Applications of Lattice Boltzmann Methods

Size: px
Start display at page:

Download "Applications of Lattice Boltzmann Methods"

Transcription

1 Applications of Lattice Boltzmann Methods Dominik Bartuschat, Martin Bauer, Simon Bogner, Christian Godenschwager, Florian Schornbaum, Ulrich Rüde Erlangen, Germany March 1, 2016 NUMET 2016

2 D.Bartuschat, M. Bauer, S. Bogner, C. Godenschwager, F. Schornbaum, U.Rüde Chair for System Simulation, FAU Erlangen-Nürnberg

3 Outline The walberla Simulation Framework The Lattice Boltzmann Method and Complex Flows Fluid-Particle Interaction Charged Particles in Fluid Flow Free Surface Flow 3

4 The walberla Simulation Framework

5 walberla Widely applicable Lattice Boltzmann framework. Suited for various flow applications. Large-scale, MPI-based parallelization. Dynamic application switches for heterogeneous architectures and optimization. 5

6 walberla Concepts Block concept: Domain partitioned into cartesian grid of blocks. Blocks can be assigned to different processes. Blocks contain: cell data, e.g. fluid density, electric potential. global information e.g. MPI rank, location. Communication concept: Simple communication mechanism on uniform grids, utilizing MPI. Ghost layers to exchange cell data with neighboring blocks. Sweep concept: Sweeps are work steps of a time-loop, performed on block-parallel level. Example: MG sweep, contains sub-sweeps (restriction, prolongation, smoothing). 6

7 The Lattice Boltzmann Method and flow in complex geometries

8 Lattice Boltzmann Method f q (x i + c q dt, t n + dt) f q (x i, t n )=dt C q (f q (x i, t n )) dt C q Discrete lattice Boltzmann equation with collision operator Note: two relaxation time (TRT) model used for most simulations. Domain discretized in cubes (cells). Discrete velocities cq and associated distribution functions fq per cell. D3Q19 model 8

9 Stream-Collide The equation is solved in two steps: Stream step: f q (x i + e q, t n + dt) = f q (x i, t n ) Collide step (SRT): f q (x i, t n )=f q (x i, t n ) 1 τ fq (x i, t n ) fq eq (x i, t n ) 9

10 Flow in Complex Geometries Flow through Coronary Arteries Sparse, but coherent geometry Volume fraction 0.3% Multiple blocks per process Load balancing required 10

11 Complex Geometry Initialization 11

12 Domain Partitioning Domain partitioning of coronary tree dataset Partitioning for aim of one block per process JUQUEEN nodeboard 512 processes, 485 blocks JUQUEEN, full machine processes, blocks Excellent scaling on JUQUEEN with TRT on up to 1 trillion lattice cells* * C. Godenschwager et al. A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries (2013), doi: /

13 Blood Flow and Perfusion Flow simulation in arteries + myocardium as porous medium modeled by means of LBM forcing term (SRT+Guo forcing*) Pressure boundary conditions at aorta and endocardium Blood flow visualization by particle tracing * Z. Guo, T. Zhao. Lattice Boltzmann model for incompressible flows through porous media (2002), doi: /physreve

14 Perfusion Results 14

15 Fluid-Particle Interaction with LBM and tumbling spherocylinders in Stokes flow

16 Fluid-Particle Interaction 4-Way Coupling Particles mapped onto lattice Boltzmann grid Each lattice node with cell center inside object is treated as moving boundary Hydrodynamic forces of fluid on particle computed by momentum exchange method* * N. Nguyen, A. Ladd. Lubrication corrections for lattice-boltzmann simulations of particle suspensions (2002), doi: /physreve

17 Moving Obstacle Treatment Influence of particle on fluid Particles act on fluid by moving wall boundary condition: f q (x f, t n + dt) = f q (x f, t n ) 2 ω q c 2 s ρ 0 c q u s Reconstruction of PDFs (f eq ) for new fluid cells dependent on uw:,- indicates opposing direction Influence of fluid on particle Hydrodynamic force on all particle surface cells s: F h = s q D s 2 f q (x f, t n ) 2 ω q c 2 s ρ 0 c q u s c q dx 3 dt cq: discrete lattice velocity ωq: lattice weight (s. LBM model) ρ0: fluid reference density Ds: set of directions from which cell s is accessed from fluid cells 17

18 Tumbling Spherocylinders in Stokes Flow Tumbling motion of elongated particles in Stokes flow Four spherocylinders in periodic domain, aspect ratio 1/ε = length radius = 12 LBM simulations with TRT operator and comparison against slender body formulation (examining influence of inertia, wall effects, and particle shape)* * D. Bartuschat et al. Two Computational Models for Simulating the Tumbling Motion of Elongated Particles in Fluids (2016), doi: /j.compfluid

19 Two Tumbling Spherocylinders Motion dependent on aspect ratio 1/ε ε =1/10 ε =1/12 ε =1/14 Flow Field around two spherocylinders,1/ε = x [m] ux [m/s] uz [m/s] t [s] Convergence to preferred distance xmax due to inertia Max. velocity uz for horizontal particle orientation, min. uz for vertical orientation Domain size: [576 dx] 3 Fluid: Water (T=20 C) Time steps: dx=4.98µm, dt= s, τ =6 Particle density: 1492 kg/m 3, radius = 4dx Runtime on LiMa: 16h, 768 cores 19

20 Charged Particles in Fluid Flow for particle-laden electrokinetic flows

21 Motivation Simulating separation (or agglomeration) of charged particles in micro-fluid flow, influenced by external electric fields Medical applications: Optimization of Lab-on-a-Chip systems: Separation of different cells Trapping cells and viruses Deposition of charged aerosol particles in respiratory tract (e.g. drug delivery) Industrial applications (agglomeration): Filtering particulates from exhaust gases Charged particle deposition in cooling systems of fuel cells Kang and Li Electrokinetic motion of particles and cells in microchannels Microfluidics and Nanofluidics 21

22 Multi-Physics Simulation electrostatic force Rigid body dynamics charge density Electro (quasi) statics object movement hydrodynamic force ion convection force on ions Fluid dynamics 22

23 Poisson Equation and Force on Particles Electric potential described by Poisson equation, with particle s charge density on RHS: Φ(x) = ρ particles (x) r 0 Discretized by finite volumes Solved with cell-centered multigrid solver implemented in walberla Subsampling for computing overlap degree to set RHS accordingly Electrostatic force on particle: F q = q particle Φ(x) 23

24 6-Way Coupling for Charged Particles charge distribution velocity BCs Finite volumes MG treat BCs V-cycle iter at. object motion hydrodynam. force LBM treat BCs stream-collide step electrostat. force Newtonian mechanics collision response object distance correction force Lubrication correction D. Bartuschat, U. Rüde. Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows (2015), doi: /j.jocs

25 Charged Particles Algorithm foreach time step, do // solve Poisson equation with particle charge density set RHS of Poisson equation while residual too high do perform multigrid v-cycle to solve Poisson equation // solve lattice Boltzmann equation considering particle velocities begin perform stream step compute macroscopic variables perform collide step end // couple potential solver and LBM with pe begin apply hydrodynamic force to particles apply electrostatic force to particles pe moves particles depending on forces end 25

26 Charged Particles Multigrid Solver

27 Multigrid Iterative method for efficient solution of sparse linear systems Based on Smoothing principle: High-frequency error elimination by iterative solvers (e.g. GS) Coarse grid principle: Restriction to coarser grid transforms low-frequency error components to relative higher-frequency ones Smoothing on coarse grids. Prolongation of obtained correction terms to finer grid Applied recursively, V(νpre, νpost)-cycle 27

28 Cell-Centered Multigrid - Implementation All operations implemented as compact stencil operations Design goals: Efficient and robust black-box solver Handling complex boundary conditions on coarse levels Naturally extensible to jumping coefficients Method of choice: Galerkin coarsening (FV) Stencils stored for each unknown On finest level: quasi-constant stencils P1 P3 P2 P4 Averaging restriction, constant prolongation Preserves D3Q7 stencil on coarse grids Convergence rate deteriorates Workaround for Poisson problem: Overrelaxing prolongation* * Mohr, Wienands Cell-centered Multigrid Revisited, Comput. Vis. Sci. (2004) 28

29 Charged Particles Validation

30 Validation of Electric Potential Φ/V Analytical solution for homogeneously charged particle: if r R 10 3 Φ(r) = 1 4πε e q e r 1 4πε e q e 2R 3 r R 2 Analytical solution Numerical solution Sphere surface if r <R Particle in domain MG: 5 V(2,2)-cycles Dirichlet BCs: exact solution Relative error: in order of x L Radius: 60 µm Charge: 8000 e Subsampling: factor 3 30

31 Validation of Electric Potential Determination of residual threshold: Error Residual L2 norm Iteration Error hardly reduced after residual norm smaller than 10-9 Residual threshold for simulations: V(2,2) cycles Conv. rate

32 Charged Particles Results

33 Charged Particles in Fluid Flow 33

34 Charged Particles in Fluid Flow Computed on 144 cores (12 nodes) of RRZE - LiMa time steps TRT LBM with optimal Poiseuille parameter 64 3 unknowns per core 6 MG levels Channel: 2.56 x 5.76 x 2.56 mm Dx=10µm, Dt= s, τ =1.7 Particle radius: 80µm Particle charge: ±10 5 e Inflow:1mm/s, Outflow:0Pa Other walls: No-slip BCs Potential: ±51.2V Else: homogen. Neumann BCs 34

35 Scaling Setup and Environment Weak scaling: Costant size per core: cells 9.4% moving obstacle cells Size doubled (y-dimension) MG (Residal L2-Norm ): V(3,3) with 7 levels 10 to 45 CG coarse-grid iterations Convergence rate: x4x2 cores per node Executed on LRZ s SuperMUC: 9216 compute nodes (thin islands), each: 2 Xeon "Sandy Bridge-EP" GHz, 32 GB DDR3 RAM Infiniband interconnect Currently ranked #20 in TOP500 35

36 Weak Scaling for 240 Time Steps 400 Total runtimes/s Number of nodes Overall parallel nodes: 83% LBM Map Lubr HydrF pe MG SetRHS PtCm ElectF cores 7.1M particles D. Bartuschat, U. Rüde. Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows (2015), doi: /j.jocs

37 Mega fluid lattice site updates per sec. Weak Scaling for 240 Time Steps 10 3 MFLUPS (LBM) LBM Perform. MG Perform Number of nodes Parallel nodes: LBM 91 % MG - 1 V(3,3) 64 % MG performance restricted by coarsest-grid solving MLUPS (MG) Mega lattice site updates per sec cores 7.1M particles D. Bartuschat, U. Rüde. Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows (2015), doi: /j.jocs

38 Free Surface Flow and effects of surface tension

39 Free Surface Extension Volume of Fluid Approach* Only liquid phase has to be simulated** Cells are classified as either solid, liquid, gas or interface LBM only performed in fluid cells Suitable for phases with high density differences *C. Hirt, B. Nichols. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries (1981), doi: / (81) **C. Körner et al. Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming (2005), doi: /s

40 Free Surface Extension Geometry Reconstruction: calculation of interface normals compute normals at triple points compute local curvature to account for surface tension Surface Dynamics: non-free-surface boundary treatment free surface boundary treatment LBM streaming step ( advection ) fill level updates ( mass advection ) LBM collision step conversion of cell types 40

41 Drop on Inclined Plane kin. viscosity: surf. tension: drop diameter: dx: τ: dt: m 2 /s N/m 5 mm 100 cells s SRT with Guo forcing term* * Z. Guo et al. Discrete lattice effects on the forcing term in the lattice Boltzmann method (2002), doi: /PhysRevE

42 Domain Setup Restriction to L-shaped domain No inclined geometry, use inclined gravity instead: gravity Full free surface calculations are costly: find interface cells reconstruct interface normals and curvature mass advection cell conversions 42

43 Domain Setup Full free surface calculations are costly Only fraction of complete domain covered with fluid/interface Fluid covered region is moving Dynamic load balancing required: 43

44 Domain Setup Full free surface calculations are costly Only fraction of complete domain covered with fluid/interface Fluid covered region is moving Dynamic load balancing required Simulation on 200 cores (on Emmy, RRZE) Drop resolution of 100 cells Runtime between 1 and 2 hours 44

45 Boundary Setup No-slip boundary: solid wall, enforces zero velocity at boundary Pressure boundary: pressure Dirichlet (set to capillary pressure) 45

46 Varying Inclination Angle Higher inclination causes drop to move further before being absorped 46

47 Varying Contact Angle Higher contact angle causes drop to move further before being absorped 47

48 Free Surface Flow with Particles

49 Floating Objects S. Bogner, U. Rüde. Simulation of floating bodies with lattice Boltzmann (2012), doi: /j.camwa

50 Rising Bubble S. Bogner, U. Rüde. Simulation of floating bodies with lattice Boltzmann (2012), doi: /j.camwa

51 Thank you for your attention!

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries SC13, November 21 st 2013 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, Ulrich

More information

Parallel Simulations of Self-propelled Microorganisms

Parallel Simulations of Self-propelled Microorganisms Parallel Simulations of Self-propelled Microorganisms K. Pickl a,b M. Hofmann c T. Preclik a H. Köstler a A.-S. Smith b,d U. Rüde a,b ParCo 2013, Munich a Lehrstuhl für Informatik 10 (Systemsimulation),

More information

Simulation of floating bodies with lattice Boltzmann

Simulation of floating bodies with lattice Boltzmann Simulation of floating bodies with lattice Boltzmann by Simon Bogner, 17.11.2011, Lehrstuhl für Systemsimulation, Friedrich-Alexander Universität Erlangen 1 Simulation of floating bodies with lattice Boltzmann

More information

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters H. Köstler 2nd International Symposium Computer Simulations on GPU Freudenstadt, 29.05.2013 1 Contents Motivation walberla software concepts

More information

Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed

Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed Tobias

More information

A parallel finite element multigrid framework for geodynamic simulations with more than ten trillion unknowns

A parallel finite element multigrid framework for geodynamic simulations with more than ten trillion unknowns A parallel finite element multigrid framework for geodynamic simulations with more than ten trillion unknowns Dominik Bartuschat, Ulrich Rüde Chair for System Simulation, University of Erlangen-Nürnberg

More information

Performance Analysis of a List-Based Lattice-Boltzmann Kernel

Performance Analysis of a List-Based Lattice-Boltzmann Kernel Performance Analysis of a List-Based Lattice-Boltzmann Kernel First Talk MuCoSim, 29. June 2016 Michael Hußnätter RRZE HPC Group Friedrich-Alexander University of Erlangen-Nuremberg Outline Lattice Boltzmann

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

The Finite Cell Method: High order simulation of complex structures without meshing

The Finite Cell Method: High order simulation of complex structures without meshing The Finite Cell Method: High order simulation of complex structures without meshing E. Rank, A. Düster, D. Schillinger, Z. Yang Fakultät für Bauingenieur und Vermessungswesen Technische Universität München,

More information

Drag Force Simulations of Particle Agglomerates with the Lattice-Boltzmann Method

Drag Force Simulations of Particle Agglomerates with the Lattice-Boltzmann Method Drag Force Simulations of Particle Agglomerates with the Lattice-Boltzmann Method Christian Feichtinger, Nils Thuerey, Ulrich Ruede Christian Binder, Hans-Joachim Schmid, Wolfgang Peukert Friedrich-Alexander-Universität

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems

Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems Daniel Ritter 1, Ulrich Rüde 1, Björn Gmeiner 1, Rochus Schmid 2 Copper Mountain, March 18th, 2013

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) c CIMNE, Barcelona, 2010 COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD James.E. McClure, Jan F. Prins

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations 1 / 16 Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 2 / 16 Ludwig Boltzmann and His Kinetic Theory of Gases The Boltzmann Transport

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Some thoughts about energy efficient application execution on NEC LX Series compute clusters

Some thoughts about energy efficient application execution on NEC LX Series compute clusters Some thoughts about energy efficient application execution on NEC LX Series compute clusters G. Wellein, G. Hager, J. Treibig, M. Wittmann Erlangen Regional Computing Center & Department of Computer Science

More information

Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method

Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method 1 Oldřich Švec 1 * 1 Technical University of Denmark, Department of Civil Engineering, Lyngby, Denmark 2 Jan

More information

ERLANGEN REGIONAL COMPUTING CENTER

ERLANGEN REGIONAL COMPUTING CENTER ERLANGEN REGIONAL COMPUTING CENTER Making Sense of Performance Numbers Georg Hager Erlangen Regional Computing Center (RRZE) Friedrich-Alexander-Universität Erlangen-Nürnberg OpenMPCon 2018 Barcelona,

More information

Lecture 2: Hydrodynamics at milli micrometer scale

Lecture 2: Hydrodynamics at milli micrometer scale 1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

Numerical simulation of polyurethane foaming processes on bubble scale

Numerical simulation of polyurethane foaming processes on bubble scale Numerical simulation of polyurethane foaming processes on bubble scale 7th OpenFOAM Workshop Darmstadt, 25-28 June 2012 Stephanie Geier and Manfred Piesche Institute of Mechanical Process Engineering University

More information

An electrokinetic LB based model for ion transport and macromolecular electrophoresis

An electrokinetic LB based model for ion transport and macromolecular electrophoresis An electrokinetic LB based model for ion transport and macromolecular electrophoresis Raffael Pecoroni Supervisor: Michael Kuron July 8, 2016 1 Introduction & Motivation So far an mesoscopic coarse-grained

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

Smoothed Particle Hydrodynamics (SPH) Huamin Wang

Smoothed Particle Hydrodynamics (SPH) Huamin Wang Smoothed Particle Hydrodynamics (SPH) Huamin Wang Fluid Representation Fluid is represented using a set of particles. Particle i has position x i, velocity v i, and mass m i. Animation Example Using 10

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

A phase field model for the coupling between Navier-Stokes and e

A phase field model for the coupling between Navier-Stokes and e A phase field model for the coupling between Navier-Stokes and electrokinetic equations Instituto de Matemáticas, CSIC Collaborators: C. Eck, G. Grün, F. Klingbeil (Erlangen Univertsität), O. Vantzos (Bonn)

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Investigating platelet motion towards vessel walls in the presence of red blood cells

Investigating platelet motion towards vessel walls in the presence of red blood cells Investigating platelet motion towards vessel walls in the presence of red blood cells (Complex Fluids in Biological Systems) Lindsay Crowl and Aaron Fogelson Department of Mathematics University of Utah

More information

VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS

VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1395-1399 1395 VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS by Li-Zhong HUANG a* and De-Ming NIE b a State Key Laboratory

More information

FLOWS IN LIQUID FOAMS

FLOWS IN LIQUID FOAMS FLOWS IN LIQUID FOAMS A finite element approach A. SAUGEY, E. JANIAUD, W. DRENCKHAN, S. HUTZLER, D. WEAIRE Physics Department,, TRINITY COLLEGE DUBLIN Facing a problem of fluid flow in a physical system,

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

MULTIPHASE DEBRIS FLOW SIMULATIONS WITH THE DISCRETE ELEMENT METHOD COUPLED WITH A LATTICE-BOLTZMANN FLUID

MULTIPHASE DEBRIS FLOW SIMULATIONS WITH THE DISCRETE ELEMENT METHOD COUPLED WITH A LATTICE-BOLTZMANN FLUID III International Conference on Particle-based Methods Fundamentals and Applications PARTICLES 2013 M. Bischoff, E. Oñate, D.R.J. Owen, E. Ramm & P. Wriggers (Eds) MULTIPHASE DEBRIS FLOW SIMULATIONS WITH

More information

ZFS - Flow Solver AIA NVIDIA Workshop

ZFS - Flow Solver AIA NVIDIA Workshop ZFS - Flow Solver AIA NVIDIA Workshop Andreas Lintermann, Matthias Meinke, Wolfgang Schröder Institute of Aerodynamics and Chair of Fluid Mechanics RWTH Aachen University Outline Softwareproject ZFS (applications

More information

Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method

Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method João Chambel Leitão Department of Mechanical Engineering, Instituto Superior Técnico, Lisboa, Portugal Abstract: The present

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Using LBM to Investigate the Effects of Solid-Porous Block in Channel

Using LBM to Investigate the Effects of Solid-Porous Block in Channel International Journal of Modern Physics and Applications Vol. 1, No. 3, 015, pp. 45-51 http://www.aiscience.org/journal/ijmpa Using LBM to Investigate the Effects of Solid-Porous Bloc in Channel Neda Janzadeh,

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Large Scale High Resolution Blood Flow Simulations

Large Scale High Resolution Blood Flow Simulations Large Scale High Resolution Blood Flow Simulations Florian Janoschek Jens Harting Federico Toschi Department of Applied Physics, Eindhoven University of Technology, The Netherlands Institute for Computational

More information

Modeling and Parametric Study of the Heat Transfer Inside a Lithium Bromide Flow Confined by Wire Screen

Modeling and Parametric Study of the Heat Transfer Inside a Lithium Bromide Flow Confined by Wire Screen Journal of Energy and Power Engineering 9 (2015) 417-425 doi: 10.17265/1934-8975/2015.05.001 D DAVID PUBLISHING Modeling and Parametric Study of the Heat Transfer Inside a Lithium Bromide Herbert Obame

More information

Modeling of Humidification in Comsol Multiphysics 4.4

Modeling of Humidification in Comsol Multiphysics 4.4 Modeling of Humidification in Comsol Multiphysics 4.4 Indrajit Wadgaonkar *1 and Suresh Arikapudi 1 1 Tata Motors Ltd. Pimpri, Pune, India, 411018. *Corresponding author: Indrajit Wadgaonkar, Tata Motors

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

Multiphase Flow Simulations in Inclined Tubes with Lattice Boltzmann Method on GPU

Multiphase Flow Simulations in Inclined Tubes with Lattice Boltzmann Method on GPU Multiphase Flow Simulations in Inclined Tubes with Lattice Boltzmann Method on GPU Khramtsov D.P., Nekrasov D.A., Pokusaev B.G. Department of Thermodynamics, Thermal Engineering and Energy Saving Technologies,

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Pressure corrected SPH for fluid animation

Pressure corrected SPH for fluid animation Pressure corrected SPH for fluid animation Kai Bao, Hui Zhang, Lili Zheng and Enhua Wu Analyzed by Po-Ram Kim 2 March 2010 Abstract We present pressure scheme for the SPH for fluid animation In conventional

More information

Simulation of Lid-driven Cavity Flow by Parallel Implementation of Lattice Boltzmann Method on GPUs

Simulation of Lid-driven Cavity Flow by Parallel Implementation of Lattice Boltzmann Method on GPUs Simulation of Lid-driven Cavity Flow by Parallel Implementation of Lattice Boltzmann Method on GPUs S. Berat Çelik 1, Cüneyt Sert 2, Barbaros ÇETN 3 1,2 METU, Mechanical Engineering, Ankara, TURKEY 3 METU-NCC,

More information

Why Should We Be Interested in Hydrodynamics?

Why Should We Be Interested in Hydrodynamics? Why Should We Be Interested in Hydrodynamics? Li-Shi Luo Department of Mathematics and Statistics Center for Computational Sciences Old Dominion University, Norfolk, Virginia 23529, USA Email: lluo@odu.edu

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

Computers and Mathematics with Applications. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework

Computers and Mathematics with Applications. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework Computers and Mathematics with Applications 59 (2010) 2200 2214 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Investigation

More information

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Honeyeh Matbaechi Ettehad *, Subhajit Guha, Christian Wenger IHP, Im Technologiepark 25, 15236 Frankfurt

More information

Assessment of the Accuracy of the Multiple-Relaxation-Time Lattice Boltzmann Method for the Simulation of Circulating Flows

Assessment of the Accuracy of the Multiple-Relaxation-Time Lattice Boltzmann Method for the Simulation of Circulating Flows Mathematical Modelling and Applications 2017; 25): 47-51 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170205.11 ISSN: 2575-1786 Print); ISSN: 2575-1794 Online) Assessment of the Accuracy

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows

The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows Vanja Zecevic, Michael Kirkpatrick and Steven Armfield Department of Aerospace Mechanical & Mechatronic Engineering The University of

More information

IMPLEMENTATION OF A PARALLEL AMG SOLVER

IMPLEMENTATION OF A PARALLEL AMG SOLVER IMPLEMENTATION OF A PARALLEL AMG SOLVER Tony Saad May 2005 http://tsaad.utsi.edu - tsaad@utsi.edu PLAN INTRODUCTION 2 min. MULTIGRID METHODS.. 3 min. PARALLEL IMPLEMENTATION PARTITIONING. 1 min. RENUMBERING...

More information

Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack

Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack Ehsan Fattahi a,b, Christian Waluga, Barbara Wohlmuth a, Ulrich Rüde b, Michael Manhart c, Rainer Helmig d a

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Multiscale modeling of active fluids: selfpropellers and molecular motors. I. Pagonabarraga University of Barcelona

Multiscale modeling of active fluids: selfpropellers and molecular motors. I. Pagonabarraga University of Barcelona Multiscale modeling of active fluids: selfpropellers and molecular motors I. Pagonabarraga University of Barcelona Introduction Soft materials weak interactions Self-assembly Emergence large scale structures

More information

Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems

Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems Martin Engel and Michael Griebel Institute of Numerical Simulation, University of Bonn, Wegelerstr.

More information

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW VAN EMDEN HENSON CENTER FOR APPLIED SCIENTIFIC COMPUTING LAWRENCE LIVERMORE NATIONAL LABORATORY Abstract Since their early application to elliptic

More information

Reduction of parasitic currents in the DNS VOF code FS3D

Reduction of parasitic currents in the DNS VOF code FS3D M. Boger a J. Schlottke b C.-D. Munz a B. Weigand b Reduction of parasitic currents in the DNS VOF code FS3D Stuttgart, March 2010 a Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring

More information

Lattice Boltzmann Modeling From the Macro- to the Microscale - An Approximation to the Porous Media in Fuel Cells -

Lattice Boltzmann Modeling From the Macro- to the Microscale - An Approximation to the Porous Media in Fuel Cells - Lattice Boltzmann Modeling From the Macro- to the Microscale - An Approximation to the Porous Media in Fuel Cells Espinoza Andaluz, Mayken; Sundén, Bengt; Andersson, Martin Unpublished: 2014-01-01 Link

More information

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework Simulating Interfacial Tension of a Falling Drop in a Moving Mesh Framework Anja R. Paschedag a,, Blair Perot b a TU Berlin, Institute of Chemical Engineering, 10623 Berlin, Germany b University of Massachusetts,

More information

Numerical Simulation of the Hagemann Entrainment Experiments

Numerical Simulation of the Hagemann Entrainment Experiments CCC Annual Report UIUC, August 14, 2013 Numerical Simulation of the Hagemann Entrainment Experiments Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student) Department of Mechanical Science & Engineering

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

More information

Modeling of two-phase flow in fractured porous media on unstructured non-uniform coarse grids

Modeling of two-phase flow in fractured porous media on unstructured non-uniform coarse grids Modeling of two-phase flow in fractured porous media on unstructured non-uniform coarse grids Jørg Espen Aarnes and Vera Louise Hauge SINTEF ICT, Deptartment of Applied Mathematics Applied Mathematics

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Absorption of gas by a falling liquid film

Absorption of gas by a falling liquid film Absorption of gas by a falling liquid film Christoph Albert Dieter Bothe Mathematical Modeling and Analysis Center of Smart Interfaces/ IRTG 1529 Darmstadt University of Technology 4th Japanese-German

More information

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows Title Strategy in modelling irregular shaped particle behaviour in confined turbulent flows M. Sommerfeld F L Mechanische Verfahrenstechnik Zentrum Ingenieurwissenschaften 699 Halle (Saale), Germany www-mvt.iw.uni-halle.de

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY

LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY M. Y. Gokhale, Ignatius Fernandes Maharashtra Institute of Technology, Pune 4 38, India University of Pune, India Email : mukundyg@yahoo.co.in,

More information

Single Curved Fiber Sedimentation Under Gravity. Xiaoying Rong, Dewei Qi Western Michigan University

Single Curved Fiber Sedimentation Under Gravity. Xiaoying Rong, Dewei Qi Western Michigan University Single Curved Fiber Sedimentation Under Gravity Xiaoying Rong, Dewei Qi Western Michigan University JunYong Zhu, Tim Scott USDA Forest Products Laboratory ABSTRACT Dynamics of single curved fiber sedimentation

More information

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Thomas Gallinger * Alexander Kupzok Roland Wüchner Kai-Uwe Bletzinger Lehrstuhl für Statik Technische Universität München

More information

Aggregation-based algebraic multigrid

Aggregation-based algebraic multigrid Aggregation-based algebraic multigrid from theory to fast solvers Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire CEMRACS, Marseille, July 18, 2012 Supported by the Belgian FNRS

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

A formulation for fast computations of rigid particulate flows

A formulation for fast computations of rigid particulate flows Center for Turbulence Research Annual Research Briefs 2001 185 A formulation for fast computations of rigid particulate flows By N. A. Patankar 1. Introduction A formulation is presented for the direct

More information

EXTENDED FREE SURFACE FLOW MODEL BASED ON THE LATTICE BOLTZMANN APPROACH

EXTENDED FREE SURFACE FLOW MODEL BASED ON THE LATTICE BOLTZMANN APPROACH METALLURGY AND FOUNDRY ENGINEERING Vol. 36, 2010, No. 2 Micha³ Szucki*, Józef S. Suchy***, Pawe³ ak*, Janusz Lelito**, Beata Gracz* EXTENDED FREE SURFACE FLOW MODEL BASED ON THE LATTICE BOLTZMANN APPROACH

More information

A numerical analysis of drop impact on liquid film by using a level set method

A numerical analysis of drop impact on liquid film by using a level set method Journal of Mechanical Science and Technology 25 (10) (2011) 2567~2572 wwwspringerlinkcom/content/1738-494x DOI 101007/s12206-011-0613-7 A numerical analysis of drop impact on liquid film by using a level

More information

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction APCOM & ISCM -4 th December, 03, Singapore A Momentum Exchange-based Immersed Boundary-Lattice Boltzmann Method for Fluid Structure Interaction Jianfei Yang,,3, Zhengdao Wang,,3, and *Yuehong Qian,,3,4

More information

Reynolds number scaling of inertial particle statistics in turbulent channel flows

Reynolds number scaling of inertial particle statistics in turbulent channel flows Reynolds number scaling of inertial particle statistics in turbulent channel flows Matteo Bernardini Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza Paolo Orlandi s 70th

More information

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS THERMAL SCIENCE: Year 27, Vol. 2, No. 3, pp. 73-82 73 LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS by Edouard WALTHER *, Rachid BENNACER, and Caroline DE SA LMT, ENS

More information

Nonlinear Iterative Solution of the Neutron Transport Equation

Nonlinear Iterative Solution of the Neutron Transport Equation Nonlinear Iterative Solution of the Neutron Transport Equation Emiliano Masiello Commissariat à l Energie Atomique de Saclay /DANS//SERMA/LTSD emiliano.masiello@cea.fr 1/37 Outline - motivations and framework

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information