In Search of Combinatorial Fibonacci Identities

Size: px
Start display at page:

Download "In Search of Combinatorial Fibonacci Identities"

Transcription

1 Summer Research 2010 Duncan McGregor Mike Rowell Department of Mathematics and Computer Science Pacific University, Oregon NUMS, April 9, 2011

2 Outline 1 2

3 Fibonacci Sequence Defined Recursively: f 0 = 1, f 1 = 1 f n = f n 1 + f n 2

4 Fibonacci Sequence Defined Recursively: f 0 = 1, f 1 = 1 f n = f n 1 + f n 2 {1, 1, 2, 3, 5, 8, 13,... }

5 Fibonacci Sequence Defined Recursively: f 0 = 1, f 1 = 1 f n = f n 1 + f n 2 {1, 1, 2, 3, 5, 8, 13,... } this definition is off by one from the usual definition

6 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile an (1 n)-board with 1 1 squares and 1 2 dominoes is f n

7 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile an (1 n)-board with 1 1 squares and 1 2 dominoes is f n 1 way to tile the 0-board.

8 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile an (1 n)-board with 1 1 squares and 1 2 dominoes is f n 1 way to tile the 0-board. 1 way to tile the 1-board.

9 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile an (1 n)-board with 1 1 squares and 1 2 dominoes is f n 1 way to tile the 0-board. 1 way to tile the 1-board.

10 Some Vocabulary An n board has n cells.

11 Some Vocabulary An n board has n cells. A tiling has a fault at cell m if there is not a domino beginning in that cell.

12 Some Vocabulary An n board has n cells. A tiling has a fault at cell m if there is not a domino beginning in that cell. Theorem For n, k 1, f n+k = f n f k + f n 1 f k 1

13 Lucas Numbers

14 Lucas Numbers Defined Recursively: L 0 = 2, L 1 = 1 L n = L n 1 + L n 2

15 Lucas Numbers Defined Recursively: L 0 = 2, L 1 = 1 L n = L n 1 + L n 2 {2, 1, 3, 4, 7, 11, 18,... }

16 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile a circularn bracelet with bent 1 1 squares and 1 2 dominoes is L n

17 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile a circularn bracelet with bent 1 1 squares and 1 2 dominoes is L n The proof is similar except that there are two ways to tile the 0-bracelet.

18 Combinatorial Interpretation Theorem (Benjamin, Quinn) The number of ways to tile a circularn bracelet with bent 1 1 squares and 1 2 dominoes is L n The proof is similar except that there are two ways to tile the 0-bracelet.

19 A Useful Identity Theorem (Benjamin, Quinn) For n 2, L n = f n + f n 2

20 Zeckendorf Representations Theorem (Zeckendorf) For n N there exists a unique sequence {a j } M j=1 N such that a j+1 > a j + 1 and n = M f aj. j=1 Where the sum is called the Zeckendorf Representation of n.

21 Zeckendorf Representations Theorem (Zeckendorf) For n N there exists a unique sequence {a j } M j=1 N such that a j+1 > a j + 1 and n = M f aj. j=1 Where the sum is called the Zeckendorf Representation of n. We seek Combinatorial Proofs of Zeckendorf Representations. In particular of numbers like f n f k, 2f n f k, L n f k, L n L k.

22 A Useful Lemma Lemma For n 2, m 1, n m f n 2 f m f n 1 f m 1 = ( 1) m f n m

23 A Useful Lemma Lemma For n 2, m 1, n m f n 2 f m f n 1 f m 1 = ( 1) m f n m How many ways can we tile an (m + n 2) board such that there is a fault at n 2 but there is not a fault at n 1?

24 Proof Idea f n 2 f m f n 1 f m 1 = ( 1) m f n m

25 Proof Idea f n 2 f m f n 1 f m 1 = ( 1) m f n m Call the set of tilings with the fault at n 2 A and and the fault at n 1 B.

26 Proof Idea f n 2 f m f n 1 f m 1 = ( 1) m f n m Call the set of tilings with the fault at n 2 A and and the fault at n 1 B. Condition on the number of dominoes on each side of the fault.

27 Proof Idea f n 2 f m f n 1 f m 1 = ( 1) m f n m Call the set of tilings with the fault at n 2 A and and the fault at n 1 B. Condition on the number of dominoes on each side of the fault. Realize for most cases the size of the tails is the same for A and B. Cancellation yields the result.

28 Proof Idea f n 2 f m f n 1 f m 1 = ( 1) m f n m Call the set of tilings with the fault at n 2 A and and the fault at n 1 B. Condition on the number of dominoes on each side of the fault. Realize for most cases the size of the tails is the same for A and B. Cancellation yields the result. If m is even, A has one more member than B and vice versa.

29 A Picture to Convince You

30 A Picture to Convince You Fault at n 2 Fault at n 1

31 A Picture to Convince You Fault at n 2 Fault at n 1 Fault at n 2 Fault at n 1

32 What can we prove with this? Theorem For n 2 > 2k > 1 Proof. L 2k L n = f n+2k + f n+2k 2 + f n 2k + f n 2k 2

33 What can we prove with this? Theorem For n 2 > 2k > 1 Proof. Rewrite as: L 2k L n = f n+2k + f n+2k 2 + f n 2k + f n 2k 2 f n f 2k 2 (f n+2k f n f 2k ) + f n 2 f 2k 2 (f n+2k 2 f n 2 f 2k ) = f n 2k + f n 2k 2

34 What can we prove with this? Theorem For n 2 > 2k > 1 Proof. Rewrite as: L 2k L n = f n+2k + f n+2k 2 + f n 2k + f n 2k 2 f n f 2k 2 (f n+2k f n f 2k ) + f n 2 f 2k 2 (f n+2k 2 f n 2 f 2k ) = f n 2k + f n 2k 2 Use the above lemma twice, let m 2k and m 2k, n n 2.

35 Similarly

36 Similarly Theorem f 2k L n = f n+2k + f n 2k

37 Similarly Theorem f 2k L n = f n+2k + f n 2k Using a trick about off by every other fibonacci sums gives you odd cases of above theorems.

38 Similarly Theorem f 2k L n = f n+2k + f n 2k Using a trick about off by every other fibonacci sums gives you odd cases of above theorems. Thinking about f 2k L n yields ZR for f m f 2k L n, f m L 2k L n, L m L 2k L n.

39 Similarly Theorem f 2k L n = f n+2k + f n 2k Using a trick about off by every other fibonacci sums gives you odd cases of above theorems. Thinking about f 2k L n yields ZR for f m f 2k L n, f m L 2k L n, L m L 2k L n. OPEN PROBLEMS:

40 Similarly Theorem f 2k L n = f n+2k + f n 2k Using a trick about off by every other fibonacci sums gives you odd cases of above theorems. Thinking about f 2k L n yields ZR for f m f 2k L n, f m L 2k L n, L m L 2k L n. OPEN PROBLEMS: Do the above in a single map.

41 Similarly Theorem f 2k L n = f n+2k + f n 2k Using a trick about off by every other fibonacci sums gives you odd cases of above theorems. Thinking about f 2k L n yields ZR for f m f 2k L n, f m L 2k L n, L m L 2k L n. OPEN PROBLEMS: Do the above in a single map. What about 2k + 1?

42 Acknowledgments Pacific University Mathematics Faculty Pacific Research Institute for Science and Mathematics, Office of the Dean of Arts and Sciences of Pacific University, Involve: Journal of Mathematics, Arthur Benjamin and Jennifer Quinn for the Proofs That Really Count.

TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS. Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN , USA

TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS. Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN , USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (008), #A18 TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN

More information

Counting on Continued Fractions

Counting on Continued Fractions appeared in: Mathematics Magazine 73(2000), pp. 98-04. Copyright the Mathematical Association of America 999. All rights reserved. Counting on Continued Fractions Arthur T. Benjamin Francis Edward Su Harvey

More information

arxiv: v1 [math.co] 11 Aug 2015

arxiv: v1 [math.co] 11 Aug 2015 arxiv:1508.02762v1 [math.co] 11 Aug 2015 A Family of the Zeckendorf Theorem Related Identities Ivica Martinjak Faculty of Science, University of Zagreb Bijenička cesta 32, HR-10000 Zagreb, Croatia Abstract

More information

Tiling Proofs of Recent Sum Identities Involving Pell Numbers

Tiling Proofs of Recent Sum Identities Involving Pell Numbers Tiling Proofs of Recent Sum Identities Involving Pell Numbers Arthur T. Benjamin Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 E-mail: benjamin@hmc.edu Sean S. Plott Department of

More information

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX #A05 INTEGERS 9 (2009), 53-64 TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300 shattuck@math.utk.edu

More information

Counting on Chebyshev Polynomials

Counting on Chebyshev Polynomials DRAFT VOL. 8, NO., APRIL 009 1 Counting on Chebyshev Polynomials Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@hmc.edu Daniel Walton UCLA Los Angeles, CA 90095555 waltond@ucla.edu

More information

COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS. Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia

COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS. Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia #A2 INTEGERS 9 (209) COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia imartinjak@phy.hr Helmut Prodinger Department of Mathematics,

More information

Two Identities Involving Generalized Fibonacci Numbers

Two Identities Involving Generalized Fibonacci Numbers Two Identities Involving Generalized Fibonacci Numbers Curtis Cooper Dept. of Math. & Comp. Sci. University of Central Missouri Warrensburg, MO 64093 U.S.A. email: cooper@ucmo.edu Abstract. Let r 2 be

More information

Bijective proofs for Fibonacci identities related to Zeckendorf s Theorem

Bijective proofs for Fibonacci identities related to Zeckendorf s Theorem Bijective proofs for Fibonacci identities related to Zeckendorf s Theorem Philip Matchett Wood Department of Mathematics, Rutgers University, Hill Center Busch Campus, 0 Frelinghuysen Rd, Piscataway, NJ

More information

arxiv: v2 [math.co] 29 Jun 2016

arxiv: v2 [math.co] 29 Jun 2016 arxiv:1508.04949v2 [math.co] 29 Jun 2016 Complementary Families of the Fibonacci-Lucas Relations Ivica Martinjak Faculty of Science, University of Zagreb Bijenička cesta 32, HR-10000 Zagreb, Croatia Helmut

More information

BIJECTIVE PROOFS FOR FIBONACCI IDENTITIES RELATED TO ZECKENDORF S THEOREM

BIJECTIVE PROOFS FOR FIBONACCI IDENTITIES RELATED TO ZECKENDORF S THEOREM BIJECTIVE PROOFS FOR FIBONACCI IDENTITIES RELATED TO ZECKENDORF S THEOREM Philip Matchett Wood Department of Mathematics, Rutgers University, Piscataway, NJ 08854 e-mail: matchett@math.rutgers.edu (Submitted

More information

Georgia Tech HSMC 2010

Georgia Tech HSMC 2010 Georgia Tech HSMC 2010 Varsity Multiple Choice February 27 th, 2010 1. A cube of SPAM defined by S = {(x, y, z) 0 x, y, z 1} is cut along the planes x = y, y = z, z = x. How many pieces are there? (No

More information

Enumerating Distinct Chessboard Tilings and Generalized Lucas Sequences Part I

Enumerating Distinct Chessboard Tilings and Generalized Lucas Sequences Part I Enumerating Distinct Chessboard Tilings and Generalized Lucas Sequences Part I Daryl DeFord Washington State University January 28, 2013 Roadmap 1 Problem 2 Symmetry 3 LHCCRR as Vector Spaces 4 Generalized

More information

The Combinatorialization of Linear Recurrences

The Combinatorialization of Linear Recurrences The Combinatorialization of Linear Recurrences Arthur T Benjamin Harvey Mudd College Claremont, CA, USA benjamin@hmcedu Jennifer J Quinn University of Washington Tacoma Tacoma, WA USA jjquinn@uwedu Halcyon

More information

The Negs and Regs of Continued Fractions

The Negs and Regs of Continued Fractions The Negs and Regs of Continued Fractions Alex Eustis Arthur T. Benjamin, Advisor Sanjai Gupta, Reader May, 2006 Department of Mathematics Copyright 2006 Alex Eustis. The author grants Harvey Mudd College

More information

Day 2: Let The Good Roll

Day 2: Let The Good Roll Opener 1. We re going to start with doing the same thing, over and over. The Monica sequence is one of the least famous sequences of all For example, M(2) = time. It starts with 2, then 2 again, then each

More information

CATALAN DETERMINANTS A COMBINATORIAL APPROACH

CATALAN DETERMINANTS A COMBINATORIAL APPROACH CATALAN DETERMINANTS A COMBINATORIAL APPROACH ARTHUR T BENJAMIN, NAIOMI T CAMERON, JENNIFER J QUINN, AND CARL R YERGER Abstract Determinants of matrices involving the Catalan sequence have appeared throughout

More information

ENUMERATING DISTINCT CHESSBOARD TILINGS

ENUMERATING DISTINCT CHESSBOARD TILINGS ENUMERATING DISTINCT CHESSBOARD TILINGS DARYL DEFORD Abstract. Counting the number of distinct colorings of various discrete objects, via Burnside s Lemma and Pólya Counting, is a traditional problem in

More information

Generalized Lucas Sequences Part II

Generalized Lucas Sequences Part II Introduction Generalized Lucas Sequences Part II Daryl DeFord Washington State University February 4, 2013 Introduction Èdouard Lucas: The theory of recurrent sequences is an inexhaustible mine which contains

More information

The Fibonacci Numbers -- Exposed More Discretely

The Fibonacci Numbers -- Exposed More Discretely Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 6-1-2003 The Fibonacci Numbers -- Exposed More Discretely Arthur T. Benjamin Harvey Mudd College

More information

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD #A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD Reza Kahkeshani 1 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan,

More information

RECOUNTING DETERMINANTS FOR A CLASS OF HESSENBERG MATRICES. Arthur T. Benjamin Department of Mathematics, Harvey Mudd College, Claremont, CA 91711

RECOUNTING DETERMINANTS FOR A CLASS OF HESSENBERG MATRICES. Arthur T. Benjamin Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A55 RECOUNTING DETERMINANTS FOR A CLASS OF HESSENBERG MATRICES Arthur T. Benjamin Department of Mathematics, Harvey Mudd College,

More information

Transforming Inductive Proofs to Bijective Proofs

Transforming Inductive Proofs to Bijective Proofs Transforming Inductive Proofs to Bijective Proofs Nathaniel Shar Stanford University nshar@stanford.edu June 2010 1 Introduction A bijective proof of an identity A = B is a pair of sets S,T and a bijection

More information

Phased Tilings and Generalized Fibonacci Identities

Phased Tilings and Generalized Fibonacci Identities Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 6-1-2000 Phased Tilings and Generalized Fibonacci Identities Arthur T. Benjamin Harvey Mudd

More information

WEIRD AND WILD MACHINES

WEIRD AND WILD MACHINES EXPLODING DOTS CHAPTER 9 WEIRD AND WILD MACHINES All right. It is time to go wild and crazy. Here is a whole host of quirky and strange machines to ponder on, some yielding baffling mathematical questions

More information

arxiv: v3 [math.co] 6 Aug 2016

arxiv: v3 [math.co] 6 Aug 2016 ANALOGUES OF A FIBONACCI-LUCAS IDENTITY GAURAV BHATNAGAR arxiv:1510.03159v3 [math.co] 6 Aug 2016 Abstract. Sury s 2014 proof of an identity for Fibonacci and Lucas numbers (Identity 236 of Benjamin and

More information

A Tiling Approach to Chebyshev Polynomials

A Tiling Approach to Chebyshev Polynomials A Tiling Approach to Chebyshev Polynomials Daniel Walton Arthur T. Benjamin, Advisor Sanjai Gupta, Reader May, 2007 Department of Mathematics Copyright c 2007 Daniel Walton. The author grants Harvey Mudd

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

PROOF WITHOUT WORDS MATH CIRCLE (BEGINNERS) 05/06/2012

PROOF WITHOUT WORDS MATH CIRCLE (BEGINNERS) 05/06/2012 PROOF WITHOUT WORDS MATH CIRCLE (BEGINNERS) 05/06/2012 If you ve been with us for a little while, you ve already seen some examples of proofs without words. Remember a proof is just an airtight argument

More information

Fibonacci Numbers. Justin Stevens. Lecture 5. Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10

Fibonacci Numbers. Justin Stevens. Lecture 5. Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10 Fibonacci Numbers Lecture 5 Justin Stevens Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10 Outline 1 Fibonacci Numbers Justin Stevens Fibonacci Numbers (Lecture 5) 2 / 10 Fibonacci Numbers The Fibonacci

More information

Symbiosis and Reciprocity. a talk in honor of Richard A. Brualdi, RAB. April 30, 2005

Symbiosis and Reciprocity. a talk in honor of Richard A. Brualdi, RAB. April 30, 2005 Symbiosis and Reciprocity a talk in honor of Richard A. Brualdi, RAB April 30, 2005 Jim Propp Department of Mathematics University of Wisconsin - Madison slides on web at www.math.wisc.edu/ propp/brualdi.pdf

More information

Invariants II. LA Math Circle (Advanced) November 15, 2015

Invariants II. LA Math Circle (Advanced) November 15, 2015 Invariants II LA Math Circle (Advanced) November 15, 2015 Recall that an invariant is some quantity associated with a system that is left unchanged by a specified process. We typically use them to show

More information

Combinatorial Proofs and Algebraic Proofs I

Combinatorial Proofs and Algebraic Proofs I Combinatorial Proofs and Algebraic Proofs I Shailesh A Shirali Shailesh A Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP).

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

The Frequency of Summands of a Particular Size in Palindromic Compositions

The Frequency of Summands of a Particular Size in Palindromic Compositions The Frequency of Summands of a Particular Size in Palindromic Compositions Phyllis Chinn Dept. of Mathematics, Humboldt State University, Arcata, CA 95521 phyllis@math.humboldt.edu Ralph Grimaldi Dept.

More information

From Simplest Recursion to the Recursion of Generalizations of Cross Polytope Numbers

From Simplest Recursion to the Recursion of Generalizations of Cross Polytope Numbers Kennesaw State University DigitalCommons@Kennesaw State University Honors College Capstones and Theses Honors College Spring 5-6-2017 From Simplest Recursion to the Recursion of Generalizations of Cross

More information

π in terms of φ via the Machin s Route

π in terms of φ via the Machin s Route in terms of φ via the Machin s Route Hei-Chi Chan Mathematical Science Program, University of Illinois at Springfield Springfield, IL 62703-507 email: chan.hei-chi@uis.edu Abstract In this paper, we prove

More information

COM S 330 Lecture Notes Week of Feb 9 13

COM S 330 Lecture Notes Week of Feb 9 13 Monday, February 9. Rosen.4 Sequences Reading: Rosen.4. LLM 4.. Ducks 8., 8., Def: A sequence is a function from a (usually infinite) subset of the integers (usually N = {0,,, 3,... } or Z + = {,, 3, 4,...

More information

NOTES ON OCT 4, 2012

NOTES ON OCT 4, 2012 NOTES ON OCT 4, 0 MIKE ZABROCKI I had planned a midterm on Oct I can t be there that day I am canceling my office hours that day and I will be available on Tuesday Oct 9 from 4-pm instead I am tempted

More information

Permutation Statistics and q-fibonacci Numbers

Permutation Statistics and q-fibonacci Numbers Permutation Statistics and q-fibonacci Numbers Adam M Goyt and David Mathisen Mathematics Department Minnesota State University Moorhead Moorhead, MN 56562 Submitted: April 2, 2009; Accepted: August 2,

More information

SELF-AVOIDING WALKS AND FIBONACCI NUMBERS. Arthur T. Benjamin Dept. of Mathematics, Harvey Mudd College, Claremont, CA

SELF-AVOIDING WALKS AND FIBONACCI NUMBERS. Arthur T. Benjamin Dept. of Mathematics, Harvey Mudd College, Claremont, CA SELF-AVOIDING WALKS AND FIBONACCI NUMBERS Arthur T. Benjamin Dept. of Mathematics, Harvey Mudd College, Claremont, CA 91711 benjamin@hmc.edu Abstract. By combinatorial arguments, we prove that the number

More information

Links Between Sums Over Paths in Bernoulli s Triangles and the Fibonacci Numbers

Links Between Sums Over Paths in Bernoulli s Triangles and the Fibonacci Numbers Links Between Sums Over Paths in Bernoulli s Triangles and the Fibonacci Numbers arxiv:1611.09181v1 [math.co] 28 Nov 2016 Denis Neiter and Amsha Proag Ecole Polytechnique Route de Saclay 91128 Palaiseau

More information

LINEAR RECURRENCES THROUGH TILINGS AND MARKOV CHAINS ARTHUR T. BENJAMIN, CHRISTOPHER R. H. HANUSA, AND FRANCIS EDWARD SU

LINEAR RECURRENCES THROUGH TILINGS AND MARKOV CHAINS ARTHUR T. BENJAMIN, CHRISTOPHER R. H. HANUSA, AND FRANCIS EDWARD SU LINEAR RECURRENCES THROUGH TILINGS AND MARKOV CHAINS ARTHUR T. BENJAMIN, CHRISTOPHER R. H. HANUSA, AND FRANCIS EDWARD SU ABSTRACT. We present a tiling interpretation for k-th order linear recurrences,

More information

Contents. Counting Methods and Induction

Contents. Counting Methods and Induction Contents Counting Methods and Induction Lesson 1 Counting Strategies Investigations 1 Careful Counting... 555 Order and Repetition I... 56 3 Order and Repetition II... 569 On Your Own... 573 Lesson Counting

More information

The solutions to the two examples above are the same.

The solutions to the two examples above are the same. One-to-one correspondences A function f : A B is one-to-one if f(x) = f(y) implies that x = y. A function f : A B is onto if for any element b in B there is an element a in A such that f(a) = b. A function

More information

Day 1: Over + Over Again

Day 1: Over + Over Again Welcome to Morning Math! The current time is... huh, that s not right. Day 1: Over + Over Again Welcome to PCMI! We know you ll learn a great deal of mathematics here maybe some new tricks, maybe some

More information

Toppling Conjectures

Toppling Conjectures Games of No Chance 4 MSRI Publications Volume 63, 2015 Toppling Conjectures ALEX FINK, RICHARD NOWAKOWSKI, AARON SIEGEL AND DAVID WOLFE Positions of the game of TOPPLING DOMINOES exhibit many familiar

More information

Combinatorial proofs of Honsberger-type identities

Combinatorial proofs of Honsberger-type identities International Journal of Mathematical Education in Science and Technology, Vol. 39, No. 6, 15 September 2008, 785 792 Combinatorial proofs of Honsberger-type identities A. Plaza* and S. Falco n Department

More information

ASSIGNMENT 12 PROBLEM 4

ASSIGNMENT 12 PROBLEM 4 ASSIGNMENT PROBLEM 4 Generate a Fibonnaci sequence in the first column using f 0 =, f 0 =, = f n f n a. Construct the ratio of each pair of adjacent terms in the Fibonnaci sequence. What happens as n increases?

More information

SYMMETRIES AND COUNTING

SYMMETRIES AND COUNTING SYMMETRIES AND COUNTING I. COUNTING BRACELETS Problem 1. (a) How many different ways can you color the circles in this figure black and white? (There are pages with copies of this figure attached at the

More information

Bijective Proofs with Spotted Tilings

Bijective Proofs with Spotted Tilings Brian Hopkins, Saint Peter s University, New Jersey, USA Visiting Scholar, Mahidol University International College Editor, The College Mathematics Journal MUIC Mathematics Seminar 2 November 2016 outline

More information

arxiv: v1 [math.co] 14 Nov 2018

arxiv: v1 [math.co] 14 Nov 2018 Plateau Polycubes and Lateral Area arxiv:181105707v1 [mathco] 14 Nov 2018 Abderrahim Arabi USTHB, Faculty of Mathematics RECITS Laboratory BP 32, El Alia 16111, Bab Ezzouar Algiers, Algeria rarabi@usthbdz

More information

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay QuestionofDay Question of the Day Using 1 1 square tiles and 1 2 dominoes, one can tile a 1 3 strip of squares three different ways. (Find them!) In how many different ways can one tile a 1 4 strip of

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

12 Sequences and Recurrences

12 Sequences and Recurrences 12 Sequences and Recurrences A sequence is just what you think it is. It is often given by a formula known as a recurrence equation. 12.1 Arithmetic and Geometric Progressions An arithmetic progression

More information

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX #A87 INTEGERS 8 (208) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX Achille Frigeri Dipartimento di Matematica, Politecnico di Milano, Milan, Italy achille.frigeri@polimi.it Received: 3/2/8, Accepted: 0/8/8,

More information

SEATING REARRANGEMENTS ON ARBITRARY GRAPHS

SEATING REARRANGEMENTS ON ARBITRARY GRAPHS SEATING REARRANGEMENTS ON ARBITRARY GRAPHS DARYL DEFORD Abstract. In this paper, we exhibit a combinatorial model based on seating rearrangements, motivated by some problems proposed in the 1990 s by Kennedy,

More information

Fibonacci-18 Conference Schedule

Fibonacci-18 Conference Schedule Fibonacci-18 Conference Schedule Monday, July 2 8:15 Registration opens 8:45 Opening Remarks 9:00 9:25 Christian Ballot: Variations on Catalan Lucasnomials 9:30 9:55 Heiko Harborth: A Conjecture for Pascal

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Recurrences, Fibonacci Numbers and Continued Fractions Lecture 9, September 24, 2009 Leonardo Fibonacci In 1202, Fibonacci proposed a problem about the

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

FIBONACCI IDENTITIES DERIVED FROM PATH COUNTING IN AUTOMATA ARTHUR BENJAMIN AND DALE GERDEMANN

FIBONACCI IDENTITIES DERIVED FROM PATH COUNTING IN AUTOMATA ARTHUR BENJAMIN AND DALE GERDEMANN FIBONACCI IDENTITIES DERIVED FROM PATH COUNTING IN AUTOMATA ARTHUR BENJAMIN AND DALE GERDEMANN 1. Introduction Combinatorial proofs are appealing since they lead to intuitive understanding. Proofs based

More information

All numbered readings are from Beck and Geoghegan s The art of proof.

All numbered readings are from Beck and Geoghegan s The art of proof. MATH 301. Assigned readings and homework All numbered readings are from Beck and Geoghegan s The art of proof. Reading Jan 30, Feb 1: Chapters 1.1 1.2 Feb 6, 8: Chapters 1.3 2.1 Feb 13, 15: Chapters 2.2

More information

Lecture 7 Feb 4, 14. Sections 1.7 and 1.8 Some problems from Sec 1.8

Lecture 7 Feb 4, 14. Sections 1.7 and 1.8 Some problems from Sec 1.8 Lecture 7 Feb 4, 14 Sections 1.7 and 1.8 Some problems from Sec 1.8 Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness

More information

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n.

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n. 11 Recurrences A recurrence equation or recurrence counts things using recursion. 11.1 Recurrence Equations We start with an example. Example 11.1. Find a recurrence for S(n), the number of subsets of

More information

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION TABLE OF CONTENTS On p-adic Complementary Theorems between Pascal's Triangle and the Modified Pascal Triangle... Shiro Ando and Daihachiro Sato 194 A Number

More information

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set.

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. Sets A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. If A and B are sets, then the set of ordered pairs each

More information

CIS Spring 2018 (instructor Val Tannen)

CIS Spring 2018 (instructor Val Tannen) CIS 160 - Spring 018 (instructor Val Tannen) Lecture 11 Tuesday, February 0 PROOFS: STRONG INDUCTION Example 1.1 Any integer n can be written as the product of one or more (not necessarily distinct) prime

More information

GSS Talk Fall 2013 Introduction. Èdouard Lucas:

GSS Talk Fall 2013 Introduction. Èdouard Lucas: Introduction Èdouard Lucas: The theory of recurrent sequences is an inexhaustible mine which contains all the properties of numbers; by calculating the successive terms of such sequences, decomposing them

More information

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES NATHAN HAMLIN AND WILLIAM A. WEBB Abstract. The Zeckendorf representation, using sums of Fibonacci numbers, is widely known. Fraenkel

More information

arxiv: v2 [math.nt] 29 Jul 2017

arxiv: v2 [math.nt] 29 Jul 2017 Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation arxiv:1509.07898v2 [math.nt] 29 Jul 2017 Prapanpong Pongsriiam Department of Mathematics, Faculty of Science Silpakorn University

More information

Several Generating Functions for Second-Order Recurrence Sequences

Several Generating Functions for Second-Order Recurrence Sequences 47 6 Journal of Integer Sequences, Vol. 009), Article 09..7 Several Generating Functions for Second-Order Recurrence Sequences István Mező Institute of Mathematics University of Debrecen Hungary imezo@math.lte.hu

More information

Numeration Systems. S. E. Payne General Numeration Systems 2. 3 Combinatorial Numeration Numeration with forbidden substrings 14

Numeration Systems. S. E. Payne General Numeration Systems 2. 3 Combinatorial Numeration Numeration with forbidden substrings 14 Numeration Systems S. E. Payne 2010 Contents 1 General Numeration Systems 2 2 Greedy Representations 3 3 Combinatorial Numeration 13 4 Numeration with forbidden substrings 14 5 The dominant root of the

More information

Impartial Games. Lemma: In any finite impartial game G, either Player 1 has a winning strategy, or Player 2 has.

Impartial Games. Lemma: In any finite impartial game G, either Player 1 has a winning strategy, or Player 2 has. 1 Impartial Games An impartial game is a two-player game in which players take turns to make moves, and where the moves available from a given position don t depend on whose turn it is. A player loses

More information

Fibonacci Numbers. November 7, Fibonacci's Task: Figure out how many pairs of rabbits there will be at the end of one year, following rules.

Fibonacci Numbers. November 7, Fibonacci's Task: Figure out how many pairs of rabbits there will be at the end of one year, following rules. Fibonacci Numbers November 7, 2010 Fibonacci's Task: Figure out how many pairs of rabbits there will be at the end of one year, following rules. Rules: 1. Start with a pair of new rabbits, born in December.

More information

Silvia Heubach* Dept. of Mathematics, California State University Los Angeles

Silvia Heubach* Dept. of Mathematics, California State University Los Angeles (1,k)-Compositions Phyllis Chinn Dept. of Mathematics, Humboldt State University phyllis@math.humboldt.edu Silvia Heubach* Dept. of Mathematics, California State University Los Angeles sheubac@calstatela.edu

More information

Fibonacci mod k. In this section, we examine the question of which terms of the Fibonacci sequence have a given divisor k.

Fibonacci mod k. In this section, we examine the question of which terms of the Fibonacci sequence have a given divisor k. Fibonacci mod k I start by giving out a table of the first 0 Fibonacci numbers actually the first, because we begin with u 0 =0 (and I have a reason for that which will soon become apparent). Okay, which

More information

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models Contents Mathematical Reasoning 3.1 Mathematical Models........................... 3. Mathematical Proof............................ 4..1 Structure of Proofs........................ 4.. Direct Method..........................

More information

Enumerating Binary Strings

Enumerating Binary Strings International Mathematical Forum, Vol. 7, 2012, no. 38, 1865-1876 Enumerating Binary Strings without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University Melbourne,

More information

NAME DATE PERIOD. Power and Radical Functions. New Vocabulary Fill in the blank with the correct term. positive integer.

NAME DATE PERIOD. Power and Radical Functions. New Vocabulary Fill in the blank with the correct term. positive integer. 2-1 Power and Radical Functions What You ll Learn Scan Lesson 2-1. Predict two things that you expect to learn based on the headings and Key Concept box. 1. 2. Lesson 2-1 Active Vocabulary extraneous solution

More information

Integer Sequences Related to Compositions without 2 s

Integer Sequences Related to Compositions without 2 s 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 6 (2003), Article 03.2.3 Integer Sequences Related to Compositions without 2 s Phyllis Chinn Department of Mathematics Humboldt State University Arcata,

More information

Compositions of n with no occurrence of k. Phyllis Chinn, Humboldt State University Silvia Heubach, California State University Los Angeles

Compositions of n with no occurrence of k. Phyllis Chinn, Humboldt State University Silvia Heubach, California State University Los Angeles Compositions of n with no occurrence of k Phyllis Chinn, Humboldt State University Silvia Heubach, California State University Los Angeles Abstract A composition of n is an ordered collection of one or

More information

Grade 6 Math Circles November 17, 2010 Sequences

Grade 6 Math Circles November 17, 2010 Sequences 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles November 17, 2010 Sequences Sequences A list of numbers or objects in which all terms

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Recurrences, Fibonacci Numbers and Continued Fractions Lecture 9, September 23, 2008 Happy Autumnal Equinox http://apod.nasa.gov/apod/ap080922.html Leonardo

More information

Mathematical Induction. Section 5.1

Mathematical Induction. Section 5.1 Mathematical Induction Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction

More information

Generation X and Y. 1. Experiment with the following function using your CAS (for instance try n = 0,1,2,3): 1 2 t + t2-1) n + 1 (

Generation X and Y. 1. Experiment with the following function using your CAS (for instance try n = 0,1,2,3): 1 2 t + t2-1) n + 1 ( 13 1. Experiment with the following function using your CAS (for instance try n = 0,1,2,3): 1 ( 2 t + t2-1) n + 1 ( 2 t - t2-1) n Ï P 0 The generating function for the recursion Ì P 1 Ó P n = P n-1 + 6P

More information

MULTI-ORDERED POSETS. Lisa Bishop Department of Mathematics, Occidental College, Los Angeles, CA 90041, United States.

MULTI-ORDERED POSETS. Lisa Bishop Department of Mathematics, Occidental College, Los Angeles, CA 90041, United States. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A06 MULTI-ORDERED POSETS Lisa Bishop Department of Mathematics, Occidental College, Los Angeles, CA 90041, United States lbishop@oxy.edu

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS

FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS MARTIN GRIFFITHS Abstract. In this article we study a combinatorial scenario which generalizes the wellknown

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions

From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions Steven J. Miller (sjm1@williams.edu) http://www.williams.edu/mathematics/sjmiller/ public_html CANT 2015 (May 19), Graduate Center

More information

Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski

Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! Theory Eample: Consider the graph of y = pictured

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Modular Arithmetic Instructor: Marizza Bailey Name:

Modular Arithmetic Instructor: Marizza Bailey Name: Modular Arithmetic Instructor: Marizza Bailey Name: 1. Introduction to Modular Arithmetic If someone asks you what day it is 145 days from now, what would you answer? Would you count 145 days, or find

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 3

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 3 EECS 70 Discrete Mathematics and Probability Theory Spring 014 Anant Sahai Note 3 Induction Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all

More information

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number Topic Contents Factoring Methods Unit 3 The smallest divisor of an integer The GCD of two numbers Generating prime numbers Computing prime factors of an integer Generating pseudo random numbers Raising

More information

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #2. Introduction to Sequences

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #2. Introduction to Sequences 1 MATH 137 : Calculus 1 for Honours Mathematics Online Assignment #2 Introduction to Sequences Due by 9:00 pm on WEDNESDAY, September 19, 2018 Instructions: Weight: 2% This assignment covers the topics

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

DRAFT (Justin Stevens) Updated December 29, 2017

DRAFT (Justin Stevens) Updated December 29, 2017 Intermediate Number Theory Justin Stevens FOURTH EDITION Mathematics is the queen of sciences and number theory is the queen of mathematics. Carl Friedrich Gauss c 017 Justin Stevens. All rights reserved.

More information