1. The tie-rod AB exerts the 250 N force on the steering knuckle AO as shown. Replace this force by an equivalent force-couple system at O.

Size: px
Start display at page:

Download "1. The tie-rod AB exerts the 250 N force on the steering knuckle AO as shown. Replace this force by an equivalent force-couple system at O."

Transcription

1

2 1. The terod AB exerts the 50 N force on the steerng knuckle AO as shown. Replace ths force by an equvalent forcecouple system at O.

3 . The devce shown s part of an automoble seatbackrelease mechansm. The part s subected to the 4 N force exerted at A and a 00 Nmm restorng moment exerted by a hdden torsonal sprng. Determne the yntercept of the lne of acton of the sngle equvalent force.

4 . Under nonunform and slppery road condtons, the four forces shown are exerted on the four drve wheels of the allwheeldrve vehcle. Determne the resultant of ths system and the x and yntercepts of ts lne of acton. Note that the front and rear tracks are equal (. e., ). AB CD

5 4. A 50 N horzontal force s appled to the handle of the ndustral water valve as shown. The force s perpendcular to the vertcal plane contanng lne OA of the handle. Determne the equvalent forcecouple system at pont O.

6 5. Represent the resultant of the force system actng on the ppe assembly by a sngle force at A and a couple.

7 5 N. m 115 N 100 N 6. Two forces and a couple (appled to porton AB) are appled to the car s exhaust system as shown. Replace the gven force system wth an equvalent forcecouple system at D.

8 * Lne MN les n a plane parallel to the horzontal plane * Lne AD les n the xz plane and makes a 7 angle wth the x axs. 7. The drecton cosnes of robot arm AB are cos q x =0.6, cos q y (q y <90 ) and cos q z =0. For arm BC the drecton cosnes are, cos q x =7/9, cos q y =4/9 and cos q z =4/9. A force of magntude F=50 N and a couple of magntude C=7 Nm along the axs BC are appled to the end C of arm BC. Determne the moment about lne AD. Replace the force and couple actng on the robot assembly wth an equvalent forcecouple at pont A.

9 8. The threadng dye s screwed onto the end of the fxed ppe whch s bent through an angle of 0. Replace the two forces by an equvalent force at O and a couple. Fnd and calculate the magntude M of the moment whch tends to screw the ppe nto the fxed block about ts angled axs through O.

10 R F M o 0. 15sn cos 0k 0. k sn cos 0k 0. k Mo 17 85k noc sn 0 cos 0k M M M OC o k 17 85k k Nm

11 tan q 15 8 q 1700 N 500 N y 4 cm 400 N 4 50 cm 0 cm 800 N. m q tan q 8 15 z 50 cm x 50 cm 9. The pulleys and the gear are subected to the loads shown. For these forces, determne the equvalent forcecouple system at pont A.

12 R F R F F F k C F r M k C k k F r k F r k F r k k F r C F r M A A

13 10. In tghtenng a bolt whose center s at pont O, a person exerts a 180 N force on the ratchet handle wth hs rght hand. In addton, wth hs left hand he exerts a 90N force as shown n order to secure the socket onto the bolt head. Determne the equvalent forcecouple system at O. The fnd the pont n the xy plane through whch the lne of acton of the resultant force of the wrench passes.

14 11.

15 Z C F 1 = 0 N F = 75 N F = 40 N C 1 = 60 Nm C = 100 Nm (n yz plane) X B 6 m 7 C 1 A F C F G q y C O 5 E 0 F C = 80 Nm (n plane ABCD) q y > 90 o Y O (0, 0, 0) m A (1, 0, 0) m B (n xz plane) C (1, 8, 0) m E (6, 10, ) m G (10, 4, 4) m 4 m D 1. Replace the system comprsng two forces, two couples and a postve wrench wth an equvalent forcecouple actng at pont O. Then, reduce the system further nto a wrench and determne the coordnates of pont P, of whch the lne of acton of the wrench cuts through the yz plane.

16 Force: Z C F 1 = 0 N F = 75 N F = 40 N C 1 = 60 Nm C = 100 Nm (n yz plane) X 6 m 7 C 1 A F C F G q y C O 5 E 0 F C = 80 Nm (n plane ABCD) q y > 90 o Y B 4 m D cos 45 F 0 cos 60 cos q y 1 cos45 cos60 cos60k k y 60 1 q o

17 Force: Z C F 1 = 0 N F = 75 N F = 40 N C 1 = 60 Nm C = 100 Nm (n yz plane) X 6 m 7 C 1 A F C F G q y C O 5 E 0 F C = 80 Nm (n plane ABCD) q y > 90 o Y O (0, 0, 0) m A (1, 0, 0) m B (n xz plane) C (1, 8, 0) m E (6, 10, ) m G (10, 4, 4) m B 4 m D 1 18 ( 8 0 ) ( 0 8)k F k

18 Force: Z C F 1 = 0 N F = 75 N F = 40 N C 1 = 60 Nm C = 100 Nm (n yz plane) X 6 m 7 C 1 A F C F G q y C O 5 E 0 F C = 80 Nm (n plane ABCD) q y > 90 o Y O (0, 0, 0) m A (1, 0, 0) m B (n xz plane) C (1, 8, 0) m E (6, 10, ) m G (10, 4, 4) m B 4 m D F 40cos 60cos 5 40cos 60 sn 5 40cos 0k k R F k R k nr k R

19 r r r 1 Moment: F1 F F M o r F C k k k 1... k k. k k Z k X 6 m 7 C 1 A F C F G q y C O 5 E C 0 F Y F 1 = 0 N F = 75 N F = 40 N C 1 = 60 Nm C = 100 Nm (n yz plane) C = 80 Nm (n plane ABCD) q y > 90 o O (0, 0, 0) m A (1, 0, 0) m B (n xz plane) C (1, 8, 0) m E (6, 10, ) m G (10, 4, 4) m B 4 m D

20 C1 60 cos45 cos 60 cos 60k 4. 4 C 100 BA BD 6 k 8 4 4k 4k C k Z k C F 1 = 0 N F = 75 N F = 40 N C 1 = 60 Nm C = 100 Nm (n yz plane) C = 80 Nm (n plane ABCD) q y > 90 o O (0, 0, 0) m A (1, 0, 0) m B (n xz plane) C (1, 8, 0) m E (6, 10, ) m G (10, 4, 4) m X B 4 m 6 m 7 D C 1 A F C F G q y C O 5 E 0 F Y

21 Moment: M M o o k k k 4. k k k Equvalent forcecouple system at pont O R k M k o

22 Equvalent forcecouple system at pont O R k M k o Reducton to a wrench n yz plane M M // // M M o // n n R R Postve wrench k k.... k k 1 5 R k M k // M M o 1. 5 z Postve wrench M // k Nm R k O x y

23 The coordnates of pont P, of whch the lne of acton of the wrench cuts through the yz plane: M Mo M // M k y zk k r k k R k 1.95yk 96.5y 1.45z 77.8z k 1.95z z m k 1.95y y 91.7 m M z R k Postve wrench r M // k P(0;91.7;474.66) x O y

acting on a body has two effects:

acting on a body has two effects: The force acting on a body has two effects: the first one is the tendency to push or pull the body in the direction of the force, and the second one is to rotate the body about any fixed axis which does

More information

Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects:

Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects: ESULTANTS orce Couple Systems = eduction of a orce to an Equivalent orce and Moment (Moving a orce to Another Point) The force acting on a body has two effects: the first one is the tendency to push or

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

MTH 263 Practice Test #1 Spring 1999

MTH 263 Practice Test #1 Spring 1999 Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A.

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A. 3D Force Couple System and Resultant Q.No.1: Replace the force system by an equivalent force and couple moment at point A. Q.No.2: Handle forces F1 and F2 are applied to the electric drill. Replace this

More information

If the solution does not follow a logical thought process, it will be assumed in error.

If the solution does not follow a logical thought process, it will be assumed in error. Group # Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space provded

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Section 8.1 Exercises

Section 8.1 Exercises Secton 8.1 Non-rght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space

More information

Physics 201 Lecture 9

Physics 201 Lecture 9 Physcs 20 Lecture 9 l Goals: Lecture 8 ewton s Laws v Solve D & 2D probles ntroducng forces wth/wthout frcton v Utlze ewton s st & 2 nd Laws v Begn to use ewton s 3 rd Law n proble solvng Law : An obect

More information

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur Module 11 Desgn o Jonts or Specal Loadng Verson ME, IIT Kharagpur Lesson 1 Desgn o Eccentrcally Loaded Bolted/Rveted Jonts Verson ME, IIT Kharagpur Instructonal Objectves: At the end o ths lesson, the

More information

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system). EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles

More information

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation! Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test Make-Up Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

1. An experimental device imparts a force of magnitude F = 225 N to the front edge of the rim at A to simulate the effect of a slam dunk.

1. An experimental device imparts a force of magnitude F = 225 N to the front edge of the rim at A to simulate the effect of a slam dunk. 1. An experimental device imparts a force of magnitude F = 225 N to the front edge of the rim at A to simulate the effect of a slam dunk. Determine the moments of the force F about point and about point

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Similar to trusses, frames are generally fixed, load carrying structures.

Similar to trusses, frames are generally fixed, load carrying structures. Similar to trusses, frames are generally fixed, load carrying structures. The main difference between a frame and a truss is that in a frame at least one member is a multi force member (çoklu kuvvet elemanı).

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

ARC241 Structural Analysis I Lecture 5, Sections ST4.5 ST4.10

ARC241 Structural Analysis I Lecture 5, Sections ST4.5 ST4.10 Lecture 5, Sections ST4.5 ST4.10 ST4.5) Moment of a Force about a Specified Axis ST4.6) Moment of a Couple ST4.7) Equivalent System ST4.8) Resultant of a Force and a Couple System ST4.9) Further Reduction

More information

Page 1. SPH4U: Lecture 7. New Topic: Friction. Today s Agenda. Surface Friction... Surface Friction...

Page 1. SPH4U: Lecture 7. New Topic: Friction. Today s Agenda. Surface Friction... Surface Friction... SPH4U: Lecture 7 Today s Agenda rcton What s t? Systeatc catagores of forces How do we characterze t? Model of frcton Statc & Knetc frcton (knetc = dynac n soe languages) Soe probles nvolvng frcton ew

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2013 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2014 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Strength Requirements for Fore Deck Fittings and Equipment

Strength Requirements for Fore Deck Fittings and Equipment (Nov 2002) (Rev.1 March 2003) (Corr.1 July 2003) (Rev.2 Nov 2003) (Rev.3 July 2004) (Rev.4 Nov 2004) (Rev.5 May 2010) Strength Requrements for Fore Deck Fttngs and Equpment 1. General 1.1 Ths UR S 27 provdes

More information

Please initial the statement below to show that you have read it

Please initial the statement below to show that you have read it EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng

More information

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons

More information

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point. Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

where v means the change in velocity, and t is the

where v means the change in velocity, and t is the 1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more

More information

F = 140 N. 1. A mechanic pulls on the 13-mm combination wrench with the 140 N force shown. Determine the moment of this force about the bolt center O.

F = 140 N. 1. A mechanic pulls on the 13-mm combination wrench with the 140 N force shown. Determine the moment of this force about the bolt center O. 95sin15 1. mechanic pulls on the 1-mm combination wrench with the 140 N force shown. Determine the moment of this force about the bolt center. //y = 140 N y = 140cos5 N 15 o 5 o + o 15 o 95cos15 //x x

More information

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 ) Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst

More information

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

More information

(counterclockwise - ccw)

(counterclockwise - ccw) Problems (on oment) 1. The rod on the power control mechanism for a business jet is subjected to a force of 80 N. Determine the moment of this force about the bearing at. + 0.15sin 6080sin 00.15cos60 80

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a

More information

Increase Decrease Remain the Same (Circle one) (2 pts)

Increase Decrease Remain the Same (Circle one) (2 pts) ME 270 Sample Fnal Eam PROBLEM 1 (25 ponts) Prob. 1 questons are all or nothng. PROBLEM 1A. (5 ponts) FIND: A 2000 N crate (D) s suspended usng ropes AB and AC and s n statc equlbrum. If θ = 53.13, determne

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Chapter 9. The Dot Product (Scalar Product) The Dot Product use (Scalar Product) The Dot Product (Scalar Product) The Cross Product.

Chapter 9. The Dot Product (Scalar Product) The Dot Product use (Scalar Product) The Dot Product (Scalar Product) The Cross Product. The Dot Product (Scalar Product) Chapter 9 Statcs and Torque The dot product of two vectors can be constructed by takng the component of one vector n the drecton of the other and multplyng t tmes the magntude

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7 Structure from Moton Forsyth&once: Chap. 2 and 3 Szelsk: Chap. 7 Introducton to Structure from Moton Forsyth&once: Chap. 2 Szelsk: Chap. 7 Structure from Moton Intro he Reconstructon roblem p 3?? p p 2

More information

Please initial the statement below to show that you have read it

Please initial the statement below to show that you have read it EN0: Structural nalyss Exam I Wednesday, March 2, 2005 Dvson of Engneerng rown Unversty NME: General Instructons No collaboraton of any nd s permtted on ths examnaton. You may consult your own wrtten lecture

More information

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit EN40: Dynamcs and Vbratons School of Engneerng Brown Unversty Homework : Knematcs and Dynamcs of Partcles Due Frday Feb 7, 014 Max Score 45 Ponts + 8 Extra Credt 1. An expermental mcro-robot (see a descrpton

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

. You need to do this for each force. Let s suppose that there are N forces, with components ( N) ( N) ( N) = i j k

. You need to do this for each force. Let s suppose that there are N forces, with components ( N) ( N) ( N) = i j k EN3: Introducton to Engneerng and Statcs Dvson of Engneerng Brown Unversty 3. Resultant of systems of forces Machnes and structures are usually subected to lots of forces. When we analyze force systems

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

Solutions to Selected Exercises

Solutions to Selected Exercises 6 Solutons to Selected Eercses Chapter Secton.. a. f ( 0) b. Tons of garbage per week s produced by a cty wth a populaton of,000.. a. In 99 there are 0 ducks n the lake b. In 000 there are 0 ducks n the

More information