WTO

Grain Reserves, Volatility and the WTO Grain Reserves, Volatility and the WTO Sophia Murphy Institute for Agriculture and Trade Policy www.iatp.org Is v o la tility a b a d th in g? De pe n d s o n w h e re yo u s it (pro d uc e r, tra d e

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus)

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus) Th Rig of Gc d Lif Rom 5:12-21 (5:12-14, 17 focu) Th Ifluc of O h d ud Adolph H J o ph Smith B i t l m t Fid Idi Gdhi Ci Lu Gu ich N itz y l M d i M ch Nlo h Vig T L M uhmmd B m i o t T Ju Chit w I N h

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Addendum No. 3 Issued on: 01/19/2018 Page 1 of 1

Addendum No. 3 Issued on: 01/19/2018 Page 1 of 1 ddendum o. Issued on: 090 Page of UM O.: ate of Issuance: January 9, 0 Project: Project o: 0. OURTL I OOL ROVTIO - RI I RQUT O. 00-000 The following items represent changes, modifications andor clarifications

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

February 12 th December 2018

February 12 th December 2018 208 Fbu 2 th Dcb 208 Whgt Fbu Mch M 2* 3 30 Ju Jul Sptb 4* 5 7 9 Octob Novb Dcb 22* 23 Put ou blu bgs out v d. *Collctios d lt du to Public Holid withi tht wk. Rcclig wk is pik Rcclig wk 2 is blu Th stick

More information

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 500' CANADA

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 500' CANADA TR ISL ROR UST 8 O. R-2,4-3 R-4 IX O VITIO IS STT PL ORPI OORITS POSITIO 27698 4-39'-" 88 69-6'-4."W 278248 4-4'-" 8968 69-6'-4"W 27973 4-4'-2" 88 69-6'-"W W MPSIR OOR UUST PORTL MI OR 27 8-OOT OR L -

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

The tight-binding method

The tight-binding method Th tight-idig thod Wa ottial aoach: tat lcto a a ga of aly f coductio lcto. ow aout iulato? ow aout d-lcto? d Tight-idig thod: gad a olid a a collctio of wa itactig utal ato. Ovla of atoic wav fuctio i

More information

Chapter 6 Perturbation theory

Chapter 6 Perturbation theory Ct 6 Ptutio to 6. Ti-iddt odgt tutio to i o tutio sst is giv to fid solutios of λ ' ; : iltoi of si stt : igvlus of : otool igfutios of ; δ ii Rlig-Södig tutio to ' λ..6. ; : gl iltoi ': tutio λ : sll

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

CENTER POINT MEDICAL CENTER

CENTER POINT MEDICAL CENTER T TRI WTR / IR RISR S STR SRST I TT, SUIT SRST, RI () X () VUU T I Y R VU, SUIT 00 T, RI 0 () 00 X () RISTRTI UR 000 "/0 STY RR I URT VU RT STY RR, RI () 0 X () 00 "/0 STIR # '" TRV IST TRI UIIS UII S,

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO.

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO. 2 3 6 7 8 9 0 2 3 20000 230000 220000 ST TORY M 8-OOT W ST 2880000 2880000 L ROOK RL OTS: UKI OR TUR RKWTR (TYP) U O ROOK. SOUIS R I T TTS. T RR PL IS M LOWR LOW WTR (MLLW) IS S O T 983-200 TIL PO. SOUIS

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

DETAIL MEASURE EVALUATE

DETAIL MEASURE EVALUATE MEASURE EVALUATE B I M E q u i t y BIM Workflow Guide MEASURE EVALUATE Introduction We o e to ook 2 i t e BIM Workflow Guide i uide wi tr i you i re ti ore det i ed ode d do u e t tio u i r i d riou dd

More information

H STO RY OF TH E SA NT

H STO RY OF TH E SA NT O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

Fourier Transform Methods for Partial Differential Equations

Fourier Transform Methods for Partial Differential Equations Itrtiol Jourl o Prtil Dirtil Equtio d Applitio,, Vol, No 3, -57 Avill oli t http://puipuom/ijpd//3/ Si d Edutio Pulihig DOI:69/ijpd--3- Fourir Trorm Mthod or Prtil Dirtil Equtio Nol Tu Ngro * Dprtmt o

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE   FOR DETAILS uortig Iormtio: Pti moiitio oirmtio vi 1 MR: j 5 FEFEFKFK 8.6.. 8.6 1 13 1 11 1 9 8 7 6 5 3 1 FEFEFKFK moii 1 13 1 11 1 9 8 7 6 5 3 1 m - - 3 3 g i o i o g m l g m l - - h k 3 h k 3 Figur 1: 1 -MR or th

More information

Topic 9 - Taylor and MacLaurin Series

Topic 9 - Taylor and MacLaurin Series Topic 9 - Taylor ad MacLauri Series A. Taylors Theorem. The use o power series is very commo i uctioal aalysis i act may useul ad commoly used uctios ca be writte as a power series ad this remarkable result

More information

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f C H A P T E R I G E N E S I S A N D GROWTH OF G U IL D S C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f i n a v a r i e t y o f f o r m s - s o c i a l, r e l i g i

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information