1.2. Paths, Cycles, and Trails

Size: px
Start display at page:

Download "1.2. Paths, Cycles, and Trails"

Transcription

1 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Ph, Cyle, n Trl Defnon. Le G e grph. A lk l 0, e 1, 1,, e k, k of ere n ege h h, for 1 k, he ege e h en pon -1 n. A rl lk h no repee ege. A ph grph of G h ph ( ph n e onere lk h no repee ere). A,-lk or,-rl h fr ere n l ere ; hee re enpon. A,-ph ph hoe ere of egree 1( enpon) re n ; he oher re nernl ere. The lengh of lk, rl, ph, or yle nmer of ege. A ngle ere = onere,-lk(rl, ph) of lengh 0. A loop yle of lengh 1. Alo o n ege h he me enpon form yle of lengh 2. A lk or rl loe f enpon re he me. A lk o or een lengh o or een Emple. In he Kongrg grph, he l, e 2,, e 5, y, e 6,, e 1,, e 2, loe lk of lengh 5; repe ege e 2 n hene no rl. e 1 e2 e e 6 5 y e 3 z Whle, e 2,, e 5, y, e 6,, e 1, rl of lengh 4, repe ere no ege. The grph onng of ege e 1, e 5, e 6 n ere,, y yle of lengh 3,; eleng one of ege yel ph. To ege h he me enpon h e 1 n e 2 form yle of lengh Emple. In he mple grph elo, he l,,,,, y,,, y,,,, pefe loe lk of lengh 12, hle,,, y,,, y,,,, pefe loe rl. y Th grph h 5 yle: (,, ), (, y, ), (,, y), (, y, ), (,,, y). The, -rl, y,,, y,, onn he ege of he, -ph, y,,, no of he, -ph, y,. Remrk.1. If e follo ph from o n grph n hen follo ph from o, he rel nee no e, -ph, ee he, -ph n, -ph my he ommon nernl ere, n f he rel, -lk. 2. Syng h lk W onn ph P men h he ere n ege of P or l of he ere n ege of W n orer, neerly onee A lk W : 2, 4, 3, 2, 3, 5, 6, 5 onn ph P : 2, 3, 5, 6. e 4 e 7

2 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Lemm. In grph G, eery, -lk onn, -ph. Proof: We proe emen y non on he lengh { of, -lk W. B ep: { = 0. Hng no ege, W on of ngle ere (= ). Th ere, -ph of lengh 0. Inon ep: { 1. We ppoe h he lm hol for lk of lengh le hn {. Le W e, -lk of lengh {. If W h no repee ere, hen ere n ege form, -ph. If W h repee ere, hen eleng he ege n ere eeen pperne of (leng one opy of ) yel horer, -lk W onne n W. P By non hypohe, W onn, -ph P, n h ph P onne n W. Eere Coner K 4 : h lk:,,,, h no rl. K 4 h rl:,,,, h no loe n no ph. K 4 h no loe rl h no yle. Sne loe rl h een ere egree, n K 4 h reqre egree 2 or 0, hh o no perm onnee grph h no yle. In f, K 4 h yle of lengh 4:,,,, n h yle of lengh 3:,,, Defnon. A grph G onnee f h, -ph heneer, V(G), ohere, G onnee. If G h, -ph, hen onnee o n G. The onneon relon on V(G) on of he orere pr (, ) h h onnee o. Th, = {(, ) V(G) V(G) : onnee o } relon on V(G). Remrk.1. onnee n jee, e pply only o grph n o pr of ere(e neer y onnee hen ere). 2. The phre onnee o onenen hen rng proof, n opng e m lrfy he non eeen onneon n jeny: G h, -ph n re onnee onnee o E(G) n re jen jone o jen o 3. The onneon relon n eqlene relon on V(G), erfy!. 4. A mml onnee grph of G grph h onnee n no onne n ny oher onnee grph of G Defnon. The omponen of grph G re mml onnee grph,.e. he grph h onnee n no onne n ny oher onnee grph of G. The omponen (or grph) rl f h no ege; ohere nonrl. An ole ere ere of egree 0.

3 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Remrk. The eqlene le of he onneon relon on V(G) re he ere e of omponen of G. An ole ere form rl omponen, onng of one ere n no ege Emple. The grph elo h 4 omponen, one eng n ole ere. r z y q p The ere e of he omponen re {p}, {q, r}, {,,,, }, n {, y, z}; hee re he eqlene le of he onneon relon. Eere Proe h f ome ere of grph G onnee o ll oher ere of G hen G onnee. Proof. Le n e ny ere n V(G). By he mpon, here e n V(G) h h onnee o n onnee o. Bee, -ph n, -ph ogeher onn, -ph, o onnee o. Then eery ere onnee o eery oher, n G onnee Remrk. Componen re pre jon; no o hre ere. Ang n ege h enpon n n omponen omne hem no one omponen. Th ng n ege eree he nmer of omponen y 0 or 1, n eleng n ege nree he nmer of omponen y 0 or Propoon. Eery grph h n ere n k ege h le n k omponen. Proof: An n-ere grph h no ege h n omponen. By Remrk , eh ege e ree h y mo 1, o hen k ege he een e he nmer of omponen ll le n k. Remrk. 1.When e on grph y eleng ere, m e grph, o eleng he ere lo elee ll ege nen o. 2. Deleng ere or n ege n nree he nmer of omponen. In f, eleng n ege n only nree he nmer of omponen y 1, eleng ere n nree y mny (oner he lqe K 1,m ) Defnon. A -ege or -ere of grph n ege or ere hoe eleon nree he nmer of omponen. We re G e or G M for he grph of G one y eleng n ege e or e of ege M. We re G or G S for he grph of G one y eleng ere or e of ere S. An ne grph grph one y eleng e of ere. We re G[T] for G T,here T = V(G) T; h he grph of G ne y T. Remrk. 1. When T V(G), he ne grph G[T] on of T n ll ege hoe enpon re onne n T. 2. The fll grph elf n ne grph, re nl ere. 3. A e S of ere n nepenen e f n only f he grph ne y h no ege Emple. The grph elo h -ere n y. I -ege re qr,, y, n yz. r z y q p

4 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Th grph h C 4 : n Ρ 5 : grph no ne grph. The grph ne y {,,, } ke. Th grph no n ne grph y {,,, }. The grph Ρ 4 oe or n ne grph; he grph ne y {,,, }, lo y {,,, }. Eere Le e ere of onnee mple grph G. Proe h h neghor n eery omponen of G. Conle h no grph h -ere of egree 1. Proof. Sne G onnee, he ere n one omponen of G m he ph n G o eery oher omponen of G, n ph n only lee omponen of G. Th h neghor n eery omponen of G. If G h k omponen, k 2, hen G () k, hh mple here no -ere of egree 1. Eere Coner he p: Mml ph re,, ;,,, ;,,, (o re mmm ph). Mml lqe re {,, {,, } (one mmm lqe). Mml nepenen e re: {}; {, }; {, }(o re mmm nepenen e) Theorem. An ege n grph G -ege f n only f elong o no yle. Proof. Le e e n ege n grph G(h enpon, y), n le H e he omponen onnng e. Sne eleon of e ffe no oher omponen, ffe o proe h H e onnee f n only f e elong o yle. ( ) Sppoe h H e onnee. Th mple h H e onn n, y-ph, n h ph omplee yle h e. ( ) Sppoe h e le n yle C. Chooe, V(H). Sne H onnee, H h, -ph P. If P oe no onn e, hen P e n H e, o H e onnee. If P onn e, ppoe y ymmery h eeen n y on P. C y P e Sne H e onn, -ph long P, n, y-ph long C, n y, -ph long P. The rny of onneon relon mple h H e h, -ph. We h for ll, V(H), o H e onnee Lemm. Eery loe o lk onn n o yle. Proof: We e non on he lengh { of loe o lk W. B ep: { = 1. A loe lk of lengh 1 rere yle of lengh 1. Inon ep: { > 1. Ame he lm for loe o lk horer hn W.

5 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer If W h no repee ere(oher hn fr = l), hen W elf form yle of o lengh. If ere repee n W, hen e e W rng n rek W no 2, -lk. Sne W h o lengh, one of hee o n he oher een. o een The o one horer hn W. By non hypohe, onn n o yle, n h yle pper n orer n W Remrk. A loe een lk nee no onn yle; my mply repe. Neerhele, f n ege e pper ely one n loe lk. Then W oe onn yle hrogh e. e y Le, y e he enpon of e. Deleng e from W lee n, y-lk h o e. By Lemm 1.2.5, h lk onn n, y-ph, n h ph omplee yle h e Defnon. A pron of G pefon of o jon nepenen e n G hoe non V(G). An X, Y-grph pre grph h pron X, Y Theorem. A grph pre f n only f h no o yle. Proof: ( ) Le G e pre grph. Eery lk lerne eeen he 2 e of pron, o eery rern o he orgnl pre e hppen fer n een nmer of ep. Hene G h no o yle. ( ) Le G e grph h no o yle. We proe h G pre y onrng pron of eh nonrl omponen. Le e ere n nonrl omponen H. For eh V(H), le f() e he mnmm lengh of, -ph. Sne H onnee, f() efne for eh V(H). Le X = { V(H) : f() een} n Y = { V(H) : f() o}. An ege, hn X or Y ol ree loe o lk ng hore, -ph, he ege, n he reere of hore, -ph. By Lemm , h lk m onn n o yle, onron. Hene X n Y re nepenen e. Alo X Y = V(H), o H n X, Y-grph Remrk. Theorem mple h heneer grph G no pre, e n proe h emen y preenng n o yle n G. Th mh eer hn emnng ll pole pron o proe h none ork. When e n o proe h G pre, e efne pron n proe h he 2 e re nepenen; h eer hn emnng ll yle Defnon. The non of grph G 1, G 2,,G k, ren G 1 G 2 G k, he grph h ere e k V(G ) n ege e 1 k E(G ). 1 = =

6 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Emple. K 4 n e epree he non of o 4-yle Theorem. K n n e epree he non of k pre grph f n only f n 2 k. Proof: We e non on k. B ep: k = 1. Sne K 3 h n o yle n K 2 oe no, K n elf pre grph f n only f n 2 1. Inon ep: k > 1. We proe eh mplon ng he non hypohe. ( ) Sppoe h K n = G 1 G 2 G k, here G pre. Ce n = = 8. We pron he ere e V(K n ) no 2 e X, Y h h G k h no ege hn X or hn Y. V(K 5 ) = {,,,, }, X = {, }, Y = {,, } The non of he oher k 1 pre grph m oer he omplee grph ne y X n y Y. Applyng he non hypohe o eh yel X 2 k-1 n Y 2 k-1, o n 2 k k-1 = 2 k. ( ) Sppoe h n 2 k. We pron he ere e V(K n ) no e X, Y, eh of ze mo 2 k-1. By he non hypohe, e n oer he omplee grph ne y eher e h k 1 pre grph. The non of he h h grph on X h he h h grph on Y pre grph. Hene e on k 1 pe grph hoe non on of he omplee grph ne y X n Y. The remnng ege re hoe of he lqe h pron X, Y. Leng h e he k h pre grph omplee he onron. Eere Non-ne proof of Theorem ) Gen n 2 k, enoe he ere of K n n nry k-ple. Le G e he omplee pre grph h pron X, Y, here X he e of ere hoe oe he 0 n poon, n Y he e of ere hoe oe he 1 n poon. Sne eery o ere oe ffer n ome poon, h K n = G 1 G 2 G k. To llre h: n = = 8, enoe he ere of K 5 000, 001, 011, 101, 110. Le G e he omplee pre grph h pron X, Y, = 1, 2, 3 follo: X 1 = {000, 001, 011}, Y 1 = {110, 101}, X 2 = {000, 001, 101}, Y 2 = {011, 110}, X 3 = {000, 110}, Y 3 = {001, 011, 101} Y 110 X X 1 G 1 Y 2 X 3 1 G 2 G Y 3 3 Κ 5 = G 1 G 2 G 3. K 5 G 1 G 2 G 3

7 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer ) Gen h K n non of pre grph G 1,, G k, enoe he ere of K n n nry k-ple. For 1 k, le X, Y e pron of G. Agn ere he k-ple( 1,, k ), here = 0 f X n =1 f Y or X Y. Sne eery 2 ere re jen n he ege jonng hem m e oere n he non, hey le n oppoe pre e n ome G. Therefore he k-ple gne o he ere re n. Sne he k-ple re nry k-ple, here re mo 2 k of hem, o n 2 k Defnon. A grph Elern f h loe rl onnng ll ege. We ll loe rl r hen e o no pefy he fr ere keep he l n yl orer. An Elern r or Elern rl n grph r or rl onnng ll ege. An een grph grph h ere egree ll een. A ere o [een] hen egree o[een]. A mml ph n grph G ph P n G h no onne n longer ph. When grph fne, no ph n een foreer, o mml(non-eenle) ph e. Emple. The grph G elo h n Elern r,,,,, j,, k, m, n, p, r,, p,, n, j, k,. G : k j m n p r The grph H elo h n Elern rl,,,,,, y,,,, z,. y A mml ph n H :,,,,,, z Lemm. If eery ere of fne grph G h egree le 2, hen G onn yle.(the proof e he ehnqe lle eremly.) Proof: Le P e mml ph n G, n le e n enpon of P. Sne P nno e eene, eery neghor of m lrey ere of P. Sne h egree le 2, h neghor n V(P) n ege no n P. z The ege omplee yle h he poron of P from o. Remrk. The proof of Lemm n emple of n mporn ehnqe of proof n grph heory h e ll eremly. When onerng rre of gen ype, hoong n emple h ereme n ome ene my yel efl onl nformon. For emple, ne mml ph P nno e eene, e on he er nformon h eery neghor of n enpon of P elong o V(P).

8 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer In ene, mkng n ereml hoe goe rely o he mporn e. In Lemm , e ol r h ny ph. If eenle, hen e een. If no, hen omehng mporn hppen Theorem. A grph G Elern f n only f h mo one nonrl omponen n ere ll he een egree. Proof: ( ) Sppoe h G h n Elern r C. Eh pge of C hrogh ere e 2 nen ege, n he fr ege pre h he l he fr ere. Hene eery ere h een egree. Alo, o ege n e n he me rl only hen hey le n he me omponen, o here mo one nonrl omponen. ( ) Amng h he onon hol, e on n Elern r ng non on he nmer of ege, m. B ep: m = 0. A loe rl onng of one ere ffe. Inon ep: m > 0. Ame he lm hol for grph h k (< m) ege n h mo one nonrl omponen n ere ll he een egree. Wh een egree, eh ere n he nonrl omponen of G h egree le 2. By Lemm , he nonrl omponen h yle. Le G e he grph one from G y eleng E(C). Sne C h 0 or 2 ege eh ere, eh omponen of G lo n een grph. Sne eh omponen lo onnee n h feer hn m ege, e n pply he non hypohe o onle h eh omponen of G h n Elern r. To omne hee no n Elern r of G, e rere C, hen omponen of G enere for he fr me e eor long n Elern r of h omponen. Th r en he ere here e egn he eor. C When e omplee he rerl of C, e he omplee n Elern r of G Propoon. Eery een grph eompoe no yle. Proof: In he proof of Theorem , e noe h eery een nonrl grph h yle, n h he eleon of yle lee n een grph. Th h prpoon follo y non on he nmer of ege Propoon. If G mple grph n hh eery ere h egree le k, hen G onn ph of lengh le k. If k 2, hen G lo onn yle of lengh le k+1. Proof: Le e n enpon of mml ph P n G. Sne P oe no een, eery neghor of n V(P). Sne h le k neghor n G mple, herefore P h le k ere oher hn n h lengh le k. If k 2, hen he ege from o frhe neghor long P omplee ffenly long yle h he poron of P from o Propoon. Eery grph h nonloop ege h le 2 ere h re no ere. Proof: If n enpon of mml ph P n G, hen he neghor of le on P. Sne P onnee n G, he neghor of elong o ngle omponen of G, n no -ere.

9 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Eere Sppoe h eery ere of loople fne grph G h egree le 3. Proe h G h yle of een lengh. Proof. Le P e mml ph n G h n enpon of P. Then h le 3 neghor on P. Le, y, z e 3 h neghor of n orer on P. Coner 3, y-ph: he ege y; y z he ege folloe y he, y-ph n P; n he ege z folloe y he z, y-ph n P. Thee ph hre only her enpon, o he non of ny 2 yle. By he pgeonhole prnple, 2 of hee ph he lengh h he me pry (o or een). The non of hee 2 ph n een yle Remrk. Mmm men mmm-ze n mml men no lrger one onn h one Lemm. In n een grph, eery mml rl loe. Proof: Le T e mml rl n n een grph. Eery pge of T hrogh ere e 2 ege, none repee. Th hen rrng ere oher hn nl ere, T h e n o nmer of ege nen o. Sne h een egree, here remn n ege on hh T n onne. Hene T n only en nl ere. In fne grph, T m nee en. We onle h mml rl m e loe Theorem Seon proof ng eremly rely. Proof: Sppoe grph G h mo one nonrl omponen n ere ll he een egree. Le T e rl of mmm lengh; T m lo e mml rl. By Lemm T loe. Sppoe h T om ome ege e of G. Sne G h only one nonrl omponen, G h hore ph from e o he ere e of T. Hene ome ege e no n T nen o ome ere of T. Sne T loe, here rl T h r n en n e he me ege T. We no een T o on longer rl hn T. Th onr he hoe of T, n hene T rere ll ege of G Theorem. For onnee nonrl grph h ely 2k o ere, he mnmm nmer of rl h eompoe m{k, 1}. Proof: A rl onre een egree o eery ere, eep h non-loe rl onre o egree o enpon. Therefore, pron of ege no rl m he ome non-loe rl enng eh o ere. Sne eh rl h only 2 en, e m e le k rl o fy 2k o ere. We lo nee le one rl ne G h n ege, n Theorem mple h one rl ffe hen k = 0. I remn o ho h k rl ffe hen k > 0. Gen h grph G, e pr p he o ere n G (n ny y) n form G y ng for eh pr n ege jonng 2 ere llre elo. P : G : G : The relng grph G onnee n een, o y Theorem , h n Elern r C. A e rere C n G, e r ne rl n G eh me e rere n ege of G E(G). Th yel k rl eompong G.

10 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer Eere Le G e onnee grph h le 3 ere. Proe h G h 2 ere, y h h G {, y} onnee n, y re jen or he ommon neghor. Proof. Le P e longe ph n G h n enpon. Le e neghor of on P. Noe h P h le 3 ere. If G onnee, le y =. Ohere, omponen off from P n G h mo one ere; ll. The ere m e jen o, ne ohere e ol l longer ph. In h e, le y =. P : Eere Le G e onnee mple grph h oe no he P 4 or C 4 n ne grph. Proe h G h ere jen o ll oher ere. Proof. Coner ere of mmm egree n G. If h nonneghor y, le,, e he egnnng of hore ph o y ( my eql y). y Sne () (), ome neghor z of no jen o. If z jen o, hen {z,,, } ne C 4 ; ohere, {z,,, }ne P 4. z Th m e jen o ll oher ere. Eere Proe h he ege of onnee grph h 2k o ere n e prone no k rl f k > 0 y ng non on k. Proof. If k = 1, e n ege eeen he o o ere, on n Elern r, n elee he e ege o ge rl. If k > 1, le P e ph eeen 2 o ere. The grph G = G E(P) h 2k 2 o ere, ne e he hnge egree pry only he en of P. We pply he non hypohe o eh omponen of G h h o ere. Any omponen no hng o ere h n Elern r h onn ere of P; e pl no P o o hng n onl rl. Alogeher, e he e he ere nmer of rl o pron E(G). Homeork 2: , , , , e on Jne 25.

GENESIS. God makes the world

GENESIS. God makes the world GENESIS 1 Go me he or 1 I he be Go me he b heve he erh everyh hh p he y. 2 There oh o he e erh. Noh ve here, oh *o ve here. There oy e eep er over he erh. There o h. I very r. The f Spr of Go move over

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

EE 410/510: Electromechanical Systems Chapter 3

EE 410/510: Electromechanical Systems Chapter 3 EE 4/5: Eleomehnl Syem hpe 3 hpe 3. Inoon o Powe Eleon Moelng n Applon of Op. Amp. Powe Amplfe Powe onvee Powe Amp n Anlog onolle Swhng onvee Boo onvee onvee Flyb n Fow onvee eonn n Swhng onvee 5// All

More information

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example Connetiit in Grphs CSH: Disrete Mthemtis Grph Theor II Instrtor: Işıl Dillig Tpil qestion: Is it possile to get from some noe to nother noe? Emple: Trin netork if there is pth from to, possile to tke trin

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.) i ell orie o go ih he picure. L, up ng i gro ve el ur Pren, ho phoo picure; u oher ell ee hey (T l. chi u b o on hi pge y ur ki kn pl. (We ee Hi i H b o b o kn e hem orie.) Compre h o ho creion; He ell

More information

The stress transfer calculations presented in the main text reports only our preferred

The stress transfer calculations presented in the main text reports only our preferred GS R ITEM 214377 L.S. Wlh e l. GS T REPOSITORY COULOM STRESS CHNGE PRMETER INPUT TESTS The re rfer lul preee he e repr ly ur preferre el. lhugh he geerl per ue re rbu, he el f he reul ul hge f el preer

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

ERASMUS Application form for entry Please use BLOCK CAPITAL letters.

ERASMUS Application form for entry Please use BLOCK CAPITAL letters. ERSMUS ppl fr fr 2018-19 ery Plee e BLOCK CPITL leer. Plee re ll he fr he he re reflly efre pleg h fr. Frher fr he ppl pre vlle hp://f.le..k/rre-e/erve/er/fr-fr-g-e I el 1. He 2. H epre LSE 3. e f prgre

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Direct Current Circuits

Direct Current Circuits Eler urren (hrges n Moon) Eler urren () The ne moun of hrge h psses hrough onduor per un me ny pon. urren s defned s: Dre urren rus = dq d Eler urren s mesured n oulom s per seond or mperes. ( = /s) n

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Multivariate Time Series Analysis

Multivariate Time Series Analysis Mulvre me Sere Anl Le { : } be Mulvre me ere. Denon: () = men vlue uncon o { : } = E[ ] or. (,) = Lgged covrnce mr o { : } = E{[ - ()][ - ()]'} or, Denon: e me ere { : } onr e jon drbuon o,,, e me e jon

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

H STO RY OF TH E SA NT

H STO RY OF TH E SA NT O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

More information

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

More information

Chapter 2 Linear Mo on

Chapter 2 Linear Mo on Chper Lner M n .1 Aerge Velcy The erge elcy prcle s dened s The erge elcy depends nly n he nl nd he nl psns he prcle. Ths mens h prcle srs rm pn nd reurn bck he sme pn, s dsplcemen, nd s s erge elcy s

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

And I Saw a New Heaven

And I Saw a New Heaven n I Sw New Heven NTHEM For Choir (STB) n Orgn John Kilprik 2008 John Kilprik This work my freely uplie, performe n reore. Copies shoul no sol exep o over prining oss. rev: 06/03/2010 prin: 02/07/2013 2

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

HYPERBOLIC ALTERNATING VIRTUAL LINK GROUPS

HYPERBOLIC ALTERNATING VIRTUAL LINK GROUPS HYPEROLIC ALERNAING VIRUAL LINK GROUPS JENS HARLANDER A. W y opoloy n omy of l lnk omplmn n op. W o op fn y Wn pnon of n pm n lnn l lnk CA(0) n ypol. MSC: 57M05, 57M50, 20F65, 20F67. Ky o: Alnn l kno,

More information

Monday, July First, And continues until further notice.

Monday, July First, And continues until further notice. 4 E N % q * - z P q ««- V * 5 Z V E V 3 7 2 4 8 9 E KN YNG P E K G zz -E P * - PEZZ 23-48 G z : P P 78 N P K - - Q P - 8 N! - P - P 8 8 E E-*«- - 3 4 : G P - G N K P P Q* N N 23 E 2 *8342 P 23 2552 2K

More information

ALG 5.3 Flow Algorithms:

ALG 5.3 Flow Algorithms: ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

jfljjffijffgy^^^ ^--"/.' -'V^^^V'^NcxN^*-'..( -"->"'-;':'-'}^l 7-'- -:-' ""''-' :-- '-''. '-'"- ^ " -.-V-'.'," V'*-irV^'^^amS.

jfljjffijffgy^^^ ^--/.' -'V^^^V'^NcxN^*-'..( -->'-;':'-'}^l 7-'- -:-' ''-' :-- '-''. '-'- ^  -.-V-'.', V'*-irV^'^^amS. x } < 5 RY REOR RY OOBER 0 930 EER ORE PBE EEEY RY ERE Z R E 840 EG PGE O XXER O 28 R 05 OOG E ERE OOR GQE EOEE Y O RO Y OY E OEY PRE )Q» OY OG OORRO EROO OORRO G 4 B E B E?& O E O EE OY R z B 4 Y R PY

More information

Integral Solutions of Non-Homogeneous Biquadratic Equation With Four Unknowns

Integral Solutions of Non-Homogeneous Biquadratic Equation With Four Unknowns Ieol Jol o Compol Eee Reech Vol Ie Iel Solo o No-Homoeeo qdc Eqo Wh Fo Uo M..Gopl G.Smh S.Vdhlhm. oeo o Mhemc SIGCTch. Lece o Mhemc SIGCTch. oeo o Mhemc SIGCTch c The o-homoeeo qdc eqo h o o epeeed he

More information

Warm Up. Correct order: s,u,v,y,x,w,t

Warm Up. Correct order: s,u,v,y,x,w,t Warm Up Rn Breadh Fir Search on hi graph aring from. Wha order are erice placed on he qee? When proceing a erex iner neighbor in alphabeical order. In a direced graph, BFS only follow an edge in he direcion

More information

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA WO INERFIL OLLINER GRIFFIH RS IN HERMO- ELSI OMOSIE MEDI h m MISHR S DS * Deme o Mheml See I Ie o eholog BHU V-5 I he oee o he le o he e e o eeg o o olle Gh e he ee o he wo ohoo mel e e e emee el. he olem

More information

Recap Shape Functions

Recap Shape Functions Seon : ISOPARAMETRIC FORMULATIO Whkewz College o Engneerng Rep Shpe Fnon Th good ple o op nd remnd orele where we re n he proe o ormlng nmerl olon ng ne elemen mehod. For omponen we re olng he glol ore

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Introduction to Inertial Dynamics

Introduction to Inertial Dynamics nouon o nl Dn Rz S Jon Hokn Unv Lu no on uon of oon of ul-jon oo o onl W n? A on of o fo ng on ul n oon of. ou n El: A ll of l off goun. fo ng on ll fo of gv: f-g g9.8 /. f o ll, n : f g / f g 9.8.9 El:

More information

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels nvenon Jounl o Reseh Tehnoloy n nneen & Mnemen JRTM SSN: 455-689 wwwjemom Volume ssue 0 ǁ Ooe 08 ǁ PP 9-45 Cuo uons n he me o onl oeos wh M-ele enels on Qn Chenmn Hou* Ynn Unvesy Jln Ynj 00 ASTRACT: n

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

And I Saw a New Heaven

And I Saw a New Heaven n Sw New Heven NTHEM For Choir (STB) n Orgn John Kilprik (VERSON FOR KEYBORD) 2008 John Kilprik This work my freely uplie, performe n reore. Copies shoul sol exep o over prining oss. rev: 23/08/2010 prin:

More information

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0 Nework flow The problem Seing flow nework G = (V, E, c), a orce and a ink no in E implie c(, ) = 0 Flow from o capaciy conrain kew-ymmery flow-coneraion ale of he flow jfj = P 2V Find a maximm flow from

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Adver-isemen- suliber, 8 nries) PLAIN AND FANCT. forrip Sailora. starts, gtorlling5,'tv.to 'gtl. Waikiihalulu Water Lots! LARGE AND COMMODI- -,

Adver-isemen- suliber, 8 nries) PLAIN AND FANCT. forrip Sailora. starts, gtorlling5,'tv.to 'gtl. Waikiihalulu Water Lots! LARGE AND COMMODI- -, E E ERER RER p p p p x p $ p 0 p xp p p p p p p E p q 0 $ p 8 p $ 0 $ E EEER Y R ER 8 E 8 8 p EERE p p p REEREE q 8 Y p p p REEREE x E p Eq R p RE ER ER p x q EE p E E GR G p p 0 0 0 0 p x x p x p q EER

More information

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network. Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph

More information

700 STATEMENT OF ECONOMIC

700 STATEMENT OF ECONOMIC R RM EME EM ERE H E H E HE E HE Y ERK HE Y P PRE MM 8 PUB UME ER PE Pee e k. ek, ME ER ( ) R) e -. ffe, ge, u ge e ( ue ) -- - k, B, e e,, f be Yu P eu RE) / k U -. f fg f ue, be he. ( ue ) ge: P:. Ju

More information

ALLOWABLE STRESS DESIGN FLOWCHART FOR AISC MANUAL OF STEEL CONSTRUCTION, NINTH EDITION APPENDIX B BEARING STIFFENERS AND TRANSVERSE STIFFENERS DESIGN

ALLOWABLE STRESS DESIGN FLOWCHART FOR AISC MANUAL OF STEEL CONSTRUCTION, NINTH EDITION APPENDIX B BEARING STIFFENERS AND TRANSVERSE STIFFENERS DESIGN ALLOWABLE TRE DEIGN LOWCHART OR AIC MANUAL O TEEL CONTRUCTION, NINTH EDITION APPENDIX B BEARING TIENER AND TRANVERE TIENER DEIGN HEN-YEH CHEN, PH.D. Aug, 1995 All Righs Reserve. No pr o his ook my e reprouce

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

THE WEATHER f. Rain,' colder by night. New Jersey Advocate APPEALING! BENEFK VOL. XVIII. SERIAL NO Among- Those Present SIOUN AUTO CUPS

THE WEATHER f. Rain,' colder by night. New Jersey Advocate APPEALING! BENEFK VOL. XVIII. SERIAL NO Among- Those Present SIOUN AUTO CUPS P PBED E EEY RY ERE E EER RY E G R E G D 0 Z R P E R P E E D PPEG BEEF X ER 200 RY Y EDY FER RY 22929 R EYREEE D FR PE GRERE P GR RYD R z BG F x DER G EXGGERE x 3 B 6 / ± P B FREE DEERY RY E RE PPG EER

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 5317-6351 Mirowve Engineering Apte from notes Prof. Jeffer T. Willims Fll 18 Prof. Dvi R. Jkson Dept. of ECE Notes 1 Wveguiing Strutures Prt 5: Coil Cle 1 TEM Solution Proess A) Solve Lple s eqution

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

. :'=: t',.4 :; :::-':7'- --,r. c: --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'. = 47 \ \ L 3L f \ / \ L \ \ j \ \ 6! \ j \ / w j / \ \ 4 / N L5 Dm94 O6zq 9 qmn j!!! j 3DLLE N f 3LLE Of ADL!N RALROAD ORAL OR AL AOAON N 5 5 D D 9 94 4 E ROL 2LL RLLAY RL AY 3 ER OLLL 832 876 8 76 L A

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

400±10 THIS DRAWING IS A CONTROLLED DOCUMENT. DIMENSIONING AND TOLERANCING PER GPS (ISO STANDARDS). CHK

400±10 THIS DRAWING IS A CONTROLLED DOCUMENT. DIMENSIONING AND TOLERANCING PER GPS (ISO STANDARDS). CHK HIS RWING IS UNPUISHE. VERRUIHE UNVEROEFFENIHE ZEIHNUNG OPYRIGH0 Y YO EERONIS ORPORION. REESE FOR PUIION FREI FUER VEROEFFENIHUNG RIGHS RESERVE. E REHE VOREHEN. HE RWING SHOWS HE IMENSION REFERENE OMPONEN

More information

Science & Technologies GENERAL BIRTH-DEATH PROCESS AND SOME OF THEIR EM (EXPETATION- MAXIMATION) ALGORITHM

Science & Technologies GENERAL BIRTH-DEATH PROCESS AND SOME OF THEIR EM (EXPETATION- MAXIMATION) ALGORITHM GEERAL BIRH-EAH ROCESS A SOME OF HEIR EM EXEAIO- MAXIMAIO) ALGORIHM Il Hl, Lz Ker, Ylldr Seer Se ery o eoo,, eoo Mcedo l.hl@e.ed.; lz.er@e.ed.; ylldr_@hol.co ABSRAC Brh d deh roce coo-e Mrco ch, h odel

More information

Use 10 m/s 2 for the acceleration due to gravity.

Use 10 m/s 2 for the acceleration due to gravity. ANSWERS Prjecle mn s he ecrl sum w ndependen elces, hrznl cmpnen nd ercl cmpnen. The hrznl cmpnen elcy s cnsn hrughu he mn whle he ercl cmpnen elcy s dencl ree ll. The cul r nsnneus elcy ny pn lng he prblc

More information

Using integration tables

Using integration tables Using integrtion tbles Integrtion tbles re inclue in most mth tetbooks, n vilble on the Internet. Using them is nother wy to evlute integrls. Sometimes the use is strightforwr; sometimes it tkes severl

More information

_ =- 314 TH / 3 RD 60M AR M NT GROUP C L) _. 5 TH AIR F0 RCE ` Pl R?N ]9. ia UNIT, - _ : --.

_ =- 314 TH / 3 RD 60M AR M NT GROUP C L) _. 5 TH AIR F0 RCE ` Pl R?N ]9. ia UNIT, - _ : --. H OR UN UN4 Q NOV 99 O ^ 0 342g = o 3 RD 60M AR M N GROUP ) = 34 H q 5 H AR F0 RE P R?N ]9 9 B UA DA Q N0U 99 n > o > 4 = H PAGE DEAFED AW E0 2958 R2 R g 8 B B F 0 328 p NOV 99 DA 3 9 9 3 ne o B o O o

More information

LOW VOLTAGE FROM CABLE TRAY DRAFT 2 37 WAGO END PLATE - -

LOW VOLTAGE FROM CABLE TRAY DRAFT 2 37 WAGO END PLATE - - G KGE 00% FOR REVEW RERVE OE: hese designs and drawings were prepared by Jefferson cience ssociates, LL, hereinafter the ontractor, under ontract o. E00OR with the epartment (OE). ll rights in the designs

More information

flbc in Russia. PIWiREE COHORTS ARE NOT PULL- ING TOGETHER. SIGHTS AND SCENES IN ST. PETERSBURG.

flbc in Russia. PIWiREE COHORTS ARE NOT PULL- ING TOGETHER. SIGHTS AND SCENES IN ST. PETERSBURG. # O E O KOE O F Y F O VO V NO 5 OE KEN ONY Y 2 9 OE NO 265 E K N F z 5 7 X ) $2 Q - EO NE? O - 5 OO Y F F 2 - P - F O - FEE > < 5 < P O - 9 #»»» F & & F $ P 57 5 9 E 64 } 5 { O $665 $5 $ 25 E F O 9 5 [

More information

('(IMMr.lti'lAb I It I TI'J ;i tnn t - ' ".rt.r- - ; lire-- K. !llolplll fir on square, f r :h spice f J lir.e,.--, r quarter HAWAIIAN ISLANDS

('(IMMr.lti'lAb I It I TI'J ;i tnn t - ' .rt.r- - ; lire-- K. !llolplll fir on square, f r :h spice f J lir.e,.--, r quarter HAWAIIAN ISLANDS P ER N R b P 50 z N P 0 b b x E 0 N 0 x N E b N R P N N b b N N P 00 N x 50 b G 6 b N P R x 0 b 5 z N b b b b N b D E N x b b b b b b D b Y N b b b E E D b z P b z b b b R b Pb R b Ez Px P R P b b b P

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

Physics 120 Spring 2007 Exam #1 April 20, Name

Physics 120 Spring 2007 Exam #1 April 20, Name Phc 0 Spng 007 E # pl 0, 007 Ne P Mulple Choce / 0 Poble # / 0 Poble # / 0 Poble # / 0 ol / 00 In eepng wh he Unon College polc on cdec hone, ued h ou wll nehe ccep no pode unuhozed nce n he copleon o

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

A. Inventory model. Why are we interested in it? What do we really study in such cases.

A. Inventory model. Why are we interested in it? What do we really study in such cases. Some general yem model.. Inenory model. Why are we nereed n? Wha do we really udy n uch cae. General raegy of machng wo dmlar procee, ay, machng a fa proce wh a low one. We need an nenory or a buffer or

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

A simple 2-D interpolation model for analysis of nonlinear data

A simple 2-D interpolation model for analysis of nonlinear data Vol No - p://oog//n Nl Sn A mpl -D npolon mol o nl o nonln M Zmn Dpmn o Cvl Engnng Fl o nolog n Engnng Yo Unv Yo In; m@ml Rv M ; v Apl ; p M ABSRAC o mnon volm n wg o nonnom o n o po vlon o mnng n o ng

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

( 1) β function for the Higgs quartic coupling λ in the standard model (SM) h h. h h. vertex correction ( h 1PI. Σ y. counter term Λ Λ.

( 1) β function for the Higgs quartic coupling λ in the standard model (SM) h h. h h. vertex correction ( h 1PI. Σ y. counter term Λ Λ. funon for e Hs uar oun n e sanar moe (SM verex >< sef-ener ( PI Π ( - ouner erm ( m, ( Π m s fne Π s fne verex orreon ( PI Σ (,, ouner erm, ( reen funon ({ } Σ s fne Λ Λ Bn A n ( Caan-Smanz euaon n n (

More information

Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q5 of Paper 2 Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

RESOLUTION NO OVERSIGHT BOARD FOR THE SUCCESSOR AGENCY TO THE REDEVELOPMENT AGENCY OF THE CITY OF SOUTH SAN FRANCISCO

RESOLUTION NO OVERSIGHT BOARD FOR THE SUCCESSOR AGENCY TO THE REDEVELOPMENT AGENCY OF THE CITY OF SOUTH SAN FRANCISCO R. - 1 RG BR R R G RP G R PPRG RG BG P ( RP) R BG R PR 1 RG 17, PR 177( 1). R, elh fe e ei 177( 1), befe eh fil ei, he e ge ile Reeele ge i eqie ee f Regie bligi Pe hele (" RP") h li ll f he bligi h e

More information

GEOMETRY OF THE CIRCLE TANGENTS & SECANTS

GEOMETRY OF THE CIRCLE TANGENTS & SECANTS Geometry Of The ircle Tngents & Secnts GEOMETRY OF THE IRLE TNGENTS & SENTS www.mthletics.com.u Tngents TNGENTS nd N Secnts SENTS Tngents nd secnts re lines tht strt outside circle. Tngent touches the

More information

MCH T 111 Handout Triangle Review Page 1 of 3

MCH T 111 Handout Triangle Review Page 1 of 3 Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

ESS 265 Spring Quarter 2005 Kinetic Simulations

ESS 265 Spring Quarter 2005 Kinetic Simulations SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

More information

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = = Mi i fd l Phsic 3 Lecure 4 Min poins of od s lecure: Emple: ddiion of elociies Trjecories of objecs in dimensions: dimensions: g 9.8m/s downwrds ( ) g o g g Emple: A foobll pler runs he pern gien in he

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information