PHYSICS 203NYA05 MECHANICS


 Oscar Watts
 4 years ago
 Views:
Transcription
1 PHYSICS 03NYA05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN  ST. LAWRENCE 790 NÉRÉETREMBLAY QUÉBEC, QC GV 4K TELEPHONE: EXT WEBPAGE: SOLUTIONS TO PROBLEM SET # TWODIMENSIONAL MOTION ) The Coyote s chasng the Roadrunner. The Coyote s strapped to jetpowered roller skates whch provde hm wth a constant horzontal acceleraton o 5.0 m/s. He starts 70.0 m rom the edge o a cl, racng towards the Roadrunner. O course at the last nstant, the Roadrunner runs away and the Coyote les o the edge o the cl. I the cl s 00.0 m above the base o a canyon, (a) determne where the Coyote wll land? (b) What wll be the magntude and the drecton o the Coyote's velocty just beore he hts the ground? Assume that the jetpowered skates are on all the tme. To calculate the ntal velocty o the Coyote at the edge o the cl v v ax v 0 x 70. 0m a 5. 0m s v m s 70. 0m 00m s v 45. 8m s Ths velocty wll be only horzontal, and t wll be the ntal velocty o the Coyote when he leaves the top o the cl. As the Coyote alls, the moton wll be twodmensonal and he wll be subject to an acceleraton whch wll have two components; a horzontal component due to hs jet powered skates and a vertcal component due to gravty. Usng a reerence rame wth the orgn at the pont at whch the Coyote leaves the top o the cl, Intal: t 0 r 0 v 45. 8m s Fnal: t t r x 00m j v v x v y j a 5. 0m s 9. 80m s j constant where t s the tme at whch the Coyote wll ht the ground, x s the horzontal dstance that he wll cover when he hts the ground, 00 m s the heght o the cl, and v x and v y are the nal components o the velocty along the x and y drectons, respectvely. Note the nal velocty along x wll not be equal to the ntal velocty along x because there s an acceleraton along the xdrecton. Applyng the knematcal equatons n the horzontal drecton x x x v t a t x. m s t. m s t x. m s t. m s t v v a t v. m s. m s t x x x x Applyng the knematcal equatons n the vertcal drecton y y y v t a t m t. m s t m. m s t v v a t v. m s t y y y y The rst equaton above can be used to solve or the tme t wll take the Coyote to ht the ground and the result can be used to calculate all o the other quanttes Page o 7
2 Hence 00m m. m s t t. s 4. 90m s y v 9. 80m s t v 9. 80m s 4. 5 s 44. 3m s y x x 45. 8m s t 7. 50m s t x 45. 8m s 4. 5 s 7. 50m s 4. 5 s 360m v. m s. m s t v. m s. m s. s. m s x (a) Thereore the Coyote wll land 360m rom the base o the cl. v v v j. m s. m s j. The magntude and drecton o (b) Hs nal velocty wll be gven by the velocty wll be x y v 3. 6m s 44. 3m s m s 44. 3m s tan below the horzontal (nto the ground) 3. 6m s ) A cannon wth a muzzle velocty o 000 m/s s to be used to destroy a target on top o a mountan. The target s 000 m rom the cannon horzontally and 800 m above the ground. At what angle relatve to the ground should the cannon be red? Ths s a straghtorward projectle moton problem. The acceleraton s due to gravty and t s constant. Selectng a reerence rame wth and orgn at the pont at whch the cannon s stuated, Intal: t 0 r 0 v v cos v sn j Fnal: t t r x yj v v x v y j a. m s j 9 80 constant where v s 000 m/s, x s 000 m, y s 800 m and the nal velocty n the xdrecton v x s equal to the ntal velocty n the xdrecton v x. Applyng the knematcal equatons n the horzontal drecton x x x v t a t x v cos t t 000m 000m s cos t t cos. 00s Applyng the knematcal equatons n the vertcal drecton y y y v t a t y v sn t. m s t Solve the vertcal equaton or tsn 800m 000m s sn t 4. 90m s t m m s sn t. m s t m s sn t. m s t m 4. 90m s 800m 3 t sn t st s 000m s 000m s Square the sn and cos equatons then add them t cos. 00s t cos 4. 00s 3 3 t sn s t s t sn s t s Page o 7
3 t cos t sn. s. s t. s. s t. s t cos sn 4. 64s t. 400 s t s t t 4. 64s 0 Usng the quadratc ormula to solve or t s t t 4. 64s 0 b b 4ac t s 4. 64s a s t s or s t. 4 s or 03. 3s s Snce there are two tmes, there wll be two possble ntal angles and these tmes can be used to calculate the ntal angles. 00s t cos. 00s cos s t sn s t s 03. 3s sn s 03s s Almost straght up or sn s t cos. 00s cos s 3 3 t sn s t s. 4s sn s. 4s s sn ) Two cars, A and B, are movng past a guard G as shown n the gure on the rght. Relatve to the guard G, B travels at a constant speed o 0.0 m/s at an angle = 30. Relatve to the guard G, A has accelerated rom rest at m/s at = 60. At some tme, A has a speed o 40.0 m/s. At ths tme, (a) what are the magntude and drecton o the velocty o A relatve to B? (b) What are the magntude and drecton o the acceleraton o A relatve to B? (a) The velocty o A relatve to G at ths nstant s AG v. m s cos sn j.. j m s. Smlarly, the velocty o B relatve to G at ths nstant s BG v. m s cos sn j.. j m s. In general, vob voa vab, the velocty o object O as seen by B s the vector sum o the velocty o the object O as seen by A and B the velocty o A as seen by B. Here, the object o nterest s car A, O A. We requre the velocty o A as seen by B, hence B B. Ths means that A G. Thereore, vab vag vgb where v GB s the velocty o the guard as seen by B whch s the negatve o the velocty o B as seen by the guard. Hence, AB AG BG v v v.. j m s.. j m s.. j m s and the magntude and drecton o v AB are A G Page 3 o 7
4 v. 68m s 4. 6m s 4. 8m s AB tan north o east or 6. east o north (b) Acceleraton s the change n velocty as a uncton o tme. Usng vab vag vbg, v v v t t t AB AG BG aab aag abg but the acceleraton o B wrt G s zero, B s not acceleratng as seen by the guard. Thereore, aab aag, and the acceleraton o A as seen by B s equal to the acceleraton o A as seen by the guard G,.e. a AG m s at 60 north o east. 4) A 00m wde rver has a unorm low speed o.0 m/s towards the east. A person leaves the south bank o the rver n a boat whch travels wth a speed o 4.00 m/s n the water and wants to reach a pont on the north bank whch s 8.0 m upstream rom a pont drectly opposte hs/her departure pont. (a) In what drecton must the boat head? (b) How long wll t take to cross the rver? The dagram or ths case s shown on the rght. v WS s the velocty o the water wrt the shore, the velocty o the current as seen by someone on the shore. v s the velocty o the boat as seen by someone on the shore. The boat must end up gong n ths drecton to end up 8.0 m upstream, meanng aganst the current. Thereore, the velocty o the boat as seen by someone on the water, v BW, must be as shown n the dagram. Each o the veloctes can be expressed usng the set o axes shown n the dagram, v. 0m s WS v v cos vsnj v v cos v snj BW BW BW Usng the relatonshp between the vectors shown n the dagram, v vbw vws, The horzontal and vertcal components must satsy horzontal: vbw cos. 0m s v cos, vertcal: v sn v sn respectvely. v BW s gven and the angle can be ound rom the dagram BW 00m tan m 0 Hence, there are two equatons n two unknowns, v and. Solvng or cos and sn v cos m s horzontal: cos. 0m s v cos cos v sn vertcal: sn v sn sn Squarng and addng 8.0 m 00.0 m Page 4 o 7
5 v cos m s v sn cos sn v cos m s v sn cos sn v sn v cos m sv cos m s v v. 0m s 0 v m s v 4. 79m s 0 v m s m s m s v m s or 4. 9m s v 3. 45m s Ths s the speed o boat as seen by someone on the shore. (a) The boat n the water must be headed at the angle wrt the shore v cos m s 3. 45m s cos m s cos cos m s sn sn v sn sn At an angle o 53 north o west or 37 west o north. (b) The tme requred to cross the rver can be calculated once the dstance travelled n the water s ound because the speed o the boat n the water s known. Usng the angle wdth o rver w 00m sn dstance travelled: d 50m dstance travelled sn sn53 d 50m 50 m at a speed o 4.00m s t 6. 6s v 5) A block o mass m equal to.50 kg s pushed up a rctonless nclned plane o heght h equal to.65 m by a constant orce o magntude 8.0 N drected as shown n the gure on the rght. I the angle o nclnaton s 30, and the block starts rom rest, how long wll t take the block to reach the top o the nclne? I the heght o the nclned plane s.65 m then the dstance that the block must travel on the nclned plane s d sn m d 3. 30m I the acceleraton o the block s ound then x v t a t can be used to nd the tme t wll take or the block to travel up the nclned plane. The acceleraton o the block can be obtaned rom a Newton s Second Law analyss. Consder the bd or the block on the let. Each orce can be expressed n terms o components wrt the set o axes shown, exerted by the Earth: exerted by the plane: exerted by person: acceleraton: Applyng Newton s Second Law along each drecton a a F mg sn mg cos j g m F P FPj F F cos F sn j app app app h Page 5 o 7
6 y: FP mg cos Fapp sn 0 not necessary n ths case Fapp cos Newton's Second Law: F ma x: Fapp cos mg sn ma a g sn m 8. 0N cos 30 a 9. 80m s sn m s. 50kg Thereore the tme requred or the block to move up the plane s 3. 30m x vt a t 3. 30m 0. 34m s t t. s. 34m s 6) What must be the magntude and drecton o a horzontal orce F suppled to the wedge o mass M shown n the gure on the let n order or the block m to reman statonary wth respect to mass M? Assume all suraces are rctonless and M =.5 kg, m = 3.50 kg and the angle o nclnaton o the wedge s 7. I the appled orce s drected to the rght then the small block wll dentely end up at the bottom o the wedge. Thereore, t must be drected to the let. Once the appled orce s exerted on the wedge, t wll accelerate horzontally to the let. I the block s to reman statonary wrt the wedge t must have the same acceleraton as the wedge, horzontally to the let. Newton's Second Law: Consder the bd or the block shown on the let. Expressng each orce n terms o the selected reerence rame, exerted by Earth: exerted by wedge: acceleraton: F gm mgj FMm F Mm sn FMm cos j a a Applyng Newton s Second law n both drectons F ma y: FMm cos mg 0 x: FMm sn ma FMm sn ma The y equaton can be solved or the magntude o the orce exerted by the wedge on the block and t can then be used to calculate the acceleraton o the system, y: mg FMm cos mg 0 FMm cos x: mg FMm sn ma sn ma cos a g tan 9. 80m s tan m s The bd or the wedge gves exerted by Earth: exerted by loor: exerted by block: exerted by person: acceleraton: F gm app Mgj FF F F j F mm FmM sn FmM cos j F F a a Applyng Newton s Second law n both drectons app m? M Page 6 o 7
7 Newton's Second Law: F ma y: FF Mg FmM cos 0 x: Fapp FmM sn Ma Fapp FmM sn Ma The acceleraton o ths wedge s the same as the acceleraton o the block calculated prevously. Furthermore, The orce exerted by M on m, F Mm, s equal n magntude to the orce exerted by m on M, F mm, because o Newton s Thrd Law. From the bd or m mg FMm FmM a g tan m s cos F F sn Ma app mm mg Fapp sn Mg tan M m g tan. 5kg 3. 50kg 4. 99m s 79. 8N cos Page 7 o 7
Physics 2A Chapter 3 HW Solutions
Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationPhysics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight
Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was
More informationPhysics for Scientists and Engineers. Chapter 9 Impulse and Momentum
Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationSpring Force and Power
Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems
More information= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]
Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:
More informationConservation of Energy
Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,
More informationEMU Physics Department
Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product
More informationSupplemental Instruction sessions next week
Homework #4 Wrtten homework due now Onlne homework due on Tue Mar 3 by 8 am Exam 1 Answer keys and scores wll be posted by end of the week Supplemental Instructon sessons next week Wednesday 8:45 10:00
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne
More information(T > w) F R = T  w. Going up. T  w = ma
ANSES Suspended AcceleratngObjects A resultant orce causes a syste to accelerate. he drecton o the acceleraton s n the drecton o the resultant orce. As llustrated belo, hen suspended objects accelerate,
More informationChapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)
Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent
More informationPHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014
PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 WorkKnetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o
More informationChapter 8: Potential Energy and The Conservation of Total Energy
Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. Dmenson F x d U( x) dx
More informationChapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula
Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any
More informationA Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph
A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationProblem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?
Problem 0750 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle
More informationPhysics 2A Chapters 6  Work & Energy Fall 2017
Physcs A Chapters 6  Work & Energy Fall 017 These notes are eght pages. A quck summary: The workenergy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on
More informationLecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics
Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn
More informationPHYS 1443 Section 002
PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS
More informationˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)
7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to
More informationChapter Seven  Potential Energy and Conservation of Energy
Chapter Seven  Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More information1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7
Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationYou will analyze the motion of the block at different moments using the law of conservation of energy.
Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next
More informationPHYS 1441 Section 002 Lecture #15
PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam
More informationPHYS 1441 Section 002 Lecture #16
PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Nonconservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!
More informationPhysics 2A Chapter 9 HW Solutions
Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.
More informationWork is the change in energy of a system (neglecting heat transfer). To examine what could
Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes
More informationLinear Momentum. Center of Mass.
Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html
More informationSection 8.1 Exercises
Secton 8.1 Nonrght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.
More informationPeriod & Frequency. Work and Energy. Methods of Energy Transfer: Energy. WorkKE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?
Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F
More informationONEDIMENSIONAL COLLISIONS
Purpose Theory ONEDIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n onedmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal
More informationName: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.
Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1  I the acceleraton o an object s negate, the object must be
More informationPage 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.
Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More informationConservation of Angular Momentum = "Spin"
Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts
More informationPhysics 207 Lecture 13. Lecture 13
Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationRotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles
Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =
More informationCHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)
CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: mgk F 1 x O
More informationChapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More informationSlide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1D (PART 2) LECTURE NO.
Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture
More informationPhysics 207, Lecture 13, Oct. 15. Energy
Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple
More informationAP Physics 1 & 2 Summer Assignment
AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers
More informationPlease initial the statement below to show that you have read it
EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng
More informationENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15
NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound
More informationChapter 7. Potential Energy and Conservation of Energy
Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy
More informationChapter 3 Differentiation and Integration
MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton
More informationCHAPTER 8 Potential Energy and Conservation of Energy
CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and nonconservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated
More informationPhysics 207 Lecture 6
Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and noncontact) Frcton (a external force that opposes moton) Free
More informationChapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.
Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3
More informationMotion in One Dimension
Moton n One Dmenson Speed ds tan ce traeled Aerage Speed tme of trael Mr. Wolf dres hs car on a long trp to a physcs store. Gen the dstance and tme data for hs trp, plot a graph of hs dstance ersus tme.
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationa) No books or notes are permitted. b) You may use a calculator.
PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded
More informationPY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg
PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays
More informationPage 1. SPH4U: Lecture 7. New Topic: Friction. Today s Agenda. Surface Friction... Surface Friction...
SPH4U: Lecture 7 Today s Agenda rcton What s t? Systeatc catagores of forces How do we characterze t? Model of frcton Statc & Knetc frcton (knetc = dynac n soe languages) Soe probles nvolvng frcton ew
More informationHomework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit
EN40: Dynamcs and Vbratons School of Engneerng Brown Unversty Homework : Knematcs and Dynamcs of Partcles Due Frday Feb 7, 014 Max Score 45 Ponts + 8 Extra Credt 1. An expermental mcrorobot (see a descrpton
More informationFour Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.
Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y
More informationGAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)
PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to
More informationConservation Laws (Collisions) Phys101 Lab  04
Conservaton Laws (Collsons) Phys101 Lab  04 1.Objectves The objectves o ths experment are to expermentally test the valdty o the laws o conservaton o momentum and knetc energy n elastc collsons. 2. Theory
More informationChapter 7: Conservation of Energy
Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant
More informationPhysics 114 Exam 2 Fall 2014 Solutions. Name:
Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,
More informationGravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)
Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng
More informationAP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power
AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems
More informationDisplacement at any time. Velocity at any displacement in the xdirection u 2 = v ] + 2 a x ( )
The Language of Physcs Knematcs The branch of mechancs that descrbes the moton of a body wthout regard to the cause of that moton (p. 39). Average velocty The average rate at whch the dsplacement vector
More informationClassical Mechanics ( Particles and Biparticles )
Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles
More informationPhysics 105: Mechanics Lecture 13
Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy
More informationTranslational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.
Lesson 12: Equatons o Moton Newton s Laws Frst Law: A artcle remans at rest or contnues to move n a straght lne wth constant seed there s no orce actng on t Second Law: The acceleraton o a artcle s roortonal
More informationChapter 9 Linear Momentum and Collisions
Chapter 9 Lnear Momentum and Collsons m = 3. kg r = ( ˆ ˆ j ) P9., r r (a) p m ( ˆ ˆj ) 3. 4. m s = = 9.. kg m s Thus, p x = 9. kg m s and p y =. kg m s (b) p px p y p y θ = tan = tan (.33) = 37 px = +
More informationEN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st
EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to
More informationForce = F Piston area = A
CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,
More informationPhysics 207: Lecture 27. Announcements
Physcs 07: ecture 7 Announcements akeup labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What
More informationLinear Momentum and Collisions
Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I  [kg m/s] I t t Fdt I = area under curve bounded by t axs ImulseMomentum Theorem
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Moton 4.1 Forces and Interactons Fundamental forces. There are four types of fundamental forces: electromagnetc, weak, strong and gravtatonal. The frst two had been successfully
More informationKinematics in 2Dimensions. Projectile Motion
Knematcs n Dmensons Projectle Moton A medeval trebuchet b Kolderer, c1507 http://members.net.net.au/~rmne/ht/ht0.html#5 Readng Assgnment: Chapter 4, Sectons 6 Introducton: In medeval das, people had
More informationPage 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Nonconstant forces
Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Nonconstant forces Imulsemomentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs
More informationProf. Dr. I. Nasser T /16/2017
Pro. Dr. I. Nasser T171 10/16/017 Chapter Part 1 Moton n one dmenson Sectons ,, 3, 4, 5  Moton n 1 dmenson We le n a 3dmensonal world, so why bother analyzng 1dmensonal stuatons? Bascally, because
More informationPhysics 101 Lecture 9 Linear Momentum and Collisions
Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum D Collsons
More informationPhysics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.
Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays
More informationEMU Physics Department.
Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q D Collsons
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationCHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS
CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton
More informationUse these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds
The speed o a nere mpulse n the human body s about 100 m/s. I you accdentally stub your toe n the dark, estmatethe tme t takes the nere mpulse to trael to your bran. Tps: pcture, poste drecton, and lst
More informationGeneral Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation
General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d
More informationWeek 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2
Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of
More informationRotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa
Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.
More informationLecture 22: Potential Energy
Lecture : Potental Energy We have already studed the workenergy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationSo far: simple (planar) geometries
Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector
More informationImportant Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!
Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test MakeUp Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationLinear Momentum. Center of Mass.
Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl
More informationPhysics 131: Lecture 16. Today s Agenda
Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More information