( 1)u + r2i. f (x2i+1 ) +

Size: px
Start display at page:

Download "( 1)u + r2i. f (x2i+1 ) +"

Transcription

1 Malaya Joural of Maemak, Vol. 6, No., 6-76, 08 hps://do.org/0.667/mjm060/00 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods Maa J. Rassas, M. Arukumar, P. Agla * Absrac I hs paper, he auhors roduce ad esablsh he geeral soluo ad geeralzed Ulam- Hyers sably of a r ype dmesoal Quadrac-Cubc fucoal equao [ f (r x r x )] # r v r r ()uv r r ()u r () u v ( f (() x () x )) u0 v0 r r r r r r r r f (x ) f (x ) r r r r r r r r f (x ) f (x ) " where r, r R {0}, ( 0,, ) ad s a posve eger Radom ormed spaces. Keywords Quadrac fucoal equao, Cubc fucoal equao, Mxed fucoal equao, Geeralzed Ulam - Hyers sably,fxed po, Radom ormed spaces. AMS Subjec Classfcao 9B5, B7, B8. Deparme of Sascal Scece, Uversy College odo, -9 Torrgo Place, 0, odo, WCE 7HB, UK. Deparme of Mahemacs, Goverme Ars College, Truvaamala , TamlNadu, Ida. Deparme of Mahemacs, Jeppaar Isue of Techology, Srperumbudur, Chea , Taml Nadu, Ida. *Correspodg auhor: maa@sas.ucl.ac.uk; aaru00@gmal.co.; aglram@gmal.com Arcle Hsory: Receved November 07; December 0 December 07 Coes Iroduco Geeral Soluo Prelmares of Radom Normed Spaces Sably Resuls : Drec Mehod Sably Resuls: Fxed po Mehod c 07 MJM. Refereces Iroduco I 90, Ulam [0] a he Uversy of Wscos proposed he followg sably problem: A basc queso he heory of fucoal equaos s as follows: whe s rue ha a fuco, whch approxmaely sasfes a fucoal equao, mus be close o a

2 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 6/76 exac soluo of he equao? I 9, D. H. Hyers [] gave a affrmave aswer o he queso of S.M. Ulam for Baach spaces. I 950, T. Aok [] was he secod auhor o rea hs problem for addve mappgs. I 978, Th.M. Rassas [] succeeded exedg Hyers Theorem by weakeg he codo for he Cauchy dfferece corolled by ( x p y p ), p [0, ), o be ubouded. I 98, J.M. Rassas [] replaced he facor x p y p by x p y q for p, q R. A geeralzao of all he above sably resuls was obaed by P. Gavrua [8] 99 by replacg he ubouded Cauchy dfferece by a geeral corol fuco ϕ(x, y). I 008, a specal case of Gavrua s heorem for he ubouded Cauchy dfferece was obaed by K.Rav eal., [6] by cosderg he summao of boh he sum ad he produc of wo p orms. These ermologes are also appled o he folder of oher fucoal equaos ad has bee exesvely vesgaed by a umber of auhors ad here are couless remarkable resuls perag o hs problem ogeher wh mxed ype fucoal equaos (see[,, 7, 9, 5]) ad refereces ced here. The fucoal equao oal equaos f (x ky) f (x ky) k f (x y) k f (x y) (k ) f (kx) k (k ) (k k k ) 8 f (y) f (x) f (y) (k ) (.5) f (y) f (y) for fxed egers k wh k 6 where f (y) 0, ±, Radom Normed Spaces. Recely M. Arukumar ad P. Agla [] roduced ad vesgaed he soluo ad sably of geeralzed UlamHyers Sably of a r ype -dmesoal Addve Quadrac fucoal equao rj j f r x f (x ) () f (x ) j r r j < j () p0 pq p q f [() x () x j ] q0 (.6) f (x y) f (x y) f (x) f (y) (.) s relaed o a symmerc b-addve mappg (see[, 9]). I s aural ha hs equao s called a quadrac fucoal equao. I parcular, every soluo of he quadrac equao (.) s sad o be a quadrac mappg. K.W.Ju ad H.M.Km [5] cosdered he followg fucoal equao where r ad are posve egers wh quas bea ormed spaces. I hs paper, he auhors esablsh he geeral soluo ad geeralzed Ulam- Hyers sably of a r ype dmesoal Quadrac-Cubc fucoal equao [ f (r x r x )] f (xy) f (xy) f (xy) f (xy) f (x) (.) whch s called a cubc fucoal equao ad every soluo of he cubc fucoal equao s sad o be a cubc mappg. G.H.Km, H.Y.Sh [0] roduced ad vesgaed he geeralzed Ulam-Hyers Sably of he followg more geeralzed cubc fucoal equao f (rx sy) f (rx sy) rs f (x y) rs f (x y) r(r s ) f (x) r r ()uv ()u r r u0 v0 r r ()v 6 f (x y) 6 f (x y) f (y) f (x y) ( f (()u x ()v x )) r r r r r r r r r r r r r r r r (.) where r 6 ±, 0, s are real umbers. I 00, I.S.Chag ad Y.S.Jug [5], vesgaed he soluo ad sably of he fucoal equao f (x ) f (x ) f (x ) f (x ) (.7) where r, r R {0}, ( 0,, ) ad s a posve eger Radom ormed spaces. I Seco, he geeral soluo of he fucoal equadervg from cubc ad quadrac fucos. Recely he o (.7) s gve, I Seco, basc defo ad prelmfuzzy sably of (.) was dscussed by Z.H.Wag ad W.X.Zhagares of Radom ormed space s prese, I Seco, he []. Yeol Je Cho e.al., [7] esablshed he geeral soluo geeralzed Ulam - Hyers sably of he fucoal equao ad sably of geeralzed mxed ype quadrac-cubc fuc- (.7) s proved va Hyers mehod. f (x y) 9 f (x) (.) 6

3 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 6/76. Geeral Soluo I hs seco, we prese he geeral soluo of he fucoal equao (.7). Through ou hs seco le X ad Y be real vecor spaces. eg x y 0 (.), we ge f (0) 0. Replacg y by x (.), we ge f (x) f (x) (.8) emma.. A eve fuco f : X Y sasfes he quadrac fucoal equao (.) f ad oly f f : X Y sasfes he fucoal equao (.7) for all x0, x,..., x, x X. for all x X. I geeral for ay posve eger a, we have Proof. Assume f : X Y sasfes he fucoal equao (.7). Usg eveess of f (.7), we arrve for all x X. By [[, 9]], here exss a uque symmerc b-addve mappg B : X X Y such ha f (x) B(x, x) for all x X ad f (ax) a f (x) [ f (r x r x )] B(x, y) [ f (x y) f (x y)] r f (x ) r f (x ) (.) f (r x r x ) for all x0, x,..., x, x X. Subsug (x0, x,..., x, x ) by (0, 0..., 0, 0) (.), we ge f (0) 0. Replacg (x0, x,..., x, x ) by (x, y, 0,..., 0, 0) (.), we have f (r0 x r y) r0 f (x) r f (y) r0 r [ f (x y) f (x y)] (.) B(r x, r x r x ) B(r x, r x ) B(r x, r x ) r r B(x, x ) r r B(x, x ) r B(x, x ) r r B(x, x ) r r B(x, x ) r B(x, x ) (.) f (r y) r f (y) (.) for all y X. Seg y by y ad usg eveess of f (.), we reach f (r0 x r y) r0 f (x) r f (y) r0 r B(r x, r x r x ) r r B(x, x ) r r B(x, x ) for all x X. Aga, f we pu x by 0 (.) ad usg eveess of f, we ge B(r x r x, r x r x ) B(r x, r x ) B(r x, r x ) for all x, y X. If we pu y by 0 (.), we oba f (r0 x) r0 f (x) [ f (x y) f (x y)] (.0) for all x, y X. Hece, for ( 0,, ), we have r r ( f (x x ) f (x x )) (.9) (.5) r B(x, x ) r r B(x, x ) r r B(x, x ) r B(x, x ) r B(x, x ) r r B(x, x ) r B(x, x ) r r ( f (x x ) r f (x ) f (x x )) r f (x ) (.) for all x, x X. Thus, from (.) ha [ f (r x r x )] for all x, y X. Addg (.) ad (.5), we arrve f (r0 x r y) f (r0 x r y) r0 f (x) r f (y) (.6) for all x, y X. Usg (.) ad (.) (.6), we have f (r0 x r y) f (r0 x r y) f (r0 x) f (r y) f (x ) r f (x ) r (.7) for all x, y X. Fally, replacg (x, y) by rx0, ry (.7), we arrve (.). Coversely, e f : X Y sasfes (.). 6 r r ( f (x x ) f (x x )) (.) for all x0, x,..., x, x X. Sce f s a eve fuco, ca be wre as f (x) ( f (x) f (x)) (.)

4 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 65/76 for all x X. Wh he help of (.), (.) ca be wre as (x0, x,..., x, x ) by (x0, x, 0,..., 0, 0) (.6),we have f (r0 x0 r x ) [ f (r x r x )] r r [ f (x ) f (x )] [ f (x ) f (x )] r0 r [ f (x0 x ) f (x0 x )] r0 r [ f (x0 x ) f (x0 x )] (r0 r r0 ) f (x0 ) (r0 r r ) f (x ) (.7) for all x0, x X. If we pu x by 0 (.7), we oba r r [ f (x x ) f (x x ) f ((x x )) f ((x x ))]] f (r0 x0 ) r0 f (x0 ) (.) for all x0, x,..., x, x X. Addg he followg erms (.8) for all x0 X. Aga, f we pu x0 by 0 (.7) ad usg oddess of f, we ge f (r x ) r f (x ) (.9) r ) f (x ), f (r r for all x X. Seg x by x ad usg oddess of f (.7), we reach ) f (x ), f (r r r f (r0 x0 r x ) r r [ f (x x ) f (x x )], r r [ f (x x ) f (x x )] (.5) o boh sdes of (.), ad usg eveess of f, we reach (.7) for all x0, x,..., x, x X. Hece he proof s complee. r0 r [ f (x0 x ) f (x0 x )] r0 r [ f (x0 x ) f (x0 x )] (r0 r r0 ) f (x0 ) (r0 r r ) f (x ) (.0) for all x0, x X. Addg (.7) ad (.0), we arrve (.) he form of f (r0 x0 r x ) f (r0 x0 r x ) r0 r f (x0 x ) r0 r f (x0 x ) r0 (r0 r ) f (x0 ) (.) emma.. A odd fuco f : X Y sasfes he cubc fucoal equao (.) where r 6 ±, 0, s are real umbers f ad oly f f : X Y sasfes he fucoal equao (.7) for all x0, x,..., x, x X. Proof. Assume f : X Y sasfes he fucoal equao (.7). Usg oddess of f (.7), we arrve for all x0, x X. where r0 6 ±, 0, r are real umbers. Hece f Sasfes (.). Aga, replacg (x0, x, x, x..., x, x ) by (0, 0, x, x,..., 0, 0) (.6), we have f (r x r x ) [ f (r x r x )] r r [ f (x x ) f (x x )] r r [ f (x x ) f (x x )] (r r r ) f (x ) (r r r ) f (x ) (.) " r r ( f (x x ) f (x x )) r r ( f (x x ) f (x x )) (r r r ) f (x ) (r r r ) f (x ) (.6) for all x0, x,..., x, x X. Subsug (x0, x,..., x, x ) by (0,..., 0, 0) (.6), we ge f (0) 0. Replacg 65 for all x, x X. I follows from he seps (.8) o (.), we have (.) he form of f (r x r x ) f (r x r x ) r r f (x x ) r r f (x x ) r (r r ) f (x ) (.) for all x, x X. where r 6 ±, 0 ad r are real umbers. By coug hs maer, fally replacg (x0, x,..., x, x ) by

5 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 66/76 for all x, x X, Fally ( 0,..., 0, x, x ) mes f (r x r x ) (.6), we have f (r x r x ) r r [ f (x x ) f (x x )] r r [ f (x x ) f (x x )] (r r r ) f (x ) r r [ f (x x ) f (x x )] r r [ f (x x ) f (x x )] (r r r ) f (x ) (r r r ) f (x ) (r r r ) f (x ) (.) for all x, x X. Aga, I follows from he seps (.8) o (.), we have (.) he mold of (.5) (.6) for all x0 X. Replacg x0 by r x ad x by r0 x0 (.), ad dvdg he resula by r0 r, we oba f (r x r0 x0 ) f (r x r0 x0 ) r0 r [ f (x x0 ) f (x x0 )] r r ( f (x x ) f (x x )) r r ( f (x x ) f (x x )) (r r r ) f (x ) r r r ) f (x ) (.) for all x0,..., x, x X. Sce f s a odd fuco, ca be wre as f (x) ( f (x) f (x)) (.) for all x X. Wh he help of (.), (.) ca be remodfy as, (.7) for all x0, x X. Aga, replacg x0 by x ad x by x0 ad usg oddess of f (.7), we ge [ f (r x r x )] " f (r0 x0 r x ) f (r0 x0 r x ) r0 r [ f (x0 x ) f (x0 x )] r (r0 r ) f (x ) " for all x, x X. where r 6 ±, 0 ad r are real umbers. Coversely, assume f : X Y sasfes he fucoal equao (.). Subsug (x0, x ) by (0, 0) (.), we ge f (0) 0. Replacg (x0, x ) by (x0, 0) (.), we have r (r0 r ) f (x ) [ f (r r r x )] r r f (x y) r r f (x y) f (r0 x0 ) r0 f (x0 ) for all x, x X. Addg (.9), (.0) ad (.), we reach f (r x r y) f (r x r y) r (r r ) f (x) (.) r r [[( f (x x ) f (x x ))] [ f ((x x )) f ((x x )))]] r r [[( f (x x ) f (x x ))] [( f ((x x )) f ((x x )))]] (.8) for all x0, x X. Subsug (.8) (.7), we arrve r r r [ f (x ) f (x )] # r (r r ) [ f (x ) f (x )] r0 r f (r0 x0 r x ) [ f (x0 x ) f (x0 x )] r r 0 [ f (x0 x ) f (x0 x )] (r0 r r0 ) f (x0 ) (r0 r r ) f (x ) (.) for all x0,..., x, x X. Addg he followgs erms (.9) for all x0, x X. By applyg he procedure from (.6) o (.9), (.) ad (.5), we have he followg equaos r r f (r x r x ) [ f (x x ) f (x x )] r r [ f (x x ) f (x x )] (r r ) f (x ) (r r r ) f (x ) (.0) 66 r f (x ), r f (x ), r r ( f (x x ) f (x x )) (.5)

6 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 67/76 o boh sdes of (.), ad usg oddess of f, we reach (.7) (RN) µxy ( s) τ (µx (), µy (s)) for all x, y X ad, s for all x0,..., x, x X. Hece he proof s compleed. 0. Example.. Every ormed spaces (X, ) defes a radom ormed space (X, µ, τm ), where. Prelmares of Radom Normed Spaces µx () I he sequel, we adop he usual ermology, oaos ad coveos of he heory of radom ormed spaces as [6, 8, 9]. Throughou hs paper, s he space of dsrbuo fucos, ha s, he space of all mappgs F : R {, } [0, ], such ha F s lefcouous ad odecreasg o R, F(0) 0 ad F( ). D s a subse of cossg of all fucos F for whch l F( ), where l f (x) deoes he lef lm of he fuco f a he po x, ha s, l f (x) lm f (). The space s parally ordered x by he usual powse orderg of fucos, ha s, F G f ad oly f F() G() for all R. The maxmal eleme for hs order s he dsrbuo fuco ε0 gve by 0, f 0, ε0 () (.), f > 0. Defo.. [8] A mappg τ : [0, ] [0, ] [0, ] s called a couous ragular orm (brefly, a couous orm) f τ sasfes he followg codos: (a) τ s commuave ad assocave; (b) τ s couous; Defo.. e (X, µ, τ) be a RN-space. () A sequece {x } X s sad o be coverge o a po x X f, for ay ε > 0 ad λ > 0, here exss a posve eger N such ha µx x (ε) > λ for all N. () A sequece {x } X s called a Cauchy sequece f, for ay ε > 0 ad λ > 0, here exss a posve eger N such ha µx xm (ε) > λ for all m N. () A RN-space (X, µ, τ) s sad o be complee f every Cauchy sequece X s coverge o a po X. Theorem.5. If (X, µ, τ) s a RN-space ad {x} s a sequece X such ha x x, he lm µx () µx () almos everywhere. Hereafer, hroughou hs paper, le us cosder U be a lear space ad (V, µ, τ) s a complee RN-space. Defe a mappg f : U V by (d) τ(a, b) τ(c, d) wheever a c ad b d for all a, b, c, d [0, ]. Typcal examples of couous orms are τp (a, b) ab, τm (a, b) m(a, b) ad τ (a, b) max(a b, 0) (he ukasewcz orm). Recall (see [0, ]) ha f τ s a orm ad x s a gve sequece of umbers [0, ], he x τ s defed recurrely by τ x x ad τ x τ τ x, x f or. x s defed as τ x τ. I s kow [] ha, for he ukasewcz orm, he followg mplcao holds: ad τm s he mmum orm. Ths space s called he duced radom ormed space. f (x0, x,, x, x ) (c) τ(a, ) a for all a [0, ]; lm (τ ) x x ( x ) < (.) [ f (r x r x )] r r ()uv ()u r r u0 v0 r r ()v ( f (()u x ()v x )) r r r r r r r r r r r r r r r r Defo.. [9] A radom ormed space (brefly, RNspace) s a rple (X, µ, τ), where X s a vecor space, τ s a couous orm ad µ s a mappg from X o D sasfyg he followg codos: f (x ) f (x ) f (x ) f (x ) for all x0, x,..., x, x U.. Sably Resuls : Drec Mehod (RN) µx () ε0 () for all > 0 f ad oly f x 0; (RN) µα x () µx (/ α ) for all x X, ad α R wh α 6 0; 67 I hs seco, he geeralzed Ulam Hyers sably of he fucoal equao (.7) usg drec mehod s provded.

7 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 68/76 Theorem.. e j ±. e f : U V be a eve mappg for whch here exs a fuco : U D wh he codo lm τ (0,, 0,Ω j x,ω j x) Ω() j mes (.) lm Ω j x0,ω j x,,ω j x,ω j x Ω j such ha he fucoal equaly such ha Λ f (x0,x,,x,x ) () x0,x,,x,x () for all x U ad all > 0. I follows from (.0) ha Λ f (Ωk x) f (Ωk x) (0,, 0,Ωk x,ωk x) () (.) k Ω(k) Ω Ω(k) mes mes for all x U ad all > 0. The mappg Q(x) s defed by mes (.) for all x0, x,..., x, x U ad all > 0. The here exss a uque quadrac mappg Q : U V sasfyg he fucoal equao (.7) ad ΛQ(x) f (x) () τ (0,, 0,Ω j x,ω j x) Ω() j (.) ΛQ(x) () lm Λ f (Ω j x) () for all x U ad all > 0. Replacg x by Ωk x (.9), we arrve (0,, 0,Ωk x,ωk x) () (.0) Λ f (Ωk x) f (Ωk x) Ω Ω (.) Ω j for all x U ad all > 0. Subsue by Ω(k) (.), we arrve Λ f (Ωk x) f (Ωk x) () (0,, 0,Ωk x,ωk x) Ω(k) (.) k Ω Ω(k) mes for all x U ad all > 0. I s easy o see ha f (Ωk x) f (Ω x) f (Ω x) f (x) () Ω Ωk Ω (.) for all x U. From equaos (.) ad (.), we have for all x U ad all > 0. Λ f (Ωk x) Proof. Assume j. Seg (x0, x,..., x, x ) by ( 0,, 0, x, x) ad usg eveess Ωk f (x) Λ k mes of f (.), we ge Λ f [(r () f (Ω x) f (Ω x) Ω Ω() k τ Λ f (Ω x) (0,, 0,x,x) () (.5) f (Ω x) Ω Ω() k (0,, 0,Ωk j x,ωk j x) Ω() j τ Ω() r r () f (x) r )x]r f (x)r f (x) () (.) mes mes for all x U adall >o0. I order o prove he covergece k x) of he sequece f (Ω, we replace x by Ωm x (.), we Ωk arrve for all x U ad all > 0. Usg (.8) (.5), we have Λ f [(r r )x]r f (x)r f (x)r r f (x) (0,, 0,x,x) () () (.6) Λ f (Ωkm x) Ω(km) mes for all x U ad all > 0. The above equaly ca be wre as Λ f [(r r )x](r r ) f (x) () (0,, 0,x,x) () (.7) mes for all x U ad all > 0. Defe Ω r r (.7), ca be wre as Λ f (Ωx)(Ω) f (x) () (0,, 0,x,x) () (.8) mes for all x U ad all > 0. I follows from (.8) ad (RN), we have Λ f (Ωx) f (x) (0,, 0,x,x) () (.9) Ω Ω mes 68 f (x) () k τ (0,, 0,Ωm x,ωm x) Ω(m) j mes mk τm (0,, 0,Ω x,ω x) Ω() j mes as m (.5) f (Ωk x) for all x U ad all > 0. Thus s a Cauchy Ωk sequece. Sce V s complee here exss a mappg Q : U V, we defe ΛQ(x) () lm Λ f (Ωk x) () Ωk for all x U ad all > 0. eg m 0 ad (.), we arrve (.) for all x U ad all > 0. Now, we have o

8 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 69/76 show ha Q sasfes (.7), replacg (x0, x,..., x, x ) by (Ωk x0, Ωk x,..., Ωk x, Ωk x ), we have Λ f (Ωk x0,ωk x,,ωk x,ωk x ) () Ωk x0,ωk x,,ωk x,ω x () (.6) for all x U ad all > 0. Takg k boh sdes, we fd ha Q sasfes (.7) for all x0, x,..., x, x U. Therefore he mappg Q : X Y s Quadrac. Fally, o prove he uqueess of he quadrac fuco Q subjec o (.), le us assume ha here exs a quadrac fuco Q0 whch sasfes (.) ad (.). Sce Q(Ωk x) Ωk Q(x) ad Q0 (Ωk x) Ωk Q0 (x) for all x U ad all N, follows from (.) ha ΛQ(x)Q0 (x) () ΛQ(Ωk x)q0 (Ωk x) (Ωk ) Theorem.. e j ±. e f : U V be a odd mappg for whch here exs a fuco : U D wh he codo lm τ (0,, 0,Ω j x,ω j x) Ω() j mes lm Ω j x0,ω j x,,ω j x,ω j x Ω j (.9) such ha he fucoal equaly such ha Λ f (x0,x,,x,x ) () x0,x,,x,x () (.0) for all x0, x,..., x, x U ad all > 0. The here exss a uque cubc mappg C : U V sasfyg he fucoal equao (.7) ad ΛC(x) f (x) () τ (0,, 0,Ω j x,ω j x) Ω() j (.) mes ΛQ(Ωk x) f (Ωk x) f (Ωk x)q0 (Ωk x) (Ωk ) τ ΛQ(Ωk x) f (Ωk x) (Ωk ), Λ f (Ωk x)q0 (Ωk x) (Ωk ) τ τ (0,, 0,Ω x,ω x) Ω() j, mes τ (0,, 0,Ω x,ω x) Ω() j for all x U ad all > 0. The mappg Q(x) s defed by ΛC(x) () lm Λ f (Ω j x) () (.) Ω j for all x U ad all > 0. Proof. Assume j. Seg (x0, x,..., x, x ) by ( 0,, 0, x, x) ad usg oddess of f (.0), we ge mes mes Λ f [(r r )x] as r r f (x) r r (r r r ) f (x) ) ( r for all x U ad all > 0. Hece Q s uque. For j, we ca prove a smlar sably resul. Ths complees he proof of he heorem. (.) r r f (x) f (x) (0,, 0,x,x) () (.) mes for all x U ad all > 0. Usg (.8) (.), we have Corollary.. e Φ ad s be oegave real umbers. e a eve fuco f : U V sasfes he equaly Λ f [(r r )x]r f (x)r f (x)r r f (x)r r f (x) (0,, 0,x,x) () (.5) Λ f (x0,x,,x,x ) () mes Φ (), (), s 6 ; s Φ x for all x U ad all > 0. The above equaly ca be wre (), s 6 ; as ()s s Φ( x x () ) (.7) for all x0, x,, x, x U ad all > 0. The here exss a uque quadrac fuco Q : U V such ha Φ (), Ω s Φ x (), Λ f (x)q(x) () (.8) Ω Ωs Φ x ()s (), Λ f [(r r )x](r r ) f (x) () (0,, 0,x,x) () (.6) mes for all x U ad all > 0. Defe Ω r r (.6), we ge Λ f (Ωx)(Ω) f (x) () (0,, 0,x,x) () (.7) mes for all x U ad all > 0. Ω Ω()s The res of he proof s smlar o ha of Theorem.. Hece he deals of he proof are omed. for all x U ad all > ()

9 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 70/76 Corollary.. e Φ ad s be oegave real umbers. e a odd fuco f : U V sasfes he equaly Λ f (x0,x,,x,x ) () (.8) Φ (), s 6 ; Φ x s (), 6 () ; Φ( x s x ()s ) (), s (.9) for all x0, x,, x, x U ad all > 0. The here exss a uque cubc fuco C : U V such ha Φ (), Ω s Φ x (), Λ f (x)c(x) () (.0) Ω Ωs Φ x ()s (), all x0, x,, x, x U ad all > 0. By Theorem., we have ΛQ(x) fe (x) () () j, τ τ (0,, 0,Ω j x,ω j x) Ω mes, (0,, 0,Ω j x,ω j x) Ω() j mes (.5) Ω Ω()s for all x U ad all > 0. Theorem.5. e j ±. e f : U V be a mappg for whch here exs a fuco : U D sasfyg he codos (.) ad (.9) ad he fucoal equaly such ha Λ f (x0,x,,x,x ) () x0,x,,x,x () for all x U. Also, e fo (x) { f (x) f (x)} for all x U. The fo (0) 0, fo (x) fo (x) for all x U. Hece (.) for all x0, x,, x, x U ad all > 0. The here exss a uque quadrac fuco Q : U V ad a uque cubc fuco C : U V sasfyg he fucoal equao (.7) such ha µq(x)c(x) f (x) () (.) () j τ τ, τ (0,, 0,Ω j x,ω j x) Ω mes, (0,, 0,Ω j x,ω j x) Ω() j mes () j, τ, τ (0,, 0,Ω j x,ω j x) Ω mes, (0,, 0,Ω j x,ω j x) Ω() j mes (.) Λ fo (x0,x,,x,x ) () τ x0,x,,x,x (),, x0,x,,x,x () for all x0, x,, x, x U ad all > 0. By Theorem., we have ΛC(x) fo (x) () () j τ, τ (0,, 0,Ω j x,ω j x) Ω mes, (0,, 0,Ω j x,ω j x) Ω() j mes (.6) for all x U ad all > 0. The mappg ΛQ(x) ad ΛC(x) are defed (.) ad (.) respecvely for all x U ad all > 0. Proof. e fe (x) { f (x) f (x)} for all x X. The fe (0) 0, fe (x) fe (x) for all x U. Hece for all x U ad all > 0.Defe Λ fe (x0,x,,x,x ) () τ x0,x,,x,x (),, x0,x,,x,x () (.) 70 f (x) fe (x) fo (x) (.7)

10 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 7/76 for all x U. From.5,.6 ad.7, we arrve Theorem 5.. [](The alerave of fxed po) Suppose ha for a complee geeralzed merc space (X, d) ad a srcly coracve mappg T : X X wh pschz cosa. The, for each gve eleme x X, eher (B) d(t x, T x) 0, or (B) here exss a aural umber 0 such ha: () d(t x, T x) < for all 0 ; ()The sequece (T x) s coverge o a fxed po y of T () y s he uque fxed po of T he se Y {y X : d(t 0 x, y) < }; (v) d(y, y) d(y, Ty) for all y Y. ΛQ(x)C(x) f (x) () ΛQ(x)C(x) fo (x) fe (x) () τ ΛQ(x) fe (x) (), ΛC(x) fo (x) () () j, τ τ τ (0,, 0,Ω j x,ω j x) Ω mes, (0,, 0,Ω j x,ω j x) Ω() j mes () j, τ, τ (0,, 0,Ω j x,ω j x) Ω mes () j, (0,, 0,Ω j x,ω j x) Ω For o prove he sably resul we defe he followg: δ s a cosa such ha Ω f 0, δ f Ω ad Γ s he se such ha Γ {g g : X Y, g(0) 0}. mes for all x U ad all > 0. Hece he heorem s proved. Corollary.6. e Φ ad s be oegave real umbers. e a fuco f : U V sasfes he equaly Theorem 5.. e f : U V be a eve mappg for whch here exs a fuco : U D wh he codo lm δ k x0,δ k x,,δ k x,δ k x δk (5.) k Λ f (x0,x,,x,x ) () for all x0, x,, x, x U ad all > 0 ad sasfyg Φ (), he fucoal equaly Φ x s (), s 6, ; 6 (), () ; Λ () () (5.) Φ( x s x ()s ) (), s D f (x0,x,,x,x ) x0,x,,x,x (.8) for all x0, x,, x, x U ad all > 0. The here exss a uque quadrac fuco Q : U V ad a uque cubc fuco C : U V such ha for all x0, x,, x, x U ad all > 0. If here exss () such ha he fuco D (x,) (0,, 0, x, x ) () Ω Ω (5.) mes Φ Φ (), Ω s Ω s Φ x Φ x (), Λ f (x)q(x)c(x) () Ω Ωs Ω Ωs Φ x ()s Φ x ()s (), has he propery D (x,) Ω Ω()s Ω Ω()s (.9) for all x U ad all > 0. I hs seco, he auhors prese he geeralzed Ulam Hyers sably of he fucoal equao (.7) Radom ormed space usg fxed po mehod. Through ou hs seco, e us cosder U be a vecor space ad (V, Λ, T ) s a complee RN-space. Now we wll recall he fudameal resuls fxed po heory. 7 (5.) The here exss a uque quadrac fuco Q : U V sasfyg he fucoal equao (.7) ad ΛQ(x) f (x) 5. Sably Resuls: Fxed po Mehod D (δ x,), x X, > 0. δ D (x,), x X, > 0. (5.5) Proof. e d be a geeral merc o Γ, such ha d(g, h) f K (0, ) Λg(x)h(x) (K) D (x,), x X, > 0. I s easy o see ha (Γ, d) s complee. Defe T : Γ Γ by T g(x) g(δ x), for all x X. Now for g, h Γ, we have δ

11 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 7/76 d(g, h) K herefore Q s a uqe fuco such ha Λg(x)h(x) (K) D (x,) K Λ g(δ x) h(δ x) D (δ x,) δ δ δ K ΛT g(x)t h(x) D (x,) δ Λ f (x)q(x) (K) D (x,) for all x U, > 0 ad K > 0. Aga usg he fxed po alerave, we oba d (T g(x), T h(x)) K d (T g, T h) d(g, h) (5.6) mes for all x U, > 0, Usg (5.) for he case 0 reduces o Λ f (Ωx) f (x) D (x,) Ω Ω Aga replacg x by x Ω From Theorem 5., we oba he followg corollary cocerg he sably for he fucoal equao (.7). Corollary 5.. e Φ ad s be oegave real umbers. e a eve fuco f : U V sasfes he equaly (5.9) ΛD f (x0,x,,x,x ) () Φ (), Φ x s (), s 6 ; 6 () ; Φ( x s x ()s ) (), s (5.7), we oba Λ f (x)ω f ( x ) () (0,, 0, x, x ) () Ω Ω Ω (5.0) mes (5.5) for all x U, > 0 wh he help of (5.) whe, follows from (5.0), we ge for all x0, x,, x, x U ad all > 0. The here exss a uque quadrac fuco Q : U V such ha Λ f (x)ω f ( x ) () D (x,) Ω d( f, T f ) 0 (5.) for all x U ad > 0. Ths complees he proof of he heorem. for all x U ad all > 0. I follows from (5.7), we have Λ f (Ωx) f (x) (0,, 0,x,x) () (5.8) Ω Ω d(t f, f ) 0 <. (5.7) mes d( f, T f ) d( f, Q) Λ f (x)q(x) D (x,) d( f, Q) for all g, h Γ. There fore T s srcly coracve mappg o Γ wh pschz cosa. From (.8) ha Λ f (Ωx)(Ω) f (x) () (0,, 0,x,x) () (5.) (5.) Φ (), Ω s Φ x (), Λ f (x)q(x) () Ω Ωs (), Φ x ()s The from (5.9) ad (5.), we ca coclude, d( f, T f ) 0 < (5.6) Ω Ω()s Now from he fxed po alerave boh cases, follows ha here exss a fxed po Q of T Γ such ha for all x U ad all > 0. ΛQ(x) () lm k Λ f (δ k x) δk (), x U, > 0. (5.) Proof. Seg Replacg (x0, x,, x, x ) by (δk x0, δk x,, δk x, δk x ) (5.) ad dvdg by δk, follows from (5.) ad (5.), Q sasfes (.7) for all x0, x,, x, x U ad all > 0. By fxed po alerave, sce Q s uque fxed po of T he se { f Γ d( f, Q) < }, 7 x0,x,,x,x () Φ (), Φ x s (), (), Φ x s x ()s

12 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 7/76 Case: Ωs for s < f, D (x,) ΛQ(x) f (x) Ωs Ωs ΛQ(x) f (x). Ωs Ω for all x0, x,, x, x U ad all > 0. The, (δk x0,δk x,,δk x,δk x ) () Φ (), δk (), δk Φ δ k δk x s δk Φ δk x s (), Φδk k(s) Φδ x s δk x ()s Case:5 Ω()s for s > (), (), ΛQ(x) f (x) Φδ Ω()s Ω()s. Ω Ω()s Case:6 Ω()s for s < () f, D (x,) ΛQ(x) f (x) Ω()s Ω()s ΛQ(x) f (x). Ω()s Ω Thus, (5.) s holds. From (5.), we have x U, > 0. Also From (5.), we arrve β (δ x,) δ (), Φδk s s (), Φδ x Ωs ()s f 0, Ω()s Ω()s D (x,) ΛQ(x) f (x) (), k(()s) Φδ x s x ()s as k, as k, as k. () Hece he proof s complee. x ()s Theorem 5.. e f : U V be a odd mappg for whch here exs a fuco : U D wh he codo lm δ k x0,δ k x,,δ k x,δ k x δk (5.7) (). k for all x0, x,, x, x U ad all > 0 ad sasfyg he fucoal equaly k δ β (x,), δ s β (x,), ()s δ β (x,). ΛD f (x0,x,,x,x ) () x0,x,,x,x () (5.8) Now from (5.5), we prove he followg cases for codos () ad (). Case: Ω for s 0 f 0, Ω(0) D (x,) ΛQ(x) f (x) Ω ΛQ(x) f (x). Ω for all x0, x,, x, x U ad all > 0. If here exss () such ha he fuco Case: Ω for s 0 f, The here exss a uque cubc fuco C : X Y sasfyg he fucoal equao (.7) ad ΛC(x) f (x) D (x,), x U, > 0. (5.0) Ω() Ω ΛQ(x) f (x). Ω D (x,) ΛQ(x) f (x) D (x,) (0,, 0, x, x ) () Ω Ω mes has he propery D (x,) D (δ x,), x U, > 0. δ (5.9) Corollary 5.5. e Φ ad s be oegave real umbers. e a odd fuco f : U V sasfes he equaly Case: Ωs for s > f 0, Ωs D (x,) ΛQ(x) f (x) Ωs Ωs ΛQ(x) f (x). Ω Ωs ΛD f (x0, x,, x, x )() Φ (), Φ x s (), s 6 ; 6 () ; Φ( x s x ()s ) (), s (5.) 7

13 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 7/76 for all x0, x,, x, x U ad all > 0. The here exss a uque cubc fuco C : U V such ha Φ (), Ω s Φ x (), Λ f (x)c(x) () Ω Ωs Φ x ()s (), for all x0, x,, x, x U ad all > 0. By Theorem 5., we have ΛC(x) fo (x) (5.) (5.8) f (x) fe (x) fo (x) (5.9) Defe Ω Ω()s for all x U ad all > 0. Theorem 5.6. e f : U V be a mappg for whch here exs a fuco : U D wh he codo (5.) ad (5.7) sasfyg he fucoal equaly wh ΛD f (x0,x,,x,x ) () x0,x,,x,x () τ [D (x,), D (x,)], x X, > 0. (5.) for all x0, x,, x, x U ad all > 0. If here exss () such ha he fuco D (x,) (0,, 0, x, x ) () Ω Ω mes has he propery (5.) ad (5.9) for all x U. The here exss a uque quadrac fuco Q : U V ad a uque cubc fuco C : U V sasfyg he fucoal equao (.7) ad Λ f (x)q(x)c(x) h h τ τ D x,, D x, h, τ D x,, D x, (5.) for all x U. From (5.6),(5.8) ad (5.9), we arrve ΛQ(x)C(x) f (x) ΛQ(x)C(x) fo (x) fe (x), ΛC(x) fo (x) τ ΛQ(x) fe (x) h h τ τ D x,, D x,,, τ [D (x,), D (x,)]] for all x U ad all > 0. Hece he heorem s proved. Corollary 5.7. e Φ ad s be oegave real umbers. If a fuco f : U V sasfes he equaly Λ f (x0,x,,x,x ) () Φ (), s 6, ; s (), Φ x s Φ x, () ; 6 () x ()s (), s forall x U ad all > 0. (5.0) Proof. e fe (x) { f (x) f (x)} for all x X. The fe (0) 0, fe (x) fe (x) for all x U. Hece ΛD fe (x0,x,,x,x ) () τ x0,x,,x,x (), x0,x,,x,x () (5.5) for all x0, x,, x, x U ad all > 0. The here exss a uque quadrac fuco Q : U V ad a uque cubc fuco C : U V such ha Φ Φ (), Ω s Ω s Φ x Φ x (), Λ f (x)q(x)c(x) () Ω Ωs Ω Ωs (), Φ x ()s Φ x ()s forall x0, x,, x, x U ad all > 0. By Theorem 5., we have ΛQ(x) fe (x) τ [D (x,), D (x,)], x X, > 0. (5.6) Ω Ω()s (5.) for all x U ad all > 0. Also,e fo (x) { f (x) f (x)} for all x X. The fo (0) 0, fo (x) fo (x) for all x U. Hece ΛD fo (x0,x,,x,x ) () τ x0,x,,x,x (), x0,x,,x,x () (5.7) 7 Ω Ω()s Refereces [] [] J. Aczel ad J. Dhombres, Fucoal Equaos Several Varables, Cambrdge Uv, Press, 989. T. Aok, O he sably of he lear rasformao Baach spaces, J. Mah. Soc. Japa, (950), 6-66.

14 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 75/76 [] [] [5] [6] [7] [8] [9] [0] [] [] [] [] [5] [6] [7] [8] [9] M. Arukumar, P.Agla, Soluo ad Ulam-Hyers Sably of a Type Dmesoal Addve Quadrac Fucoal Equao I Quas Bea Normed Spaces, Malaya J Ma. S() (05), 0-. M. Arukumar, P.Agla, Sably of a Quadrac-Cubc Fucoal Equao Iuosc Fuzzy Normed Spaces, Ieraoal Joural of Appled Egeerg Research, Vol. No. (06). I.S. Chag ad Y.S. Jug, Sably of fucoal equaos dervg from cubc ad quadrac fucos, J. Mah. Aal. Appl., 8 (00), S.S. Chag, Y. J. Cho, ad S. M. Kag, Nolear Operaor Theory Probablsc Merc Spaces, Nova Scece Publshers, Hugo, NY, USA, 00. Y. J. Cho, M. E. Gordj, S. Zolfaghar, Soluos ad Sably of Geeralzed Mxed Type QC Fucoal Equaos Radom Normed Spaces, Joural of Iequales ad Applcaos, Vol. 00, Arcle ID 00, do:0.55/00/00, 6 pages. P. Gavrua, A geeralzao of he Hyers-Ulam-Rassas sably of approxmaely addve mappgs, J.Mah. Aal. Appl.(99), -6. M. E. Gordj, M. B. Savadkouh, Sably Of A Mxed Type Addve, Quadrac Ad Cubc Fucoal Equao I Radom Normed Spaces, Floma 5: (0), 5 DOI: 0.98/FI00G. O. Hadzc ad E. Pap, Fxed Po Theory Probablsc Merc Spaces, vol. 56 of Mahemacs ad Is Applcaos, Kluwer Academc, Dordrech, The Neherlads, 00. O. Hadzc, E. Pap ad M. Budcevc, Couable exeso of ragular orms ad her applcaos o he fxed po heory probablsc merc spaces, Kybereka, vol. 8, o., pp. 6-8, 00. D.H. Hyers, O he sably of he lear fucoal equao, Proc.Na. Acad.Sc.,U.S.A.,7 (9) -. D.H. Hyers, G. Isac, Th.M. Rassas, Sably of fucoal equaos several varables, Brkhauser, Basel, 998. K. W. Ju ad H. M. Km, O he sably of a dmesoal quadrac ad addve ype fucoal equao, Mah. Ieq. Appl 9() (006), K.W. Ju ad H.M.Km, The geeralzed Hyers-UlamRassas sably of a cubc fucoal equao, Mah. J., Aal. Appl. 7, (00), S.M. Jug, O he Hyers-Ulam sably of he fucoal equaos ha have he quadrac propery, J.Mah. Aal. Appl. (998), 6-7. S.M. Jug, Hyers-Ulam-Rassas Sably of Fucoal Equaos Mahemacal Aalyss, Hadroc Press, Palm Harbor, 00. Pl. Kaappa, Quadrac fucoal equao er produc spaces, Resuls Mah. 7, No.-, (995), 687. Pl. Kaappa, Fucoal Equaos ad Iequales 75 [0] [] [] [] [] [5] [6] [7] [8] [9] [0] [] [] [] [] [5] wh Applcaos, Sprger Moographs Mahe-macs, 009. G.H.Km ad H.Y.Sh, Geeralzed Hyers-Ulam Sably of Cubc Type Fucoal Equaos Normed Spaces, Joural of he Chugcheog Mahemacal Socey,Vol 8, No.,(05), B. Margols, J. B. Daz, A fxed po heorem of he alerave for coracos o a geeralzed complee merc space, Bull. Amer. Mah. Soc. 6 7 (968), A. Naja, M.B. Moghm, O he sably of a quadrac ad addve fucoal equao, J. Mah. Aal.Appl. 7 (008), J.M. Rassas, O approxmaely of approxmaely lear mappgs by lear mappgs, J. Fuc. Aal. USA, 6, (98) 6-0. Th.M. Rassas, O he sably of he lear mappg Baach spaces, Proc.Amer.Mah. Soc., 7 (978), Th.M. Rassas, Fucoal Equaos, Iequales ad Applcaos, Kluwer Acedamc Publshers, Dor-drech, Bosa odo, 00. K. Rav, M. Arukumar ad J.M. Rassas, O he Ulam sably for he orhogoally geeral Euler- agrage ype fucoal equao, Ieraoal Joural of Mahemacal Sceces, Auum 008 Vol., No.08, 6-7. K. Rav, M. Arukumar ad J.M. Rassas, O A Fucoal Equao Characerzg polyomals of degree hree, Ieraoal Revew of Pure ad Appled Mahemacs, Vol. No.(007), B. Schwezer ad A. Sklar, Probablsc Merc Spaces, Norh-Hollad Seres Probably ad Appled Mahemacs Norh-Hollad Publshg, New York, NY, USA, 98. A. N. Shersev, O he oo of a radom ormed space, Doklady Akadem Nauk SSSR, vol. 9,pp. 808, 96 (Russa). S.M. Ulam, Problems Moder Mahemacs, Scece Edos, Wley, NewYork, 96. Z.H. Wag ad W.X. Zhag, Fuzzy sably of quadrac cubc fucoal equaos, Aca Mahemaca Sca, Eglsh Seres Vol.7 (0), 9-0. Maa J. Rassas, M. Arukumar, S. Ramamoorh, Sably of he ebz addve quadrac fucoal equao Quas-Bea ormed space: Drec ad fxed po mehods, Joural Of Cocree Ad Applcable Mahemacs (JCAAM), Vol. No. -, (0), - 6. Maa J. Rassas, M. Arukumar, E. Sahya, Sably of a k cubc fucoal equao Quas bea ormed spaces: drec ad Fxed po mehods, Brsh Jouralof Mahemacs ad Compuer Scece, 8 (5), (05), 660. J. M. Rassas, Soluo of he Ulam sably problem for quarc mappgs, Glas. Ma. Ser. III, (5) No. (999), 5. J. M. Rassas, Soluo of he Ulam problem for cubc

15 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods 76/76 [6] [7] [8] [9] [0] [] mappgs, A. Uv. Tm s oara Ser. Ma.-Iform., 8 No. (000),. J.M. Rassas, H.M. Km, Geeralzed Hyers-Ulam sably for geeral addve fucoal equaos quas β ormed spaces J. Mah. Aal. Appl. 56 (009), o., Joh M. Rassas, M. Arukumar, E. Sahya, N. MaheshKumar, Soluo Ad Sably Of A ACQ Fucoal Equao I Geeralzed -Normed Spaces, Ier. J.Fuzzy Mahemacal Archve, Vol. 7, No., (05), -. T.Z. Xu, J.M. Rassas, W.X Xu,Geeralzed Ulam-Hyers sably of a geeral mxed AQCQ-fucoal equao mul-baach spaces: a fxed po approach, Eur. J. Pure Appl. Mah., (00), T.Z. Xu, J.M. Rassas, M.J. Rassas, W.X. Xu, A fxed po approach o he sably of quc ad sexc fucoal equaos quas β -ormed spaces, J. Iequal.Appl. 00, Ar. ID, pp. T.Z. Xu, J. M. Rassas, W.X. Xu, A fxed po approach o he sably of a geeral mxed AQCQ-fucoal equao o-archmedea ormed spaces, Dscree Dy.Na. Soc. 00, Ar. ID 855, pages. T.Z. Xu, J.M. Rassas, Approxmae Sepc ad Occ mappgs quas β ormed spaces, J. Compu. Aal. Appl., 5, No. 6 (0), 0 9.????????? ISSN(P):9 786 Malaya Joural of Maemak ISSN(O): 5666????????? 76

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai Ro Geeralzed B-lear Mxed Varaoal-lke Iequaly for Ro Fuzzy Mappgs Hogxa Da Depare of Ecooc Maheacs Souhweser Uversy of Face Ecoocs Chegdu 674 P.R.Cha Absrac I h paper we roduce sudy a ew class of ro geeralzed

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

Fourth Order Runge-Kutta Method Based On Geometric Mean for Hybrid Fuzzy Initial Value Problems

Fourth Order Runge-Kutta Method Based On Geometric Mean for Hybrid Fuzzy Initial Value Problems IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 29-765X. Volume, Issue 2 Ver. II (Mar. - Apr. 27), PP 4-5 www.osrjourals.org Fourh Order Ruge-Kua Mehod Based O Geomerc Mea for Hybrd Fuzzy

More information

Complementary Tree Paired Domination in Graphs

Complementary Tree Paired Domination in Graphs IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X Volume 2, Issue 6 Ver II (Nov - Dec206), PP 26-3 wwwosrjouralsorg Complemeary Tree Pared Domao Graphs A Meeaksh, J Baskar Babujee 2

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision Frs Jo Cogress o Fuzzy ad Iellge Sysems Ferdows Uversy of Mashhad Ira 9-3 Aug 7 Iellge Sysems Scefc Socey of Ira Solvg fuzzy lear programmg problems wh pecewse lear membershp fucos by he deermao of a crsp

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

The Bernstein Operational Matrix of Integration

The Bernstein Operational Matrix of Integration Appled Mahemacal Sceces, Vol. 3, 29, o. 49, 2427-2436 he Berse Operaoal Marx of Iegrao Am K. Sgh, Vee K. Sgh, Om P. Sgh Deparme of Appled Mahemacs Isue of echology, Baaras Hdu Uversy Varaas -225, Ida Asrac

More information

Stability Criterion for BAM Neural Networks of Neutral- Type with Interval Time-Varying Delays

Stability Criterion for BAM Neural Networks of Neutral- Type with Interval Time-Varying Delays Avalable ole a www.scecedrec.com Proceda Egeerg 5 (0) 86 80 Advaced Corol Egeergad Iformao Scece Sably Crero for BAM Neural Neworks of Neural- ype wh Ierval me-varyg Delays Guoqua Lu a* Smo X. Yag ab a

More information

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures Sesors,, 37-5 sesors ISSN 44-8 by MDPI hp://www.mdp.e/sesors Asympoc Regoal Boudary Observer Dsrbued Parameer Sysems va Sesors Srucures Raheam Al-Saphory Sysems Theory Laboraory, Uversy of Perpga, 5, aveue

More information

Integral Φ0-Stability of Impulsive Differential Equations

Integral Φ0-Stability of Impulsive Differential Equations Ope Joural of Appled Sceces, 5, 5, 65-66 Publsed Ole Ocober 5 ScRes p://wwwscrporg/joural/ojapps p://ddoorg/46/ojapps5564 Iegral Φ-Sably of Impulsve Dffereal Equaos Aju Sood, Sajay K Srvasava Appled Sceces

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

On cartesian product of fuzzy primary -ideals in -LAsemigroups

On cartesian product of fuzzy primary -ideals in -LAsemigroups Joural Name Orgal Research aper O caresa produc o uzzy prmary -deals -Lsemgroups aroe Yarayog Deparme o Mahemacs, Faculy o cece ad Techology, bulsogram Rajabha Uvers, hsauloe 65000, Thalad rcle hsory Receved:

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion Suppleme Maeral for Iverse Probably Weged Esmao of Local Average Treame Effecs: A Hger Order MSE Expaso Sepe G. Doald Deparme of Ecoomcs Uversy of Texas a Aus Yu-C Hsu Isue of Ecoomcs Academa Sca Rober

More information

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition SSN 76-7659 Eglad K Joural of forao ad Copug Scece Vol 7 No 3 pp 63-7 A Secod Kd Chebyshev olyoal Approach for he Wave Equao Subec o a egral Coservao Codo Soayeh Nea ad Yadollah rdokha Depare of aheacs

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

General Complex Fuzzy Transformation Semigroups in Automata

General Complex Fuzzy Transformation Semigroups in Automata Joural of Advaces Compuer Research Quarerly pissn: 345-606x eissn: 345-6078 Sar Brach Islamc Azad Uversy Sar IRIra Vol 7 No May 06 Pages: 7-37 wwwacrausaracr Geeral Complex uzzy Trasformao Semgroups Auomaa

More information

The Signal, Variable System, and Transformation: A Personal Perspective

The Signal, Variable System, and Transformation: A Personal Perspective The Sgal Varable Syem ad Traformao: A Peroal Perpecve Sherv Erfa 35 Eex Hall Faculy of Egeerg Oule Of he Talk Iroduco Mahemacal Repreeao of yem Operaor Calculu Traformao Obervao O Laplace Traform SSB A

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C Soluos (page 7) ρ 5 4 4 Soluo = ρ as 4 4 5 = So ρ, ρ s a Z bass of Z ad 5 4 ( m, m ) = (,7) = (,9) No, as 5 7 4 5 6 = ± Soluo The 6 elemes of Z K are: g = K + e + e, g = K + e, g = K + e, 4g = K + e, 5g

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

Analyticity of Semigroups Generated by Singular Differential Matrix Operators

Analyticity of Semigroups Generated by Singular Differential Matrix Operators pple Mahemacs,,, 83-87 o:.436/am..436 Publshe Ole Ocober (hp://www.scrp.org/joural/am) alycy of Semgroups Geerae by Sgular Dffereal Mar Operaors Oul hme Mahmou S hme, el Sa Deparme of Mahemacs, College

More information

Existence and Uniqueness Theorems for Generalized Set Differential Equations

Existence and Uniqueness Theorems for Generalized Set Differential Equations Ieraoal Joural of Corol Scece ad Egeerg, (): -6 DOI: 593/jCorol Exsece ad Uqueess Teorems for Geeralzed Se Dffereal Equaos Adrej Ploov,,*, Naala Srp Deparme of Opmal Corol & Ecoomc Cyberecs, Odessa Naoal

More information

An Exact Solution for the Differential Equation. Governing the Lateral Motion of Thin Plates. Subjected to Lateral and In-Plane Loadings

An Exact Solution for the Differential Equation. Governing the Lateral Motion of Thin Plates. Subjected to Lateral and In-Plane Loadings Appled Mahemacal Sceces, Vol., 8, o. 34, 665-678 A Eac Soluo for he Dffereal Equao Goverg he Laeral Moo of Th Plaes Subjeced o Laeral ad I-Plae Loadgs A. Karmpour ad D.D. Gaj Mazadara Uvers Deparme of

More information

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems Delay-Depede Robus Asypocally Sable for Lear e Vara Syses D. Behard, Y. Ordoha, S. Sedagha ABSRAC I hs paper, he proble of delay depede robus asypocally sable for ucera lear e-vara syse wh ulple delays

More information

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations Global Joural of Scece Froer Research: F Maheacs ad Decso Sceces Volue 8 Issue Verso. Year 8 Type: Double Bld Peer Revewed Ieraoal Research Joural Publsher: Global Jourals Ole ISSN: 49-466 & Pr ISSN: 975-5896

More information

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments Pure ad Appled Mahemacs Joural 25 4(: -8 Publshed ole Jauary 23 25 (hp://wwwscecepublshggroupcom/j/pamj do: 648/jpamj254 ISSN: 2326-979 (Pr ISSN: 2326-982 (Ole Orbal ucldea sably of he soluos of mpulsve

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

On subsets of the hypercube with prescribed Hamming distances

On subsets of the hypercube with prescribed Hamming distances O subses of he hypercube wh prescrbed Hammg dsaces Hao Huag Oleksy Klurma Cosm Pohoaa Absrac A celebraed heorem of Klema exremal combaorcs saes ha a colleco of bary vecors {0, 1} wh dameer d has cardaly

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay Ieraoal Joural of Advaces Appled Maemacs ad Mecacs Volume, Issue 2 : (23) pp. 53-64 Avalable ole a www.jaamm.com IJAAMM ISSN: 2347-2529 O a algorm of e dyamc recosruco of pus sysems w me-delay V. I. Maksmov

More information

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin Egeerg Leers, 4:2, EL_4_2_4 (Advace ole publcao: 6 May 27) Sablzao of LTI Swched Sysems wh Ipu Tme Delay L L Absrac Ths paper deals wh sablzao of LTI swched sysems wh pu me delay. A descrpo of sysems sablzao

More information

Convexity Preserving C 2 Rational Quadratic Trigonometric Spline

Convexity Preserving C 2 Rational Quadratic Trigonometric Spline Ieraoal Joural of Scefc a Researc Publcaos, Volume 3, Issue 3, Marc 3 ISSN 5-353 Covexy Preservg C Raoal Quarac Trgoomerc Sple Mrula Dube, Pree Twar Deparme of Maemacs a Compuer Scece, R. D. Uversy, Jabalpur,

More information

Inner-Outer Synchronization Analysis of Two Complex Networks with Delayed and Non-Delayed Coupling

Inner-Outer Synchronization Analysis of Two Complex Networks with Delayed and Non-Delayed Coupling ISS 746-7659, Eglad, UK Joural of Iformao ad Compug Scece Vol. 7, o., 0, pp. 0-08 Ier-Ouer Sycrozao Aalyss of wo Complex eworks w Delayed ad o-delayed Couplg Sog Zeg + Isue of Appled Maemacs, Zeag Uversy

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

Descents of Permutations in a Ferrers Board

Descents of Permutations in a Ferrers Board Desces of Permuaos a Ferrers Board Chuwe Sog School of Mahemacal Sceces, LMAM, Pekg Uversy, Bejg 0087, P. R. Cha Cahere Ya y Deparme of Mahemacs, Texas A&M Uversy, College Sao, T 77843-3368 Submed: Sep

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Mjuh, : Jury, 0] ISSN: -96 Scefc Jourl Impc Fcr: 9 ISRA, Impc Fcr: IJESRT INTERNATIONAL JOURNAL OF ENINEERIN SCIENCES & RESEARCH TECHNOLOY HAMILTONIAN LACEABILITY IN MIDDLE RAPHS Mjuh*, MurlR, B Shmukh

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION Joural of Appled Maemacs ad ompuaoal Mecacs 24 3(2 5-62 GENERALIZED METHOD OF LIE-ALGEBRAI DISRETE APPROXIMATIONS FOR SOLVING AUHY PROBLEMS WITH EVOLUTION EQUATION Arkad Kdybaluk Iva Frako Naoal Uversy

More information

Average Consensus in Networks of Multi-Agent with Multiple Time-Varying Delays

Average Consensus in Networks of Multi-Agent with Multiple Time-Varying Delays I. J. Commucaos ewor ad Sysem Sceces 3 96-3 do:.436/jcs..38 Publshed Ole February (hp://www.scrp.org/joural/jcs/). Average Cosesus ewors of Mul-Age wh Mulple me-varyg Delays echeg ZHAG Hu YU Isue of olear

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations Global Joural of Scece Froer Research Mahemacs a Decso Sceces Volume Issue 7 Verso. Jue Te : Double Bl Peer Revewe Ieraoal Research Joural Publsher: Global Jourals Ic. (USA Ole ISSN: 49-466 & Pr ISSN:

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm Joural of Advaces Compuer Research Quarerly ISSN: 28-6148 Sar Brach, Islamc Azad Uversy, Sar, I.R.Ira (Vol. 3, No. 4, November 212), Pages: 33-45 www.jacr.ausar.ac.r Solvg Fuzzy Equaos Usg Neural Nes wh

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A, OF THE ROMANIAN ACADEMY Volume 0, Number /009,. 000-000 ON ZALMAI EMIPARAMETRIC DUALITY MODEL FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH

More information

A note on Turán number Tk ( 1, kn, )

A note on Turán number Tk ( 1, kn, ) A oe o Turá umber T (,, ) L A-Pg Beg 00085, P.R. Cha apl000@sa.com Absrac: Turá umber s oe of prmary opcs he combaorcs of fe ses, hs paper, we wll prese a ew upper boud for Turá umber T (,, ). . Iroduco

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Stability of Cohen-Grossberg Neural Networks with Impulsive and Mixed Time Delays

Stability of Cohen-Grossberg Neural Networks with Impulsive and Mixed Time Delays 94 IJCSNS Ieraoal Joural of Compuer Scece ad Newor Secury VOL.8 No.2 February 28 Sably of Cohe-Grossberg Neural Newors wh Impulsve ad Mxed Tme Delays Zheag Zhao Qau Sog Deparme of Mahemacs Huzhou Teachers

More information

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS Vol.7 No.4 (200) p73-78 Joural of Maageme Scece & Sascal Decso IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS TIANXIANG YAO AND ZAIWU GONG College of Ecoomcs &

More information

CONTROLLABILITY OF A CLASS OF SINGULAR SYSTEMS

CONTROLLABILITY OF A CLASS OF SINGULAR SYSTEMS 44 Asa Joural o Corol Vol 8 No 4 pp 44-43 December 6 -re Paper- CONTROLLAILITY OF A CLASS OF SINGULAR SYSTEMS Guagmg Xe ad Log Wag ASTRACT I hs paper several dere coceps o corollably are vesgaed or a class

More information

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs Aalable a hp://paed/aa Appl Appl Mah ISS: 9-9466 Vol 0 Isse (Deceber 0) pp 04- Applcaos ad Appled Maheacs: A Ieraoal Joral (AAM) Solo o Soe Ope Probles o E-sper Verex Magc Toal Labelg o Graphs G Marh MS

More information

Efficient Estimators for Population Variance using Auxiliary Information

Efficient Estimators for Population Variance using Auxiliary Information Global Joural of Mahemacal cece: Theor ad Praccal. IN 97-3 Volume 3, Number (), pp. 39-37 Ieraoal Reearch Publcao Houe hp://www.rphoue.com Effce Emaor for Populao Varace ug Aular Iformao ubhah Kumar Yadav

More information

Optimal Control and Hamiltonian System

Optimal Control and Hamiltonian System Pure ad Appled Maheacs Joural 206; 5(3: 77-8 hp://www.scecepublshggroup.co//pa do: 0.648/.pa.2060503.3 ISSN: 2326-9790 (Pr; ISSN: 2326-982 (Ole Opal Corol ad Haloa Syse Esoh Shedrack Massawe Depare of

More information

Integral Equations and their Relationship to Differential Equations with Initial Conditions

Integral Equations and their Relationship to Differential Equations with Initial Conditions Scece Refleco SR Vol 6 wwwscecereflecocom Geerl Leers Mhemcs GLM 6 3-3 Geerl Leers Mhemcs GLM Wese: hp://wwwscecereflecocom/geerl-leers--mhemcs/ Geerl Leers Mhemcs Scece Refleco Iegrl Equos d her Reloshp

More information

ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC REGRESSION AND WHITE NOISE. BY LAWRENCE D. BROWN 1 AND MARK G. LOW 2 University of Pennsylvania

ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC REGRESSION AND WHITE NOISE. BY LAWRENCE D. BROWN 1 AND MARK G. LOW 2 University of Pennsylvania The Aals of Sascs 996, Vol., No. 6, 38398 ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC REGRESSION AND WITE NOISE BY LAWRENCE D. BROWN AND MARK G. LOW Uversy of Pesylvaa The prcpal resul s ha, uder codos, o

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION Eldesoky E. Affy. Faculy of Eg. Shbee El kom Meoufa Uv. Key word : Raylegh dsrbuo, leas squares mehod, relave leas squares, leas absolue

More information

Synchronization of Complex Network System with Time-Varying Delay Via Periodically Intermittent Control

Synchronization of Complex Network System with Time-Varying Delay Via Periodically Intermittent Control Sychrozao of Complex ework Sysem wh me-varyg Delay Va Perodcally Ierme Corol JIAG Ya Deparme of Elecrcal ad Iformao Egeerg Hua Elecrcal College of echology Xaga 4, Cha Absrac he sychrozao corol problem

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

Sensors and Regional Gradient Observability of Hyperbolic Systems

Sensors and Regional Gradient Observability of Hyperbolic Systems Iellge Corol ad Auoao 3 78-89 hp://dxdoorg/436/ca3 Publshed Ole February (hp://wwwscrporg/oural/ca) Sesors ad Regoal Grade Observably of Hyperbolc Syses Sar Behadd Soraya Reab El Hassae Zerr Maheacs Depare

More information

M. Sc. MATHEMATICS MAL-521 (ADVANCE ABSTRACT ALGEBRA)

M. Sc. MATHEMATICS MAL-521 (ADVANCE ABSTRACT ALGEBRA) . Sc. ATHEATICS AL-52 (ADVANCE ABSTRACT ALGEBRA) Lesso No &Lesso Name Wrer Veer Lear Trasformaos Dr. Pakaj Kumar Dr. Nawee Hooda 2 Caocal Trasformaos Dr. Pakaj Kumar Dr. Nawee Hooda 3 odules I Dr. Pakaj

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

1 Introduction and main results

1 Introduction and main results The Spacgs of Record Values Tefeg Jag ad Dag L 2 Ocober 0, 2006 Absrac. Le {R ; } be he sequece of record values geeraed from a sequece of..d. couous radom varables, wh dsrbuo from he expoeal famly. I

More information

Numerical approximatons for solving partial differentıal equations with variable coefficients

Numerical approximatons for solving partial differentıal equations with variable coefficients Appled ad Copuaoal Maheacs ; () : 9- Publshed ole Februar (hp://www.scecepublshggroup.co/j/ac) do:.648/j.ac.. Nuercal approaos for solvg paral dffereıal equaos wh varable coeffces Ves TURUT Depare of Maheacs

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

Newton-Product Integration for a Stefan Problem with Kinetics

Newton-Product Integration for a Stefan Problem with Kinetics Joural of Sceces Islamc Republc of Ira (): 6 () versy of ehra ISS 64 hp://scecesuacr ewoproduc Iegrao for a Sefa Problem wh Kecs B BabayarRazlgh K Ivaz ad MR Mokharzadeh 3 Deparme of Mahemacs versy of

More information

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method Ieraoal Reearch Joural o Appled ad Bac Scece Avalable ole a wwwrabcom ISSN 5-88X / Vol : 8- Scece xplorer Publcao New approach or umercal oluo o Fredholm eral equao yem o he ecod d by u a expao mehod Nare

More information