Chapter (3) Water Flow in Pipes


 Dorthy Allison
 3 years ago
 Views:
Transcription
1 Chapter (3) Water Flow in Pipes
2 Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study how to calculate the total losses( h L ): h L = Major Losses + Minor Losses Major Losses Occurs mainly due to the pipe friction and viscous dissipation in the flowing water. The major head loss is termed by(h f ). There are several formulas have been developed to calculate major losses: 1. DarcyWeisbach Formula: Is the most popular formula used to calculate major losses and it has the following form: h f = f ( L D ) (V g ), V = Q A = Q 8 f L Q π π g D 5 L = length of pipe (m) D = diameter of pipe (m) V = velocity head (m) g Q = flow rate (m 3 /s) f = friction factor 4 D h f = Friction Factor(f): For laminar flow (R e <000) the friction factor depends only on R e : f = 64 (smooth pipe) R e If the pipe is smooth (e= 0) and the flow is turbulent with (4000 <R e < 10 5 ) The friction factor depends only on R e : f = R e 0.5 Page () Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
3 Water Flow in Pipes For turbulent flow (R e > 4000) the friction factor can be founded by Moody diagram. To use Moody diagram you need the followings: The Reynolds number: R e The relative roughness: e D Reynolds Number: R e R e = ρ V D but ν = μ μ ρ R e = V D ν μ = dynamic viscosity (Pa. s) or kg/m. s ν = kinemaic viscosty (m /s) V = mean velocity in the pipe D = pipe diameter Note: Kinematic viscosity depends on the fluid temperature and can be calculated from the following formula: ν = T: is fluid temperature in Celsius (T + 4.5) 1.5 Relative Roughness: e D e(mm) = Roughness height (internal roughness of the pipe) and it depends mainly on the pipe material. Table (3.1) in slides of Dr.Khalil shows the value of e for different pipe materials. The following figure exhibits Moody diagram: Page (3) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
4 Water Flow in Pipes Note: Moody diagram is a graphical representation of ColebrookWhite formula: 1 = log (e/d f R e f ) Empirical Formulas for Friction Head Losses These formulas gives exact value for friction head losses and each formula extensively used in a specific field, for example, HazenWilliams formula is used extensively in water supply systems and most software s (like WaterCAD) used it in analyzing and design of water networks. However, Manning equation us extensively used in open channel, and in designing of waste water networks. See these formulas from the slides of Dr.Khalil. Page (4) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
5 Water Flow in Pipes Minor Losses Occurs due to the change of the velocity of the flowing fluid in the magnitude or in the direction. So, the minor losses at: Valves. Tees. Bends. Contraction and Expansion. The minor losses are termed by(h m ) and have a common form: h m = K L V g K L = minor losses coefficient and it depends on the type of fitting Minor Losses Formulas Entrance of a pipe: h ent = K entr V g Sudden Contraction: h sc = K sc V Gradual Enlargement: h ge = K ge (V 1 V ) Bends in pipes: h bend = K bend V g g Minor Losses g Exit of a pipe: h exit = K exit V g V Sudden Expansion: h se = K 1 se g or h se = (V 1 V ) g Gradual Contraction: h gc = K gc (V V 1 ) Pipe Fittings: h v = K v V The value of (K) for each fitting can be estimated from tables exist in slides of Dr.Khalil. You must save the following values of K: For sharp edge entrance: K = 0.5 For all types of exists: K = 1. g g Page (5) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
6 Water Flow in Pipes Problems 1. In the shown figure below, the smaller tank is 50m in diameter. Find the flow rate, Q. Assume laminar flow and neglect minor losses. Take μ = kg/m. s ρ = 788 kg/m 3 Solution For laminar f = 64 R e 1 R e = ρ V D μ = V R e = V (substitute in f) f = = R e V = (1) V Now by applying Bernoulli s equation from the free surface of upper to lower reservoir (Points 1 and ). P 1 ρg + v 1 g + z 1 = P ρg + v g + z + h L P 1 = P = V 1 = V = 0.0 Assume the datum at point () ( ) = h L h L = 1m h L = 1m = h f in the pipe that transport fluid from reservoir 1 to h f = f ( L D ) (V ) L = ( ) = 1.m, D = 0.00m g 1 = f ( ) ( V ) Substitute from (1)in () = V ( ) ( V ) V = m/s 19.6 Q = A V = π = m 3 /s. Page (6) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
7 Water Flow in Pipes. A uniform pipeline, 5000m long, 00mm in diameter and roughness size of 0.03mm, conveys water at 0 (ν = m /s) between two reservoirs as shown in the figure. The difference in water level between the reservoirs is 50m. Include all minor losses in your calculations, determine the discharge. Note: the valve produces a head loss of (10 V /g) and the entrance to and exit from the pipe are sharp. 1 Solution Applying Bernoulli s equation between the two reservoirs P 1 ρg + v 1 g + z 1 = P ρg + v g + z + h L P 1 = P = V 1 = V = 0.0 Assume the datum at lower reservoir (point ) = h L h L = 50m h L = h f + h m = 50 Major Losses: h f = f ( L D ) (V g ) = h f = f ( ) ( V ) = f V 19.6 Minor losses: For Entrance: V h ent = K entr g (For sharp edge entrance, the value ofk entr = 0.5) Page (7) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
8 Water Flow in Pipes V h ent = 0.5 = V 19.6 For Exit: h exit = K exit V g (For exit: K exit = 1) V h exit = 1 = V 19.6 For Valve: h valve = 10 V g = 0.51V h m = ( )V = V h L = f V V = 50 V = e D = = f > (1) In all problems like this (flow rate or velocity is unknown), the best initial value for f can be found as following: Draw a horizontal line (from left to right) starts from the value of e D till intercept with the vertical axis of the Moody chart and the initial f value is the intercept as shown in the following figure: Page (8) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
9 Water Flow in Pipes So as shown in the above figure, the initial value of f = Substitute in Eq. (1) V 50 = =.96 V = 1.7 m/s R e = V D = ν = e and = Moody D f = Substitute in Eq. (1) V = 1.54 R e = Moody f So, the velocity is V = 1.54 m/s Q = A V = π = m 3 /s. 3. The pipe shown in the figure below contains water flowing at a flow rate of m 3 /s. The difference in elevation between points A and B is 11m. For the pressure measurement shown, a) What is the direction of the flow? b) What is the total head loss between points A and B? c) What is the diameter of the pipe? Given data: ν = 10 6 m /s, e = 0.015mm, Pipe length = 50m, 1atm = 10 5 Pa. Page (9) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
10 Water Flow in Pipes Solution a) Direction of flow?? To know the direction of flow, we calculate the total head at each point, and then the fluid will moves from the higher head to lower head. Assume the datum is at point A: Total head at point A: P A ρg + v A g + z A = + v A 9810 g + 0 = v A g Total head at point BA: P B ρg + v B g + z B = v B g + 11 = v B g But, V A = V B (Since there is the same diameter and flow at A and B) So, the total head at B is larger than total head at A>> the water is flowing from B (upper) to A (lower). b) Head loss between A and B?? Apply Bernoulli s equation between B and A (from B to A) P B ρg + v B g + z B = P A ρg + v A g + z A + h L v B = v A + h g g L, But V A = V B h L = 5.9 m. c) Diameter of the pipe?? h L = h f + h m = 5.9m (no minor losses) h L = h f = 5.9m h f = f ( L D ) (V g ) 5.9 = f ( 50 D ) ( V 19.6 ) V = Q A = π 4 = D D V = D = f ( ) (6.85 ) 5.9 = f D 19.6 D4 D 5 Page (10) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
11 Water Flow in Pipes D 5 = f D = ( ) 1 5 f 1 5 D = 0.14 f R e = D D 10 6 = D Now, assume the initial value for f is 0.0 (random guess) D = = m R e = e D = = Moody f = D = = m R e = = e D = = Moody f So, the diameter of the pipe is m = 56 mm. 4. In the shown figure, the connecting pipe is commercial steel 6 cm in diameter having a roughness height of 0.045mm. Determine the direction of flow, and then calculate the flow rate. The fluid is water (μ = kg/m.s).neglect Minor losses. Solution Page (11) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
12 Water Flow in Pipes Assume the datum is at point 1: Total head at point A: P 1 ρg + v 1 g + z = = m 9810 Total head at point : P ρg + v g + z = = 15 m So, the total head at 1 is larger than total head at >> the water is flowing from 1 to. Applying Bernoulli s equation between 1 and : P 1 ρg + v 1 g + z 1 = P ρg + v g + z + h L = 15 + h L h L = 5.38 m h L = h f + h m = 5.38 m h m = 0 (given) h f = 5.38 m 5.38 = f ( L D ) (V g ) = h f = f ( ) ( V ) = 4.47 f V 19.6 V = 0.16 f R e = ρ V D = Eq. (1) μ e D = = V = 60,000V Eq. () Assume fully turbulent flow f = Sub. in (1) V =.64 m/s Sub. in () R e = Moody f = 0.0 V =.51 R e = Moody f 0.0 V =.51 m/s Q = A V = π = m 3 /s. Page (1) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
13 Water Flow in Pipes 5. Two reservoirs having a constant difference in water level of 66 m are connected by a pipe having a diameter of 5 mm and a length of 4km. The pipe is tapped at point C which is located 1.6km from the upper reservoir, and water drawn off at the rate of m 3 /s. Determine the flow rate at which water enters the lower reservoir. Use a friction coefficient of f = for all pipes. Use the following K values for the minor losses: K ent = 0.5, K exit = 1, K v = 5 Solution Applying Bernoulli s equation between points A and E: P A ρg + v A g + z A = P E ρg + v E g + z E + h L P A = P E = V A = V E = 0.0 Assume the datum at point E = h L h L = 66m h L = h f + h m = 66 Major Losses: Since the pipe is tapped, we will divide the pipe into two parts with the same diameter ; (1) 1.6 km length from B to C, and ().4 km length from C to D. Page (13) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
14 Water Flow in Pipes h f = f ( L D ) (V g ) For part (1) h f,1 = ( ) ( V ) = V 1 For part () h f, = ( ) ( V 19.6 ) = 19.6 V h f = V V Minor losses: For Entrance: (due to part 1) V 1 h ent = K entr g (K entr = 0.5) h ent = 0.5 V = V 1 For Exit: (due to part ) h exit = K exit V g ( K exit = 1) h exit = 1 V 19.6 = V For Valve: (valve exists in part ) h valve = 5 V g = 0.55V h m = V V +0.55V = V V h L = (13.05 V V ) + (0.055 V V ) = = V V Eq. (1) Continuity Equation: π V 1 = π V V 1 = V (substitute in Eq. (1)) Page (14) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
15 Water Flow in Pipes 66 = ( V ) V V = 0.89 m/s Q = π V = π = m 3 /s. Page (15) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
16 Chapter (4) Pipelines and Pipe Networks
17 Pipelines and Pipe Networks Flow through series pipes Is the same in case of single pipe (Ch.3), but here the total losses occur by more than 1 pipe in series. (See examples 3.9 and 4.1 in text book). Flow through Parallel pipes Here, the main pipe divides into two or more branches and again join together downstream to form single pipe. The discharge will be divided on the pipes: Q = Q 1 + Q + Q 3 + But, the head loss in each branch is the same, because the pressure at the beginning and the end of each branch is the same (all pipes branching from the same point and then collecting to another one point). h L = h f,1 = h f, = h f,3 = Pipelines with Negative Pressure (Siphon Phenomena) When the pipe line is raised above the hydraulic grade line, the pressure (gauge pressure) at the highest point of the siphon will be negative. The highest point of the siphon is called Summit (S). If the negative gauge pressure at the summit exceeds a specified value, the water will starts liberated and the flow of water will be obstructed. The allowed negative pressure on summit is 10.3m (theoretically), but in practice this value is 7.6 m. If the pressure at S is less than or equal (at max.) 7.6, we can say the water will flow through the pipe, otherwise (P s >7.6) the water will not flow and the pump is needed to provide an additional head. Note P abs = P atm + P gauge The value of P atm = kpa = = 10.3m 9810 P abs = P gauge So always we want to keep P abs positive (P gauge = 10.3m as max, theo. ) To maintain the flow without pump. Page (17) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
18 Pipelines and Pipe Networks Problems: 1. Three pipes A,B and C are interconnected as shown. The pipe are as follows: Find: 1) The rate at which water will flows in each pipe. ) The pressure at point M. Hint: Neglect minor losses. Pipe D (m) L (m) f A B C Solution Applying Bernoulli s equation between the points 1 and. P 1 ρg + V 1 g + z 1 = P ρg + V g + z + h L P 1 = V 1 = P = 0.0, V 1 = V C =??, h L =?? = 0 + V C h L V C + h L = 150m Eq. (1) h f = f ( L D ) (V g ) h f,a = h f,b (Parallel Pipes) (take pipe A) h L = h f,a + h f,c h f,a = 0.0 ( ) (V A g ) = 4.07V A Page (18) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
19 Pipelines and Pipe Networks h f,c = 0.04 ( ) (V C g ) = 7.34V C h L = 4.07V A V C V C V A V C = 150m (substitute in Eq. (1)) 7.39V C V A = 150m Eq. () How we can find other relation between V A and V C?? Continuity Equation Q A + Q B = Q C π V A + π V B = π 4 0. V C 0.05V A V B = 0.04V C Eq. (3) But, h f,a = h f,b h f,a = 4.07V A (calculated above) h f,b = 0.03 ( ) (V B g ) = 7.8V B 4.07V A = 7.8V B V B = 0.5 V A V B = 0.7 V A (substitute in Eq. (3)) 0.05V A (0.7 V A ) = 0.04V C V C = V A (Subs. in Eq. ) 7.39(0.805 V A ) V A = 150m V A = 4.11 m/s V B = =.13 m/s V C = = 3.3 m/s Q A = π = m 3 /s. Q B = π = m 3 /s. Q C = π = m 3 /s. Pressure at M: Bernoulli s equation between the points M and. P M ρg + V M g + z M = P ρg + V g + z + h L(M ) V M = V h L(M ) = h f,c = = 79.93m P M = P M = Pa.. Page (19) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
20 Pipelines and Pipe Networks. Three pipes A,B and C are interconnected as shown. The pipe are as follows: Find: Pipe D (m) L (m) f 1) The rate at which water will flows in each pipe. ) The pressure at point M. Solve the problem in the following two cases: a) The valve (V) is closed. b) The valve (V) is opened with K= 5 A B C Solution Case (a): Valve is closed When the valve is closed, no water will flowing in pipe B because the valve prevents water to pass through the pipe. Thus the water will flowing throughout pipe A and pipe C (in series) and the system will be as follows: Page (0) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
21 Pipelines and Pipe Networks Now, you can solve the problem as any problem (Pipes in series). And if you are given the losses of the enlargement take it, if not, neglect it. Case (b): Valve is Open Here the solution procedures will be exactly the same as problem (1) >> water will flow through pipe A and B and C, and pipes A and B are parallel to each other. But the only difference with problem (1) is: Total head loss in pipe A = Total head loss in pipe B Total head loss in pipe A = h f,a Total head loss in pipe B = h f,b + h m,valve V B h m,valve = K Valve g = 5 V B g Now, we can complete the problem, as problem The flow rate between tank A and tank B shown in the figure below is to be increased by 30% (i.e., from Q to 1.30Q) by the addition of a second pipe in parallel (indicated by the dotted lines) running from node C to tank B. If the elevation of the free surface in tank A is 7.5m above that in tank B, determine the diameter, D, of this new pipe. Neglect minor losses and assume that the friction factor for each pipe is Solution Page (1) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
22 Pipelines and Pipe Networks Before addition of pipe: Apply Bernoulli s equation between reservoirs A and B. P A ρg + V A g + z A = P B ρg + V B g + z B + h L(A B) = h L(A B) h L(A B) = 7.5 m h L(A B) = 7.5 m = V V = 1.88 m/s g Q before = A V = π = m 3 /s After addition of pipe: Q after,1 = 1.3 Q before = = m 3 /s V 1 = π =.33 m/s Apply Bernoulli s equation between reservoirs A and B = h L(A B) h L(A B) = 7.5 m h L(A B) = h f1 + h f 7.5 = g 0.15 V g V = m/s Q = A V = π = m 3 /s Q 3 = Q 1 Q = = 0.05 m 3 /s h f = h f = V 3 g D 3 g D 3 = 0.178V 3 Q 3 = A 3 V = π 4 D 3 V = π 4 (0.178V 3 ) V 3 V 3 = 0.99 m/s D 3 = = m = 174 mm. Page () Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
23 Pipelines and Pipe Networks 4. A 500 mm diameter siphon pipeline discharges water from a large reservoir. Determine: a. The maximum possible elevation of its summit, B, for a discharge of.15 m 3 /s without the pressure becoming less than 0 kn/m absolute. b. The corresponding elevation of its discharge end (Z C ). Neglect all losses. Solution P abs = P atm + P gauge P abs,b = 9810 =.038 m P atm = 10.3m P gauge,b = = 8.6m Q = AV V = Q A =.15 π = m/s Applying Bernoulli s equation between the points A and B. P A ρg + V A g + z A = P B ρg + V B g + z B + h L (Datum at A), h L = 0 (given) = z B + 0 z B =.15 m. Calculation of Z C : Applying Bernoulli s equation between the points A and C. P A ρg + V A g + z A = P C ρg + V C g + z C + h L (Datum at A), h L = 0 (given) = ( z C) z C = 6.11 m. Page (3) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
24 Pipelines and Pipe Networks 5. In the shown figure, if the length of the pipe between reservoir A and point B is 180 m and the absolute pressure at point B is 7.3 mwc. Calculate the minor loss coefficient (K) of the valve at point C. Given data: The entrance is sharp edged. Total length of pipe (L= 730 m), Pipe diameter (d = 150mm), friction factor (f = 0.0). Solution P abs,s = 7.3m, P atm = 10.3m P gauge,s = = 3m Apply Bernoulli s equation between the points A and D. Datum at (D): P A ρg + V A g + z A = P D ρg + V D g + z D + h L(1 D) = 0 + V g h L(1 D) 16 = V g + h L(1 D) Eq. (1) h L(1 D) = h f + h m h f = 0.0 ( ) (V g ) h m = 0.5 V g + K V v g h L(1 D) = 4.86V K v V Sub. in (1) 16 = V g V K v V But V =?? Apply Bernoulli s equation between the points A and B. Datum at (B): Page (4) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
25 Pipelines and Pipe Networks P A ρg + V A g + z A = P B ρg + V B g + z B + h L(1 B) = 3 + V g 0.15 V V = 1.77 m/s g 16 = K g v 1.77 K v = The difference in surface levels in two reservoirs connected by a siphon is 7.5m. The diameter of the siphon is 300 mm and its length 750 m. The friction coefficient is If air is liberated from solution when the absolute pressure is less than 1. m of water, what will be the maximum length of the inlet leg (the portion of the pipe from the upper reservoir to the highest point of the siphon) in order the siphon is still run if the highest point is 5.4 m above the surface level of the upper reservoir? What will be the discharge. Solution The graph is not given so you should understand the problem, and then drawing the system as follows: P abs = P atm + P gauge P abs,s = 1.m, P atm = 10.3m P gauge,s = = 9.1m Applying Bernoulli s equation between the points 1 and S. Datum at (1): Page (5) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
26 Pipelines and Pipe Networks P 1 ρg + V 1 g + z 1 = P S ρg + V S g + z S + h L(1 S) = V S g h L(1 S) Eq. (1) h L(1 S) = h f(1 S) = 0.05 ( X 0.3 ) ( V ) But V =?? 19.6 Applying Bernoulli s equation between the points 1 and. Datum at (): P 1 ρg + V 1 g + z 1 = P ρg + V g + z + h L(1 ) = h L(1 ) h L(1 ) = 7.5m h L(1 ) = 7.5m = h f(1 ) = 0.05 ( ) ( V 19.6 ) V = 1.534m h f(1 S) = 0.05 ( X 0.3 ) (1.534 ) = 0.01X (Substitute in Eq. (1)) = V S g X (V S = V = 1.534) = g X X = 358m. Page (6) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
27 Pipelines and Pipe Networks 7. For the threereservoir system shown. If the flow in pipe 1(from reservoir A to junction J)is 0.4m 3 /s and the friction factor for all pipes is 0.0, calculate: The flow in the other pipes (pipe, 3 and 4). The elevation of reservoir B (Z B ). Neglect minor losses. Solution If we put a piezometer at point J, the will rise at height of Z p, which can be calculated by applying Bernoulli s equation between A and J: P A ρg + V A g + z A = P J ρg + V J g + z + h L(A J) = Z P + h L(A J) h L(A J) = 8fLQ π = gd5 π g = 10.3m = Z P = m Note that Z P = > Z C = 80, So the flow direction is from J to C, and to calculate this flow we apply Bernoulli s equation between J and C: Z P Z C = h L(J C) = Q 4 π g Q 4 = m 3 /s. Now, by applying continuity equation at Junction J: = = ( Q + Q 3 ) Q + Q 3 = m 3 /s Page (7) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
28 Pipelines and Pipe Networks Since pipe and 3 are in parallel, the head loss in these two pipes is the same: h L, = h L,3 8fL Q π 5 gd = 8fL 3Q 3 π 5 gd Q π g 0. 5 = Q 3 π g Q 3 = 0.513Q But, Q + Q 3 = Q Q = Q = 0.1 m 3 /s. Q 3 = = m 3 /s. Now we want to calculate the elevation Z B : Apply Bernoulli s equation between J and B: Z P Z B = h L(J B) (take pipe ) Z B = π g 0. 5 Z B = 74.8 m. In the shown figure, determine the total length of pipe 3 (L 3 ) and the head delivered by the pump (h p ). Neglect minor losses and take f = 0.03 for all pipes. Page (8) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
29 Pipelines and Pipe Networks Solution h L,1 = 8fL 1Q 1 π 5 gd 40 = Q 1 1 π Q 1 = 0.54 m 3 /s h L, = 8fL Q π 5 gd 40 = Q π Q = 0.35 m 3 /s = 0.0 Q 3 = = 0.19 m 3 /s (direction shown in the figure) To find the total head at point J (Z P ): apply Bernoulli equation between J and A: Z P = 30 + h L(J A) Z P = = 38m To find the length of pipe 3 (L 3 ): apply Bernoulli between J and B: Z P = h L(J B) = L L 3 = 318. m. π To find the pump head (h P ): apply Bernoulli between C and J: 18 = Z P + h L,1 h P h P = = 60m. Page (9) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
30 Pipelines and Pipe Networks 9. The network ABCD is supplied by water from reservoir E as shown in the figure. All pipes have a friction factor f = 0.0. Calculate: 1. The flow rate in each pipe of the system using the Hardy Cross method. Consider the following: Assume for the first iteration that: Q CB = 0.15 m 3 /s from C to B and Q BA = 0.05 m 3 /s from B to A. Do only one iteration (stop after you correct Q). The pressure head at node A. Given Also: Nodes elevation Node/Point A B C D Reservoir E Elevation(m) Pipes dimension Pipe AB BC CD DA BD CE Length (m) Diameter (m) Page (30) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
31 Pipelines and Pipe Networks Solution Firstly, from the given flows, we calculate the initial flow in each pipe and the direction of flow through these pipes using continuity equation at each note. Always we assume the direction of the loop in clock wise direction We calculate the corrected flow in each pipe, from the following tables: Loop Pipe L D Q initial h f h f Q initial Q new AB I BD DA h f calculated for each pipe from the following relation: 8fLQ π gd = 0.05 m3 /s = h f h f = Q initial Q new = Q initial + Note that, we don t correct pipe BD because is associated with the two loops, so we calculate the flow in the associated pipe after calculating the correction in each loop. Page (31) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
32 Pipelines and Pipe Networks Loop Pipe L D Q initial h f h f Q initial Q new BC II BD CD = h f ( 1.0) h = f 10 = m3 /s Q initial Now, to calculate Q new for pipe BD, we calculate the associated value for correction: Q new,bd = Q initial,loop(1) + ( loop(1) loop() ) Q new,bd = ( ) = +0.0m 3 /s Or: Q new,bd = Q initial,loop() + ( loop() loop(1) ) Q new,bd = (0.005 ( 0.05)) = 0.0 m 3 /s Now, we put the corrected flow rate on each pipe of the network: Note: If the sign of the corrected flow rate is the same sign of initial flow rate, the direction of flow will remain unchanged, however if the sign is changed, the flow direction must reversed. Page (3) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
33 Pipelines and Pipe Networks To calculate the pressure head at point A, we must starts from point which have a known head, so we start from the reservoir. Important Note: The total head at any node in the network is calculated as following: h total = h pressure + h elevation h t = P γ + Z By considering a piezometer at each node, such that the water rise on it distance: P + Z and the velocity is zero. γ Starts from reservoir at E: Apply Bernoulli between E and C: = P C γ P C γ fLQ π gd 5 = π = 7.1m Apply Bernoulli between C and B: = P B γ P B γ fLQ π gd 5 = π = 16.38m Apply Bernoulli between B and A: = P A γ P A γ fLQ π gd 5 = π = 19.84m. Page (33) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
34 Pipelines and Pipe Networks 10. For all pipe segments, the initial estimate of the flow in each pipe (m 3 /s) is shown in the figure below. a) Show on the sketch all sources and sinks (in and out flows) of water from the pipe network. Use an arrow to indicate direction (in or out of system) and give the magnitude of the flow. b) Use HardyCross method to correct the flow rate through each pipe. Do only one iteration (stop after you correct Q), assume = 0.0 for all pipes and neglect minor losses. c) If the pressure head at A = 90m, determine the pressure head at E. Solution Page (34) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
35 Pipelines and Pipe Networks a) By applying continuity equation at each junction, the in and out flow from the system are shown in the following figure: b) We calculate the corrected flow in each pipe, from the following tables: Loop Pipe L D Q initial h f Q initial Q new AB BD I DC CA h f = h f ( 41.35) h = f 01 = m3 /s Q initial Page (35) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
36 Pipelines and Pipe Networks Loop Pipe L D Q initial h f h f Q initial Q new BE II BD DE = h f (+110) h = f = m3 /s Q initial Q new,bd = Q initial,loop(1) + ( loop(1) loop() ) Q new,bd = 0. + (0.108 ( 0.088)) = m 3 /s Or: Q new,bd = Q initial,loop() + ( loop() loop(1) ) Q new,bd = ( ) = m 3 /s. The corrected flows are shown in the following figure: Page (36) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
37 Pipelines and Pipe Networks point A: P γ = 90m and Z = 0m h t,a = = 110m Apply Bernoulli between A and B: 110 = P B γ P B γ fLQ π gd 5 = π Apply Bernoulli between B and E: = P E γ P E γ fLQ π gd 5 = 80. m = π = 49.9m. Page (37) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
38 Chapter (5) Pumps
39 Pumps 1. The figure below shows a portion of a pump and pipe system. The 30m long pipeline connecting the reservoir to the pump is 1m in diameter with friction factor f = 0.0. For the pump, the required net positive suction head (NPSH R ) is m. If the flow velocity V is.5 m/s check the system for cavitation. Take the atmospheric pressure = 100 kpa and the vapor pressure =.4 kpa. Solution (NPSH) A = ±h s h fs h ms + P atm γ P vapor γ h s = (10 5) = 5m ( ve sign because the supply tank is below the pump). h fs = f ( L D ) (V ) = 0.0 (30 g 1 ) ( ) = m h ms = ( ) V.5 = 7.5 g 9.81 =.39 m (NPSH) A = =.36 m (NPSH) A =.36 > (NPSH) R = System is adequate for cavitation. Page (39) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
40 Pumps. A pump is required to supply water to an elevated tank through a 0.m diameter pipe which is 300m long and has a friction factor f equal to Minor losses causes an additional head loss of 4V /g where V is the velocity in the pipe in m/s. The static head between the pump wet well and the elevated tank is 40 m. The relationship between head, H, and flow, Q, for the pump is given by the following equation: H= Q Where Q in m 3 /s and H in meters. a) under these conditions determine the flow in the pipeline b) if the maximum efficiency of the pump is achieved when the flow is 70 l/s then how could the system be redesigned so that the pump would operate at this efficiency. Solution Pump Curve Equation is: H= Q and since Q in m 3 /s we calculate the head at the following values of Q as shown in the following table: Q (m 3 /s) H (m) Now, we want to find the system head equation: To find the relation between the required head and flow for the system, the best way is to apply Bernoulli equation on the given system and then find the relation between pump head and flow rate (general case), or by applying the following equation (special case): H = H Static + h L When the pump is used to transfer water from one reservoir to the other. H = H Static + h L H Static = 40 m (given) h L = h f + h m Page (40) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
41 Pumps h L = 8fLQ π gd 5 + h m h m = 4 v g = 4 Q ga, but A = π 4 D = π 4 0. = h m =06. 7Q Q h L = π Q = 143.6Q So, the following equation is for system curve: H = Q Now, we calculate the head at the same values of Q (in pump curve) as shown in the following table: Q (m 3 /s) H (m) Now, we draw the pump curve and the system curve, and the point of intersection between the two curves is the operating point: As shown in figure above, the pump flow rate is 0.06 m 3 /s (60 l /s) and the pump head is 49m. Page (41) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
42 Pumps The required B, means if we get maximum efficiency if the operating point gives flow rate of (70 l/s) = 0.07 m 3 /s, what should you modify in the system to meet this efficiency?? From the above graph, the corresponding head at Q = 0.07 is 47.5m. Now, we know the system curve equation: H = 40 + h L At maximum efficiency, H = 47.5 m and Q = = 40 + h L h L = 7.5m Now the only, factor that we can change is the diameter of the pipe, or changing material of the pipe (change f value), but assume the same material, so change the diameter of the pipe as following: h L = 7.5 = π 9.81 D ( π 4 D ) D = 0.14m (to get maximum efficiency). 3. For the shown figure below, (a) what is the operation point for the system that shown in the figure below, the pump characteristics curve is given below (Assume f = 0.014), (b) If the efficiency of the system is 80%, what is the power required?, (c) What is the operation point in case of two identical pumps in parallel? Pipe is 0cm in diameter Page (4) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
43 Pumps Solution a) The pump curve is given as shown above, now we want to find the system curve. So firstly we find the system curve equation: By applying Bernoulli equation between the two reservoir, the equation will be: H = H Static + h L H Static = = 8.5 m h L = h f + h m h L = 8fLQ π gd 5 + h m h m = ( ) v g =.3 Q ga, but A = π 4 D = π 4 0. = h m =118.9Q ( )Q h L = π Q = 1619Q So, the following equation is for system curve: H = Q Page (43) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
44 Pumps But, in this equation Q is in m 3 /s and the horizontal axis in the given graph is in m 3 /min., so each value on the graph must be divided by 60 (to transform to m 3 /s) and then we draw the system curve on the same graph as following: The value of pump flow (at the operation point) is 3 m 3 /min = 0.05 m 3 /s. The value of pump head (at the operation point) is 1.55 m. b) η = γ Q H P in P in = = watt. c) When we use two pumps in parallel, the system curve will never change, but the pump curve will change (The values of head remains constant but the values of Q multiplied by ), so we draw the new pump curve by multiplying each value of Q by at each head as following: Page (44) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
45 Pumps So the new value of Q is 4.1 m 3 /min = m 3 /s and the new value of H is 16m. Page (45) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
46 Chapter (6) Open Channels
47 Open Channels Formulas used to describe the flow in open channels The most common formula is Manning equation: V = 1 n R /3 h S 0.5 n = manning coefficient S = The slope of channel bed. Wetted Area R h = Hydraulic Radius = Wetted Perimeter = A P Most Economical Section of Channels The most efficient section is satisfied when the flow in the channel is maximum and thereby the minimum wetted perimeter. I.e. for most economical section: dp dy = 0.0 OR dp = 0.0 such that, db y is the depth of water in channel also known by (normal depth) and B is the width of the channel. Energy Principals in Open Channels E specific = y + v g E s = y + Q A (for any cross section) g Special Case for rectangular channel: Since the width of the channel B is constant, we can calculate the discharge per unit width; q = Q B (m /s) q E s = y + y (For rectangular channel) g Subcritical, critical and supercritical flow: F R (Fround Number) = V gd h Area of flow D h = Hydraulic depth of channel = Water surface depth (T) Page (47) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
48 Open Channels F R < 1 Sub critical F R = 1 Critical F R > 1 Sper critical Critical Depth (y c ): Is the depth of flow of liquid at which at which the specific energy is minimum (E min ) and the flow corresponds to this point is called critical flow (F R = 1). So, we can classify the flow also as following: If y > y c Sub critical flow(f R < 1) If y = y c Critical flow(f R = 1) If y < y c Super critical flow(f R > 1) For rectangular channel: F R = V g y y 3 c = q g y c = ( q 1/3 g ) The critical velocity is: V c = g y c E min = E c = 1.5 y c NonRectangular Shapes (All Shapes): Q g = A3 T (To calculate y v c c), g = D h E min = E c = y c ( A T ) Page (48) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
49 Open Channels Hydraulic Jump y 1 = upstrem depth and y = downstream depth y 1 and y are called conjugate depths. y 1 < y For rectangular channel: y = 0.5 [ ( y 3 c ) ] (To calculate y y 1 y ) 1 y 1 = 0.5 [ ( y 3 c ) ] (To calculate y y y 1 ) Or in terms of Fround number: y y 1 = 0.5 [ F 1 ] F 1 = V 1 gy 1 (To calculate y ) y 1 y = 0.5 [ F ] F = V gy (To calculate y 1 ) Head loss (H L ) = E = (y y 1 ) 3 4y 1 y Height of Hydraulic jump (h J ) = y y 1 Length of Hydraulic jump (L J ) = 6h J Page (49) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
50 Open Channels 1. A trapezoidal channel is to be design to carry a discharge of 75m 3 /s at maximum hydraulic efficiency. The side slopes of the channel are 1V:H (1 vertical and horizontal) and the Manning s roughness n is If the maximum allowable velocity in the channel is 1.75m/s m what should be the dimensions of the channel (bottom width and height) What should be the longitudinal slope of the channel if the flow is uniform? Solution a) We draw the following graph (from the given data in the problem): y + (y) = 5 y A = Q V = 75 = 4.86 m 1.75 At maximum hydraulic efficiency (most economical section) dp dy = 0.0 Or dp db = 0.0 P = B + 5 y P = B y Eq. (1) A = 4.86 = By + 1 y y 4.86 = By + y B = 4.86 y P = 4.86 y (Substitute in Eq. (1)) y y P = 4.86 y +.47y y dp dy = 4.86 y +.47 = 0.0 (for most economical) Page (50) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
51 Open Channels 4.86 y =.47 y = 4.16 m. B = = 1.98 m b) According Manning equation: V = 1 n R /3 h S 0.5 V = 1.75 m/s, n = 0.03 (given) R h = A P = =.083 m 1.75 = /3 S 0.5 S = m/m.. In the figure shown, water flows uniformly at a steady rate of 0.4 m 3 /s in a very long triangular flume (open channel) that has side slopes 1:1. The flume is on a slope of 0.006, and n = 0.01; (a) Find normal depth (y n ). (b) Determine wether the flow is subcritical or supercritical. (c) Find the specific energy (E s ) and the critical specific energy (E c ). y + y = y Page (51) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
52 Open Channels Solution a) To find the normal depth, we use Manning equation: V = 1 n R /3 h S 0.5 Q = AV = A n R /3 h S 0.5 Q = 0.4 m 3 /s, n = 0.01, S = (Givens) A = area of triangle = 1 (y) y = y R h = A P = y y = 0.353y now, substitute by all above data in Manning s equation: 0.4 = y 0.01 (0.353y)/ y = m. b) To determine the type of flow, there are two methods: F R = V gd h V = Q A = 0.4 = m/s D h = A T = y y = = 0.85 m F R = = 1.8 > 1 Supercritical Or, we calculate the critical depth: Q ) 3 g = A3 T = (y c y y c = c Since y c = > y = Supercritical. c) E S = y + v = = m. g 9.81 E c = y c + 1 (A T ) = ( ) = 0.63 m E c = E min must be less than E S. Page (5) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
53 Open Channels 3. You are asked to design a rectangular channel that has the minimum wetted perimeter and that conveys flow in critical condition. Find the relationship between the critical depth and the channel width if the flow discharge is constant. Your answer should look something like y c = mb, where m is constant and B is the channel width. Solution P = B + y c Eq. (1) We want other relation, between B and y c For rectangular channel: y 3 c = q g, (q = Q B ) y c 3 = Q B g B = Q y 3 c g B = Q y 3/ c g B = Q g y c 3/ (Substitute in Eq. (1)) P = Q y c 3/ + y c g Remember: Critical velocity in dp = 0.0 (for most economical) rectangular open channel is: gy dy c c dp = 1.5 Q dy c g y c 5 + = 0.0 = 1.5 Q g y c 5 But, Q = AV c = By c gy c = B g y c 3 = 1.5 B g y c g y c = 0.75 B. 3 y 5 5 c y c = 1.5 B y c We can solve this problem alternatively as following: P = B + y c dp = db + db = Eq. (1) dy c dy c dy c Now, we want to find other relation for db dy c 3 3 y c y c = 1.5 B y c 3 Page (53) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
54 Open Channels y c 3 = q g = Q B g B y c 3 = Q g (Now, Derive according to y c) (B )(3y c ) + (B db dy c ) (y c 3 ) = 0.0 تذكر: مشتقة حاصل ضرب اقترانين: األول * مشتقة الثاني + مشتقة األول * الثاني 3B y c + By c 3 db dy c = 0.0 (Substitute from Eq. (1)) ( db dy c = ) 3B y c + By c 3 = 0.0 3B y c = 4By c 3 y c = 0.75B. 4. A rectangular channel carrying a supercritical stream is to be provided with a hydraulic jump type of energy dissipater. It is required to have an energy loss of 5m in the jump when the inlet Fround number is 8.5.(F 1 = 8.5) Determine the conjugate depths. (y 1, y ). Solution y = 0.5 [ F y 1 ] y = 0.5 [ y ] 1 y = 11.53y 1 Eq. (1) E = 5 = (y y 1 ) 3 (Substitute from Eq. (1)) 4y 1 y 5 = (11.53y 1 y 1 ) 3 y 4y y 1 = m. 1 y = =.7 m. Page (54) Dr.Khalil Alastal Eng. Ahmed AlAgha Eng. Ruba Awad
Chapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationChapter (6) Energy Equation and Its Applications
Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation
More informationChapter (4) Motion of Fluid Particles and Streams
Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More informationViscous Flow in Ducts
Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationSTEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY
STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience
More informationME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationHydraulic (Piezometric) Grade Lines (HGL) and
Hydraulic (Piezometric) Grade Lines (HGL) and Energy Grade Lines (EGL) When the energy equation is written between two points it is expresses as in the form of: Each term has a name and all terms have
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationCVE 372 HYDROMECHANICS EXERCISE PROBLEMS
VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationA Model Answer for. Problem Set #7
A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More informationWhen water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More information1Reynold s Experiment
Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationPROPERTIES OF FLUIDS
Unit  I Chapter  PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pas To find : Shear stress. Step  : Calculate the shear stress at various
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationFLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines.
FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through
More informationREE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology
REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes
More informationNPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
More informationFluid Mechanics II 3 credit hour. Fluid flow through pipesminor losses
COURSE NUMBER: ME 323 Fluid Mechanics II 3 credit hour Fluid flow through pipesminor losses Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Losses in Noncircular
More informationClosed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.
OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationClosed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.
OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric
More informationAn overview of the Hydraulics of Water Distribution Networks
An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationWe will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time).
56 Review Drag & Lift Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! 8. OpenChannel Flow Pipe/duct flow closed, full,
More informationNew Website: M P E il Add. Mr. Peterson s Address:
Brad Peterson, P.E. New Website: http://njut009fall.weebly.com M P E il Add Mr. Peterson s Email Address: bradpeterson@engineer.com If 6 m 3 of oil weighs 47 kn calculate its If 6 m 3 of oil weighs 47
More informationLECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS
LECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a
More informationCHAPTER THREE FLUID MECHANICS
CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under
More informationWater Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:
Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationChapter 7 FLOW THROUGH PIPES
Chapter 7 FLOW THROUGH PIPES 71 Friction Losses of Head in Pipes 72 Secondary Losses of Head in Pipes 73 Flow through Pipe Systems 48 71 Friction Losses of Head in Pipes: There are many types of losses
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationCIE4491 Lecture. Hydraulic design
CIE4491 Lecture. Hydraulic design Marieclaire ten Veldhuis 199013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More informationHydraulics Prof Dr Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati
Hydraulics Prof Dr Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No # 08 Pipe Flow Lecture No # 04 Pipe Network Analysis Friends, today we will be starting
More information9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.
Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Basics (pressure head, efficiency, working point, stability) Pumps
More informationChapter 3 Water Flow in Pipes
The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics  ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution
More informationHydraulic Design Of Polyethylene Pipes
Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of
More informationCE 6403 APPLIED HYDRAULIC ENGINEERING UNIT  II GRADUALLY VARIED FLOW
CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT  II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows  Water surface flow profile classifications: Hydraulic Slope, Hydraulic
More informationPumping Stations Design For Infrastructure Master Program Engineering FacultyIUG
umping Stations Design For Infrastructure Master rogram Engineering FacultyIUG Lecture : umping Hydraulics Dr. Fahid Rabah Water and environment Engineering frabah@iugaza.edu The main items that will
More informationHydraulics Part: Open Channel Flow
Hydraulics Part: Open Channel Flow Tutorial solutions by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of
More informationMajor and Minor Losses
Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationUniform Flow in Open Channels
1 UNIT 2 Uniform Flow in Open Channels Lecture01 Introduction & Definition Openchannel flow, a branch of hydraulics, is a type of liquid flow within a conduit with a free surface, known as a channel.
More informationProperties and Definitions Useful constants, properties, and conversions
Properties and Definitions Useful constants, properties, and conversions gc = 32.2 ft/sec 2 [lbmft/lbfsec 2 ] ρwater = 1.96 slugs/ft 3 γwater = 62.4 lb/ft 3 1 ft 3 /sec = 449 gpm 1 mgd = 1.547 ft 3 /sec
More informationBasic Hydraulics. Rabi H. Mohtar ABE 325
Basic Hydraulics Rabi H. Mohtar ABE 35 The river continues on its way to the sea, broken the wheel of the mill or not. Khalil Gibran The forces on moving body of fluid mass are:. Inertial due to mass (ρ
More informationChapter 10 Flow in Conduits
Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationCIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University
CIVE 401  HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with
More informationHydraulics of pipelines
Hydraulics of pipelines K 4 HYAE Hydraulics of pipelines Application of Bernoulli equation BE continuity equation CE g g p h g g p h loss head (losses): friction losses t (in distance L) local losses m
More informationExperiment To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.
SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s
More informationFLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10
Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationρg 998(9.81) LV 50 V. d2g 0.062(9.81)
6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm in diameter. Estimate the flow rate, in m 3 /h, if the fluid is water at 0 C. Which way is the flow? Solution: For water, take ρ = 998 kg/m
More informationPressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.
Design Manual Chapter  Stormwater D  Storm Sewer Design D Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm
More informationPresented by: Civil Engineering Academy
Presented by: Civil Engineering Academy OpenChannel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Nonuniform Flow *Not on
More informationLOSSES DUE TO PIPE FITTINGS
LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall
More informationFluid Mechanics Discussion. Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad
Discussion Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad 20142015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance
More informationUNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1
OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationFLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE
11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate
More informationCHAPTER EIGHT P U M P I N G O F L I Q U I D S
CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid
More informationChapter Four Hydraulic Machines
Contents 1 Introduction.  Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. 3 4 Cavitation in hydraulic machines. 5 Examples. 6 Problems; sheet No. 4 (Pumps) 7 Problems;
More information1.060 Engineering Mechanics II Spring Problem Set 8
1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members
More informationDr. Muhammad Ali Shamim ; Internal 652
Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051904765; Internal 65 Channel Tranistions A channel transition is defined as change in channel cross section e.g. change in channel width and/or channel
More informationChapter 4: Non uniform flow in open channels
Chapter 4: Non uniform flow in open channels Learning outcomes By the end of this lesson, students should be able to: Relate the concept of specific energy and momentum equations in the effect of change
More informationPressure and Flow Characteristics
Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to
More informationAdvanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati
Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module  5 Channel Transitions Lecture  1 Channel Transitions Part 1 Welcome back
More informationThe ImpulseMomentum Principle
Chapter 6 /60 The ImpulseMomentum Principle F F Chapter 6 The ImpulseMomentum Principle /60 Contents 6.0 Introduction 6. The Linear ImpulseMomentum Equation 6. Pipe Flow Applications 6.3 Open Channel
More informationME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.
Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C
More informationIf a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
More informationQ1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
More informationPart A: 1 pts each, 10 pts total, no partial credit.
Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: 3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,
More informationFluids Engineering. Pipeline Systems 2. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET
COURSE NUMBER: ME 423 Fluids Engineering Pipeline Systems 2 Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 SERIES PIPE FLOW WITH PUMP(S) 2 3 4 Colebrook
More informationWATER DISTRIBUTION NETWORKS
WATER DISTRIBUTION NETWORKS CE 370 1 Components of Water Supply System 2 1 Water Distribution System Water distribution systems are designed to adequately satisfy the water requirements for a combinations
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationLecture 3 The energy equation
Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5
More informationWater Flow in Open Channels
The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics  ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows
More information