Physics 6A. Stress, Strain and Elastic Deformations. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Size: px
Start display at page:

Download "Physics 6A. Stress, Strain and Elastic Deformations. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB"

Transcription

1 Physics 6 Stress, Strain and Elastic Deforations

2 When a force is applied to an object, it will defor. If it snaps back to its original shape when the force is reoved, then the deforation was ELSTIC. We already know about springs - reeber Hooke s Law : F spring = -k Δx Hooke s Law is a special case of a ore general rule involving stress and strain. Stress Strain (const.) The constant will depend on the aterial that the object is ade fro, and it is called an ELSTIC MODULUS. In the case of tension (stretching) or copression we will call it Young s Modulus*. So our basic forula will be: Y Stress Strain *Bonus Question who is this forula naed for? Click here for the answer

3 To use our forula we need to define what we ean by Stress and Strain. STRESS is the sae idea as PRESSURE. In fact it is the sae forula: Stress Force rea

4 To use our forula we need to define what we ean by Stress and Strain. STRESS is the sae idea as PRESSURE. In fact it is the sae forula: Stress Force rea STRIN is a easure of how uch the object defors. We divide the change in the length by the original length to get strain: Strain L L 0

5 To use our forula we need to define what we ean by Stress and Strain. STRESS is the sae idea as PRESSURE. In fact it is the sae forula: Stress Force rea STRIN is a easure of how uch the object defors. We divide the change in the length by the original length to get strain: Strain L L 0 Now we can put these together to get our forula for the Young s Modulus: Y F L L 0

6 EXMPLE: nylon rope used by ountaineers elongates 1.10 under the weight of a 65.0kg cliber. If the rope is initially 45.0 in length and 7.0 in diaeter, what is Young s odulus for this nylon?

7 EXMPLE: nylon rope used by ountaineers elongates 1.10 under the weight of a 65.0kg cliber. If the rope is initially 45.0 in length and 7.0 in diaeter, what is Young s odulus for this nylon? L 0 =45 ΔL=1.1

8 EXMPLE: nylon rope used by ountaineers elongates 1.10 under the weight of a 65.0kg cliber. If the rope is initially 45.0 in length and 7.0 in diaeter, what is Young s odulus for this nylon? couple of quick calculations and we can just plug in to our forula: Y F L L 0 L 0 =45 ΔL=1.1

9 EXMPLE: nylon rope used by ountaineers elongates 1.10 under the weight of a 65.0kg cliber. If the rope is initially 45.0 in length and 7.0 in diaeter, what is Young s odulus for this nylon? couple of quick calculations and we can just plug in to our forula: Y F L L 0 L 0 =45 ΔL=1.1 F g 65kg N s 7 r ( ) Don t forget to cut the diaeter in half.

10 EXMPLE: nylon rope used by ountaineers elongates 1.10 under the weight of a 65.0kg cliber. If the rope is initially 45.0 in length and 7.0 in diaeter, what is Young s odulus for this nylon? couple of quick calculations and we can just plug in to our forula: Y F L L 0 L 0 =45 Y 637N N N ΔL=1.1 F g 65kg N s 7 r ( ) Don t forget to cut the diaeter in half.

11 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have?

12 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? dia=? L 0 = ΔL=0.5c 400N

13 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 dia=? L 0 = ΔL=0.5c 400N

14 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 Y F L L 0 The only piece issing is the area we can rearrange the forula dia=? L 0 = ΔL=0.5c 400N

15 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 Y F L L 0 The only piece issing is the area we can rearrange the forula dia=? L 0 = F L Y L 0 ΔL=0.5c 400N

16 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 Y F L L 0 The only piece issing is the area we can rearrange the forula dia=? L 0 = F L0 Y L 400N N N ΔL=0.5c

17 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 Y F L F L0 Y L L 0 400N N The only piece issing is the area we can rearrange the forula One last step we need the diaeter, and we have the area: 6 400N dia=? L 0 = ΔL=0.5c r circle

18 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 Y F L F L0 Y L L 0 400N N The only piece issing is the area we can rearrange the forula One last step we need the diaeter, and we have the area: 6 400N dia=? L 0 = ΔL=0.5c r 6 4 circle r

19 EXMPLE: steel wire.00 long with circular cross-section ust stretch no ore than 0.5c when a 400.0N weight is hung fro one of its ends. What iniu diaeter ust this wire have? We have ost of the inforation for our forula. We can look up Young s 11 odulus for steel in a table: Y N steel 10 Y F L F L0 Y L L 0 400N N The only piece issing is the area we can rearrange the forula One last step we need the diaeter, and we have the area: 6 400N dia=? L 0 = ΔL=0.5c r 6 4 circle r double the radius to get the diaeter: d

20 EXMPLE: When a weight is hung fro a cylindrical wire of diaeter D, it produces a tensile stress X in the wire. If the sae weight is hung fro a wire having twice the diaeter as the first one, the tensile stress in this wire will be x a) x b) x c) 4 d)x e)4x

21 EXMPLE: When a weight is hung fro a cylindrical wire of diaeter D, it produces a tensile stress X in the wire. If the sae weight is hung fro a wire having twice the diaeter as the first one, the tensile stress in this wire will be x a) x b) x c) 4 d)x e)4x We can do this one just by staring at the forula for stress: Stress Force rea

22 EXMPLE: When a weight is hung fro a cylindrical wire of diaeter D, it produces a tensile stress X in the wire. If the sae weight is hung fro a wire having twice the diaeter as the first one, the tensile stress in this wire will be x a) x b) x c) 4 d)x e)4x We can do this one just by staring at the forula for stress: Stress Force rea The force is the sae in both cases because it says they use the sae weight. The area is related to the square of the radius (or diaeter), so when the diaeter doubles the area goes up by a factor of 4.

23 EXMPLE: When a weight is hung fro a cylindrical wire of diaeter D, it produces a tensile stress X in the wire. If the sae weight is hung fro a wire having twice the diaeter as the first one, the tensile stress in this wire will be x a) x b) x c) 4 d)x e)4x We can do this one just by staring at the forula for stress: Stress Force rea The force is the sae in both cases because it says they use the sae weight. The area is related to the square of the radius (or diaeter), so when the diaeter doubles the area goes up by a factor of 4. Thus the stress should go down by a factor of 4 (area is in the denoinator) nswer c)

24 Bulk Modulus and Volue Changes When pressure is applied to an object fro all directions, its volue will change accordingly. Think of squishing a foa ball, or inflating a balloon. In this case we use a 3-diensional version of Young s odulus. We call it BULK MODULUS, and it is defined in a siilar way: Bulk Modulus Pressure change p B V Volue change V 0

25 Bulk Modulus and Volue Changes Exaple: When water freezes into ice it expands in volue by 9.05 percent. Suppose a volue of water is in a household water pipe or a cavity in a rock. If the water freezes, what pressure ust be exerted on it to keep its volue fro expanding? (If the pipe or rock cannot supply this pressure, the pipe will burst or the rock will split.) The bulk odulus for ice is 8x10 9 N/. nswser: 6.6x10 8 N/

00 Elasticity Mechanical Properties of olids tress and train. When a weight of 0kg is suspended fro a copper wire of length 3 and diaeter 0.4. Its length increases by.4c. If the diaeter of the wire is

More information

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2]

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2] 1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress strain Fig. 7.1 [2] (b) Circle from the list below a material that is ductile. jelly c amic gl

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

Physics 120. Exam #2. May 23, 2014

Physics 120. Exam #2. May 23, 2014 Physics 10 Exa # May 3, 014 Nae Please read and follow these instructions carefully: ead all probles carefully before attepting to solve the. Your work ust be legible, and the organization clear. You ust

More information

Objectives: After completion of this module, you should be able to:

Objectives: After completion of this module, you should be able to: Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas

More information

Static Equilibrium; Elasticity & Fracture

Static Equilibrium; Elasticity & Fracture Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

, causing the length to increase to l 1 R U M. L Q P l 2 l 1

, causing the length to increase to l 1 R U M. L Q P l 2 l 1 1 1 Which of the following correctly defines the terms stress, strain and oung modulus? stress strain oung modulus (force) x (area) (extension) x (original length) (stress) / (strain) (force) x (area)

More information

Chapter 16 Solutions

Chapter 16 Solutions Chapter 16 Solutions 16.1 Replace x by x vt = x 4.5t to get y = 6 [(x 4.5t) + 3] 16. y (c) y (c) y (c) 6 4 4 4 t = s t = 1 s t = 1.5 s 0 6 10 14 x 0 6 10 14 x 0 6 10 14 x y (c) y (c) 4 t =.5 s 4 t = 3

More information

Recap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area:

Recap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area: Recap There are 4 aggregates states of matter: - Solid: Strong interatomic bonds, particles cannot move freely. - Liquid: Weaker bonds, particles move more freely - Gas: No interatomic bonds, particles

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundaental Question: What is atter, and how do we identify it? 1. What is the definition of atter? 2. What do you think the ter ass per unit volue eans? 3. Do you think that a

More information

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance.

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance. Chapter 9 1. Put F 1 along the x axis. Add the three y-coponents (which total 0) and solve for the y- coponent of F 3. Now add the x-coponents of all three vectors (which total 0) and solve for the x-coponent

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount

More information

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

Direct (and Shear) Stress

Direct (and Shear) Stress 1 Direct (and Shear) Stress 3.1 Introduction Chapter 21 introduced the concepts of stress and strain. In this chapter we shall discuss direct and shear stresses. We shall also look at how to calculate

More information

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5. Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

Name Class Date. two objects depends on the masses of the objects.

Name Class Date. two objects depends on the masses of the objects. CHAPTER 12 2 Gravity SECTION Forces KEY IDEAS As you read this section keep these questions in ind: What is free fall? How are weight and ass related? How does gravity affect the otion of objects? What

More information

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M.

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Elasticity A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Lepore Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

More information

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that?

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that? Module #1: Units and Vectors Revisited Introduction There are probably no concepts ore iportant in physics than the two listed in the title of this odule. In your first-year physics course, I a sure that

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

PHYS 101 Lecture 34 - Physical properties of matter 34-1

PHYS 101 Lecture 34 - Physical properties of matter 34-1 PHYS 101 Lecture 34 - Physical properties of matter 34-1 Lecture 34 - Physical properties of matter What s important: thermal expansion elastic moduli Demonstrations: heated wire; ball and ring; rulers

More information

Question Figure shows the strain-stress curve for a given material. What are (a) Young s modulus and (b) approximate yield strength for this material?

Question Figure shows the strain-stress curve for a given material. What are (a) Young s modulus and (b) approximate yield strength for this material? Question. A steel wire of length 4.7 m and cross-sectional area 3.0 x 10-5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10-5 m 2 under a given load.

More information

Class XI Chapter 9 Mechanical Properties of Solids Physics

Class XI Chapter 9 Mechanical Properties of Solids Physics Book Name: NCERT Solutions Question : A steel wire of length 4.7 m and cross-sectional area 5 3.0 0 m stretches by the same 5 amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 0 m

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

Uniaxial compressive stress strain model for clay brick masonry

Uniaxial compressive stress strain model for clay brick masonry Uniaxial copressive stress strain odel for clay brick asonry Heant B. Kaushik, Durgesh C. Rai* and Sudhir K. Jain Departent of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016,

More information

Lecture 18. In other words, if you double the stress, you double the resulting strain.

Lecture 18. In other words, if you double the stress, you double the resulting strain. Lecture 18 Stress and Strain and Springs Simple Harmonic Motion Cutnell+Johnson: 10.1-10.4,10.7-10.8 Stress and Strain and Springs So far we ve dealt with rigid objects. A rigid object doesn t change shape

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Chapter 13 ELASTIC PROPERTIES OF MATERIALS

Chapter 13 ELASTIC PROPERTIES OF MATERIALS Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

1 Lecture 5. Linear Momentum and Collisions Elastic Properties of Solids

1 Lecture 5. Linear Momentum and Collisions Elastic Properties of Solids 1 Lecture 5 Linear Momentum and Collisions Elastic Properties of Solids 2 Linear Momentum and Collisions 3 Linear Momentum Is defined to be equal to the mass of an object times its velocity. P = m θ Momentum

More information

Lecture Presentation Chapter 8 Equilibrium and Elasticity

Lecture Presentation Chapter 8 Equilibrium and Elasticity Lecture Presentation Chapter 8 Equilibrium and Elasticity Suggested Videos for Chapter 8 Prelecture Videos Static Equilibrium Elasticity Video Tutor Solutions Equilibrium and Elasticity Class Videos Center

More information

Name : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):

Name :   Applied Physics II Exam One Winter Multiple Choice ( 7 Points ): Name : e-mail: Applied Physics II Exam One Winter 2006-2007 Multiple Choice ( 7 Points ): 1. Pure nitrogen gas is contained in a sealed tank containing a movable piston. The initial volume, pressure and

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Page 2. What is the main purpose of the steel core? To force more current into the outer sheath.

Page 2. What is the main purpose of the steel core? To force more current into the outer sheath. Q1.The overhead cables used to transmit electrical power by the National Grid usually consist of a central core of steel cables surrounded by a sheath of cables of low resistivity material, such as aluminium.

More information

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture Chapter 8 Deflection Structural echanics Dept of rchitecture Outline Deflection diagras and the elastic curve Elastic-bea theory The double integration ethod oent-area theores Conjugate-bea ethod 8- Deflection

More information

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics.

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. 1 (a) The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. tensile stress tensile strain (b) A long wire is suspended vertically

More information

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY As previously defined, an object is in equilibrium when it is at rest or moving with constant velocity, i.e., with no net force acting on it. The following

More information

Chapter 8. Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia

Chapter 8. Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Chapter 8 Screw, Fasteners and the Design of Nonperanent Joint Lecture Notes Dr. Rakhad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Mechanical Engineering Design Sixth Metric Edition J.E.

More information

1 of 5 5/4/2016 5:14 AM Physics Problem Set 6 due Mon. May 9 by 6pm (8983576) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. Question Details OSColPhys1 5.P.047.WA. [2613400] Cable A has a radius of 3.48

More information

Weight and contact forces: Young's modulus, Hooke's law and material properties

Weight and contact forces: Young's modulus, Hooke's law and material properties Weight and contact forces: Young's modulus, Hooke's law and material properties Many objects deform according to Hooke's law; many materials behave elastically and have a Young's modulus. In this section,

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Easy Evaluation Method of Self-Compactability of Self-Compacting Concrete

Easy Evaluation Method of Self-Compactability of Self-Compacting Concrete Easy Evaluation Method of Self-Copactability of Self-Copacting Concrete Masanori Maruoka 1 Hiroi Fujiwara 2 Erika Ogura 3 Nobu Watanabe 4 T 11 ABSTRACT The use of self-copacting concrete (SCC) in construction

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS MECHANICA PROPERTIES OF SOIDS Important Points: 1. Elasticity: The property of a body by virtue of which it regains its original size and shape when deformation force is removed is called elasticity. Ex:

More information

PHYS 185 Practice Final Exam Fall You may answer the questions in the space provided here, or if you prefer, on your own notebook paper.

PHYS 185 Practice Final Exam Fall You may answer the questions in the space provided here, or if you prefer, on your own notebook paper. PHYS 185 Practice Final Exam Fall 2013 Name: You may answer the questions in the space provided here, or if you prefer, on your own notebook paper. Short answers 1. 2 points When an object is immersed

More information

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

(Tech. Specification) Total Tank Height of Shell, H1 m 14.1 Maximum Design Liquid Level, H 2 m Net Design Liquid Height, H 2 m 13.

(Tech. Specification) Total Tank Height of Shell, H1 m 14.1 Maximum Design Liquid Level, H 2 m Net Design Liquid Height, H 2 m 13. A.1.0. Input Design Data Quantity of Tank Nos. 2 Diaeter, D 12 (Tech. Specification) Total Tank Height of Shell, H1 14.1 Maxiu Design Liquid Level, H 2 13.634 Net Design Liquid Height, H 2 13.27 Refer

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6 1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 3) +2 4) 6 2. Two bodies with K.E. in the ratio 4 : 1 are moving with same linear momenta. The ratio

More information

DETERMINATION OF ELASTIC CONSTANTS CORNU S METHOD

DETERMINATION OF ELASTIC CONSTANTS CORNU S METHOD DETEMINATION OF ELASTIC CONSTANTS CONU S METHOD Ai: To deterine the elastic constants of the given aterial by Cornu s interference ethod. Apparatus: A glass or perspe plate is placed syetrically on two

More information

Monitoring and system identification of suspension bridges: An alternative approach

Monitoring and system identification of suspension bridges: An alternative approach Monitoring and syste identification of suspension bridges: An alternative approach Erdal Şafak Boğaziçi University, Kandilli Observatory and Earthquake Reseach Institute, Istanbul, Turkey Abstract This

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams Chapter 15 ewton s Laws #2: inds of s, Creating ree Body Diagras 15 ewton s Laws #2: inds of s, Creating ree Body Diagras re is no force of otion acting on an object. Once you have the force or forces

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

Young s modulus. W.E. Bailey, APAM/MSE EN1102

Young s modulus. W.E. Bailey, APAM/MSE EN1102 Young s modulus W.E. Bailey, APAM/MSE EN1102 Spring constants Remember k is the spring constant Consider two springs F = k x Figure: Thin wire (d 1 cm) W.E. Bailey, APAM/MSE EN1102 Young s modulus 2 /

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

Concepts in Physics. Wednesday, November 04th

Concepts in Physics. Wednesday, November 04th 1206 - Concepts in Physics Wednesday, November 04th Request from Mark Brown Those of you who will miss the LAB tomorrow, please let Mark B. know - either stopping by or a quick email will be fine. State

More information

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ]

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ] L 1 Vibration and Waves [ ] Vibrations (oscillations) resonance pendulu springs haronic otion Waves echanical waves sound waves usical instruents VIBRATING SYSTEMS Mass and spring on air trac Mass hanging

More information

LAB MECH8.COMP From Physics with Computers, Vernier Software & Technology, 2003.

LAB MECH8.COMP From Physics with Computers, Vernier Software & Technology, 2003. LAB MECH8.COMP Fro Physics with Coputers, Vernier Software & Technology, 003. INTRODUCTION You have probably watched a ball roll off a table and strike the floor. What deterines where it will land? Could

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Announcements. Suppose your scores are 12, 16, 15. (16/20)*20 + (15/20)*15 + (12/20)*15 = out of a possible

Announcements. Suppose your scores are 12, 16, 15. (16/20)*20 + (15/20)*15 + (12/20)*15 = out of a possible nnouncements Exam grades will be posted on Sakai soon. Probably riday. Exam 3 will be riday, ugust 3. Today is July 19. Only weeks to the next exam. How do the test grades work? Highest exam 0% Next exam

More information

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1 Coordinator: xyz Sunday, June 28, 2015 Page: 1 Q1. A transverse sinusoidal wave propagating along a stretched string is described by the following equation: y (x,t) = 0.350 sin [1.25x + 99.6t], where x

More information

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Departent of Curriculu and Pedagogy Physics Circular Motion: Energy and Moentu Conservation Science and Matheatics Education Research Group Supported

More information

Chapter 10. Solids & Liquids

Chapter 10. Solids & Liquids Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information