Wigner distribution measurement of the spatial coherence properties of FLASH

Size: px
Start display at page:

Download "Wigner distribution measurement of the spatial coherence properties of FLASH"

Transcription

1 Wigner distribution measurement of the spatial coherence properties of FLASH Tobias Mey Laser-Laboratorium Göttingen e.v. Hans-Adolf-Krebs Weg 1 D Göttingen

2 EUV wavefront sensor Experimental setup at BL2 = nm Hartmann plate Adjustment of beam line optics by online wavefront monitoring 0.5 Yaw [mrad] w rms =15.5nm w rms =3.5nm w rms =2.6nm w rms =2.6nm w rms =5.9nm 0.0 w rms =13nm [1] B. Flöter et al, Beam parameters of FLASH beamline BL1 from Hartmann wavefront measurements, Nucl. Instrum. Meth. A 635 (2011) Pitch [mrad]

3 EUV wavefront sensor Experimental setup at BL2 = nm Hartmann plate before adjustment after adjustment Wavefront w rms ~ 10nm w rms ~ 2.5nm ~ /10 Intensity [2] B. Flöter et al, EUV Hartmann sensor for wavefront measurements at the Free-electron LASer in Hamburg, New J. Phys. 12 (2010)

4 EUV wavefront sensor High pulse-to-pulse stability! Adjustment of active KB-system 10µm x 10µm focal size Online optics alignment at MLS synchrotron at 13.5 nm 4

5 Motivation Coherent diffractive imaging [4] [3] 200nm 1µm 2µm [5] Decreasing coherence [3] H. N. Chapman et al., Femtosecond diffractive imaging with a soft-x-ray free-electron laser, Nature Phys. 2, (2006) [4] M. M. Seibert et al., Single mimivirus particles intercepted and imaged with an X-ray laser, Nature 470, (2011) [5] B. Chen et al., Diffraction imaging: The limits of partial coherence, Phys. Rev. B 86, (2012) 5

6 Coherence x x 1 x 2 Mutual coherence function Γ x, s = E x 1, t E (x 2, t) = E x s/2, t E (x + s/2, t) s = x 2 x 1 Local degree of coherence Γ x, s γ x, s = I x s/2 I x + s/2 Global degree of coherence K = Γ x, s 2 dxds Γ x, 0 dx 2 required for interference effects [6] M. Born and B. Wolf, Principles of Optics, Cambridge University Press (1980) 6

7 Coherence Interference of elementary waves γ(x, s) 2a x + s/2 x s/2 s I x, y = I 0 J 1 2πar λd 2πar λd γ x, s cos 2πs λd x [6] r = x² + y² d γ x, s = 0.7 [6] M. Born and B. Wolf, Principles of Optics, Cambridge University Press (1980) 7

8 Coherence γ 0, 0, s x, 0 = exp s x 2 2 l c 2 Gaussian Schell model l c Coherence length l c 8

9 Coherence Gaussian Schell model K = 0.42 ± 0.09 γ x, y, s x, s y 4D-distribution γ(0,0, s x, 0) γ( l h = 6.2µm l v = 8.7µm [7] A. Singer et al., Spatial and temporal coherence properties of single free-electron laser pulses, Opt. Expr. 20, (2012) 9

10 Wigner distribution function y Spatial coordinate x = x y Mutual coherence function v z x h x, u = k 2π 2 Γ x, s e iku s d 2 s Wigner distribution Radiation angle u = u v Eugene Paul Wigner Nobel price 1963 (with J. H. D. Jensen and Generalized radiance : emitted M. Goeppert-Mayer) radiation from position x in direction u Wilhelm-Weber-Straße 22, Göttingen h = W m 2 sr [8] M. J. Bastiaans, Application of the Wigner distribution function to partially coherent light, J. Opt. Soc. Am. A 3, (1986) 10

11 Wigner distribution function y Spatial coordinate x = x y Mutual coherence function v z x h x, u = k 2π 2 Γ x, s e iku s d 2 s Wigner distribution Radiation angle u = u v Irradiance Radiance Global degree of coherence I x = h x, u dudv Near field I u = 2π 2 h x, u dxdy Far field h x, u ²dx²du² K = λ2 h x, u dx²du² [8] M. J. Bastiaans, Application of the Wigner distribution function to partially coherent light, J. Opt. Soc. Am. A 3, (1986) 11

12 Gaussian Schell-model y Separability h x, u = h x x, u h y (y, v) θ x d 0,x Wigner distribution at waist position h x x, u = h 0 exp 8 x2 2 exp 8 u2 2 d 0,x θ x Global degree of coherence K = 4 π λ d 0,x θ x Phase space volume (constant after Liouville) 12

13 Gaussian Schell-model y Separability h x, u = h x x, u h y (y, v) Wigner distribution at waist position h x x, u = h 0 exp 8 x2 2 exp 8 u2 2 d 0,x θ x Propagation of the Wigner distribution h x x, u z = h x (x z u, u) 13

14 Gaussian Schell-model y Separability h x, u = h x x, u h y (y, v) Wigner distribution at waist position h x x, u = h 0 exp 8 x2 2 exp 8 u2 2 d 0,x θ x Propagation of the Wigner distribution h x x, u z = h x (x z u, u) 14

15 Caustic scan Phosphor screen Microscope objective Manipulator CCD Camera FLASH Wavelength 24.7 nm Pulse energy 35 µj Repetition rate 10 Hz Camera Eff. pixel size 0.645µm Exposure time 1.5s 15

16 Caustic scan Phosphor screen Mikroscope objective Manipulator CCD Camera 16

17 Wigner distribution Projection-slice theorem [9] h q x, z q x = I z q x I(x, y)dy [9] A. Torre, Linear ray and wave optics in phase space, Elsevier B.V. Netherlands (2005) 17

18 Wigner distribution Projection-slice theorem [9] h q x, z q x = I z q x [9] A. Torre, Linear ray and wave optics in phase space, Elsevier B.V. Netherlands (2005) 18

19 Wigner distribution Projection-slice theorem [9] Log h h q x, z q x = I z q x 4D reconstruction h q, z q = I z q [9] A. Torre, Linear ray and wave optics in phase space, Elsevier B.V. Netherlands (2005) 19

20 Wigner distribution h x x, u = h x, y, u, v dydv h y y, v = h x, y, u, v dxdu [10] T. Mey et al., Wigner distribution measurements of the spatial coherence properties of the free-electron laser FLASH, Opt. Expr. 22, (2014) 20

21 Wigner distribution Measurement Reconstruction 21

22 Coherence properties h x, y, u, v Coherent area FFT Γ x, y, s x, s y Normalization Beam area γ x, y, s x, s y Wavelength Beam diameter Coherence length Global degree of λ [nm] d x / d y [µm] l x / l y [µm] coherence K Wigner [10] / / Double pinhole [7] / / [7] A. Singer et al., Spatial and temporal coherence properties of single free-electron laser pulses, Opt. Expr. 20, (2012) [10] T. Mey et al., Wigner distribution measurements of the spatial coherence properties of the free-electron laser FLASH, Opt. Expr. 22, (2014) 22

23 Coherence properties Hanbury Brown-Twiss [12] (Singer, 2013) Double pinhole [7] (Singer, 2012) Michelson interferometer [13] (Hilbert, 2014) Double slit [11] (Singer, 2008) Wigner [10] (Mey, 2014) [7] A. Singer et al., Opt. Expr. 20, (2012) [10] T. Mey et al., Opt. Expr. 22, (2014) [11] A. Singer et al., Phys. Rev. Lett. 101, (2008) [12] A. Singer et al., Phys. Rev. Lett. 111, (2013) [13] V. Hilbert et al., Appl. Phys. Lett. 105, (2014) 23

24 Thanks to Optics/Short Wavelengths Dr. Klaus Mann Dr. Bernd Schäfer Dr. Barbara Keitel Dr. Marion Kuhlmann Dr. Elke Plönjes-Palm and to you for your kind attention!

25 Saturation effects Short wavelength Raise electron energy γ Divergence θ 1 γ Saturation after 22 gain lengths (L g 2.5m) L g γ z/l g 25

26 4D - Wigner distribution 26

27 4D - Wigner distribution TEM 10 TEM 02 TEM 03 +TEM 10 TEM 01 27

28 4D - Wigner distribution TEM 10 TEM 02 TEM 03 TEM 01 +TEM 10 h 1 h 2 h 3 h 1 h 0 + h 0 h 1 dxdu h dydv h dxdu h dxdu h dxdu h n x, u = 1 n π exp 8x2 2 d 8u2 2 L 0,x θ n 2 8x2 2 x d + 8u2 2 0,x θ x L n Laguerre Polynom vom Grad n [7] A. Torre, Linear ray and wave optics in phase space, Elsevier B.V. Netherlands (2005) [12] T. Mey, Measurement of the Wigner distribution function of non-separable laser beams employing a toroidal mirror, New J. Phys. 16, (2014) 28

29 4D - Wigner distribution TEM 10 TEM 02 TEM 03 TEM 01 +TEM 10 Global degree of coherence K Theory Experiment h 3 h 1 h 0 + h 0 h 1 dxdu TEM TEM TEM h dxdu h dxdu TEM TEM 01 +TEM [7] A. Torre, Linear ray and wave optics in phase space, Elsevier B.V. Netherlands (2005) [12] T. Mey, Measurement of the Wigner distribution function of non-separable laser beams employing a toroidal mirror, New J. Phys. 16, (2014) 29

30 Brillanz 30

31 Funktionsprinzip FEL Photonen Wellenlänge λ p = λ u 2γ K 2 u 2 Undulator Parameter K u = eλ ub 0 2πm e c 31

32 Streifen durch Spiegel 32

33 FLASH - Wigner-Verteilung Messung Rekonstruktion separierbar 33

34 FLASH - Wigner-Verteilung Messung Rekonstruktion nicht-separierbar 34

35 FLASH - Wigner-Verteilung Messung 2D Rekonstruktion 4D Rekonstruktion 35

36 Fluktuationen FLASH - Schwerpunkt Nahfeld d 0 = 50/40 µm Fernfeld θ = 5.1/3.7 mrad 36

37 Fluktuationen FLASH - Durchmesser Nahfeld d 0 = 50/40 µm Fernfeld θ = 5.1/3.7 mrad 37

38 Fluktuationen FLASH - Kohärenz K = 16λ2 π 2 1 d 0,x d 0,y θ x θ y ΔK = Δd 0,x d 0,x 2 + Δd 0,y d 0,y 2 + Δθ x θ x 2 + Δθ y θ y 2 K Durchmesser/Divergenz Kohärenz-Fluktuation K 1.5 K ΔK = 0.08 K K = ±

39 Wigner-Verteilung und CDI 39

40 FLASH - Wigner-Verteilung System-Matrix: Propagation von Strahltaille zu Kamera-Position S(z, φ) = A B C D Rekonstruktions-Vorschrift Freie Propagation: h q x, z q x = I z q x Allgemein: h A q x, B q x = I z q x 40

41 Systemmatrix 4D Messung S z, φ = Sprop z S tilt,α Srot φ S toroid Srot φ 1 1 S tilt,α Sprop( z 0 ) Sprop z = z z S tilt,α = cosα 0 0 1/ cosα / cosα 0 0 cosα S toroid = cosφ sinφ sinφ cosφ 0 0 Srot(φ) = 2/R t cosφ sinφ 0 2/R 0 0 sinφ cosφ s

Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range

Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range 2 nd Swedish-German Workshop on X-Ray Optics HZB Berlin-Adlershof, 28-30 April 2015 Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range K. Mann J.O. Dette, J. Holburg, F.

More information

Table-top EUV/Soft X-ray Source and Wavefront Measurements at Short Wavelengths

Table-top EUV/Soft X-ray Source and Wavefront Measurements at Short Wavelengths Table-top EUV/Soft X-ray Source and Wavefront Measurements at Short Wavelengths K. Mann J.O. Dette, F. Kühl, U. Leinhos, M. Lübbecke, T. Mey, M. Müller, M. Stubenvoll, J. Sudradjat, B. Schäfer Laser-Laboratorium

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Spatial coherence measurement

Spatial coherence measurement Spatial coherence measurement David Paterson Argonne National Laboratory A Laboratory Operated by The University of Chicago Motivation Third generation synchrotrons produce very bright, partially coherent

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Waseda University Research Institute for Science and Engineering Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Research Institute for Science

More information

Short Wavelength Regenerative Amplifier FELs (RAFELs)

Short Wavelength Regenerative Amplifier FELs (RAFELs) Short Wavelength Regenerative Amplifier FELs (RAFELs) Neil Thompson, David Dunning ASTeC, Daresbury Laboratory, Warrington UK Brian McNeil Strathclyde University, Glasgow, UK Jaap Karssenberg & Peter van

More information

Synchrotron Radiation Representation in Phase Space

Synchrotron Radiation Representation in Phase Space Cornell Laboratory for Accelerator-based ScienceS and Education () Synchrotron Radiation Representation in Phase Space Ivan Bazarov and Andrew Gasbarro phase space of coherent (left) and incoherent (right)

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

EUV Reflectivity measurements on Acktar Sample Magic Black

EUV Reflectivity measurements on Acktar Sample Magic Black Report EUV Reflectivity measurements on Acktar Sample Magic Black S. Döring, Dr. K. Mann Laser-Laboratorium Göttingen e.v. October 28, 2011 Contents 1 Introduction 3 2 Setup 3 3 Measurements 4 4 Conclusion

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

Coherent X-Ray Sources: Synchrotron, ERL, XFEL

Coherent X-Ray Sources: Synchrotron, ERL, XFEL Coherent X-Ray Sources: Synchrotron, ERL, XFEL John Arthur SSRL/SLAC Energy Recovery Linac Science Workshop Cornell University 2 December 2000 Supported by the US Dept. of Energy, Office of Basic Energy

More information

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Uni Hamburg tim.plath@desy.de 05.11.2013 Supported by BMBF under contract 05K10GU2 & FS FLASH 301 Motivation short pulses

More information

At-wavelength figure metrology of hard x-ray focusing mirrors

At-wavelength figure metrology of hard x-ray focusing mirrors REVIEW OF SCIENTIFIC INSTRUMENTS 77, 063712 2006 At-wavelength figure metrology of hard x-ray focusing mirrors Hirokatsu Yumoto, a Hidekazu Mimura, Satoshi Matsuyama, Soichiro Handa, and Yasuhisa Sano

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Henry.Chapman@desy.de Isaac Newton Opticks 1704 Newton was the first

More information

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Greg Howland and Steven Bloch May 11, 009 Abstract We prepare a solution of nano-diamond particles on a glass microscope slide

More information

Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I)

Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I) Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I) Sommersemester 2015 Veranstalter : Prof. Dr. Ulf Kleineberg (ulf.kleineberg@physik.uni-muenchen.de) LMU,

More information

Laser and pinching discharge plasmas spectral characteristics in water window region

Laser and pinching discharge plasmas spectral characteristics in water window region Laser and pinching discharge plasmas spectral characteristics in water window region P Kolar 1, M Vrbova 1, M Nevrkla 2, P Vrba 2, 3 and A Jancarek 2 1 Czech Technical University in Prague, Faculty of

More information

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space Tobias U. Schülli, X-ray nanoprobe group ESRF OUTLINE 1 Internal structure of

More information

A Single-Beam, Ponderomotive-Optical Trap for Energetic Free Electrons

A Single-Beam, Ponderomotive-Optical Trap for Energetic Free Electrons A Single-Beam, Ponderomotive-Optical Trap for Energetic Free Electrons Traditionally, there have been many advantages to using laser beams with Gaussian spatial profiles in the study of high-field atomic

More information

Holography and Optical Vortices

Holography and Optical Vortices WJP, PHY381 (2011) Wabash Journal of Physics v3.3, p.1 Holography and Optical Vortices Z. J. Rohrbach, J. M. Soller, and M. J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Coherent X-ray Diffraction on Quantum Dots

Coherent X-ray Diffraction on Quantum Dots Coherent X-ray Diffraction on Quantum Dots Ivan Vartaniants HASYLAB, DESY, Hamburg, Germany Or Coming Back to Crystallography Participants of the Project University of Illinois, Urbana-Champaign, IL, USA

More information

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY FEL 2004 Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics M. Richter S.V. Bobashev, J. Feldhaus A. Gottwald, U. Hahn A.A. Sorokin, K. Tiedtke BESSY PTB s Radiometry Laboratory at BESSY II 1

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

SEMATECH 157nm Technical Review

SEMATECH 157nm Technical Review SEMATECH 157nm Technical Review Technical Status Report on F2 - Lasers for 157nm Lithography I. Klaft a), F. Voss a), I. Bragin a), E. Bergmann a), T. Nagy a), N. Niemöller a), K.Vogler a), S. Spratte

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2397 Strong-field physics with singular light beams M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and Ch. Spielmann Supplementary Information S.1 Spectrometric

More information

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg Methoden moderner Röntgenphysik I Coherence based techniques II Christian Gutt DESY Hamburg christian.gutt@desy.de 8. January 009 Outline 18.1. 008 Introduction to Coherence 8.01. 009 Structure determination

More information

Coherence properties of the radiation from SASE FEL

Coherence properties of the radiation from SASE FEL CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs (FELs and ERLs), 31 May 10 June, 2016 Coherence properties of the radiation from SASE FEL M.V. Yurkov DESY, Hamburg I. Start-up

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

Imaging applications of Statistical Optics

Imaging applications of Statistical Optics Imaging applications of Statistical Optics Monday Radio Astronomy Michelson Stellar Interferometry Coherence Imaging Rotational Shear Interferometer (RSI) Wednesday Optical Coherence Tomography (OCT) 03/14/05

More information

Spatial coherence measurement of X-ray undulator radiation

Spatial coherence measurement of X-ray undulator radiation 1 August 2001 Optics Communications 195 2001) 79±84 www.elsevier.com/locate/optcom Spatial coherence measurement of X-ray undulator radiation D. Paterson a, *, B.E. Allman a, P.J. McMahon a, J. Lin a,

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Course 2: Basic Technologies

Course 2: Basic Technologies Course 2: Basic Technologies Part II: X-ray optics What do you see here? Seite 2 wavefront distortion http://www.hyperiontelescopes.com/performance12.php http://astronomy.jawaid1.com/articles/spherical%20ab

More information

Simulation of transverse emittance measurements using the single slit method

Simulation of transverse emittance measurements using the single slit method Simulation of transverse emittance measurements using the single slit method Rudolf Höfler Vienna University of Technology DESY Zeuthen Summer Student Program 007 Abstract Emittance measurements using

More information

Design of an x-ray split- and delay-unit for the European XFEL

Design of an x-ray split- and delay-unit for the European XFEL Invited Paper Design of an x-ray split- and delay-unit for the European XFEL Sebastian Roling 1*, Liubov Samoylova 3, Björn Siemer 1, Harald Sinn 3, Frank Siewert 2, Frank Wahlert 1, Michael Wöstmann 1

More information

The SCSS test accelerator Free-Electron Laser seeded by harmonics produced in gas

The SCSS test accelerator Free-Electron Laser seeded by harmonics produced in gas UVX 2008 (2009) 85 91 C EDP Sciences, 2009 DOI: 10.1051/uvx/2009014 The SCSS test accelerator Free-Electron Laser seeded by harmonics produced in gas G. Lambert 1,T.Hara 2, T. Tanikawa 3, D. Garzella 4,

More information

all dimensions are mm the minus means meniscus lens f 2

all dimensions are mm the minus means meniscus lens f 2 TEM Gauss-beam described with ray-optics. F.A. van Goor, University of Twente, Enschede The Netherlands. fred@uttnqe.utwente.nl December 8, 994 as significantly modified by C. Nelson - 26 Example of an

More information

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications DAVID ATTWOOD UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY CAMBRIDGE UNIVERSITY PRESS Contents

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

Recent progress in SR interferometer

Recent progress in SR interferometer Recent progress in SR interferometer -for small beam size measurement- T. Mitsuhashi, KEK Agenda 1. Brief introduction of beam size measurement through SR interferometry. 2. Theoretical resolution of interferometry

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

arxiv: v3 [physics.optics] 4 Feb 2016

arxiv: v3 [physics.optics] 4 Feb 2016 Spatial interference of light: transverse coherence and the Alford and Gold effect arxiv:1510.04397v3 [physics.optics] 4 Feb 2016 Jefferson Flórez, 1, Juan-Rafael Álvarez, 1 Omar Calderón-Losada, 1 Luis-José

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A. Physics Letters A 374 (2010) 1063 1067 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Macroscopic far-field observation of the sub-wavelength near-field dipole

More information

Multilayer Optics, Past and Future. Eberhard Spiller

Multilayer Optics, Past and Future. Eberhard Spiller Multilayer Optics, Past and Future Eberhard Spiller 1 Imaging with light Waves move by λ in 10-15 to 10-19 sec Wave trains are 10-14 to 10-18 sec long Each wavelet contains less than 1 photon Eye responds

More information

Experimental generating the partially coherent and partially polarized electromagnetic source

Experimental generating the partially coherent and partially polarized electromagnetic source Experimental generating the partially coherent and partially polarized electromagnetic source Andrey S Ostrovsky,* Gustavo Rodríguez-Zurita, Cruz Meneses-Fabián, Miguel Á Olvera-Santamaría, and Carolina

More information

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use. 1. Introduction The XTOD Offset Systems are designed to spatially separate the useful FEL radiation from high-energy spontaneous radiation and Bremsstrahlung γ-rays. These unwanted radiations are generated

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Wigner distribution function of volume holograms

Wigner distribution function of volume holograms Wigner distribution function of volume holograms The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher S.

More information

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques James Vale October 25, 2011 Abstract Multiferroic materials have significant potential for both the scientific

More information

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract SLAC PUB 14534 September 2011 Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector Y. Ding 1, C. Behrens 2, P. Emma 1, J. Frisch 1, Z. Huang 1, H. Loos

More information

Radiation characteristics of extreme UV and soft X-ray sources

Radiation characteristics of extreme UV and soft X-ray sources Göttingen Series in X-ray Physics Tobias Mey Radiation characteristics of extreme UV and soft X-ray sources Universitätsverlag Göttingen Tobias Mey Radiation characteristics of extreme UV and soft X-ray

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Wavefront-sensor tomography for measuring spatial coherence

Wavefront-sensor tomography for measuring spatial coherence Wavefront-sensor tomography for measuring spatial coherence Jaroslav Rehacek, Zdenek Hradil a, Bohumil Stoklasa a, Libor Motka a and Luis L. Sánchez-Soto b a Department of Optics, Palacky University, 17.

More information

Analysis of Coherence Properties of 3-rd Generation Synchrotron Sources and Free-Electron Lasers

Analysis of Coherence Properties of 3-rd Generation Synchrotron Sources and Free-Electron Lasers Analysis of Coherence Properties of 3-rd Generation Synchrotron Sources and Free-Electron Lasers arxiv:0907.4009v1 [physics.optics] 23 Jul 2009 I.A. Vartanyants and A. Singer HASYLAB at DESY, Notkestr.

More information

Construction of an extreme ultraviolet polarimeter based on highorder harmonic generation

Construction of an extreme ultraviolet polarimeter based on highorder harmonic generation Construction of an extreme ultraviolet polarimeter based on highorder harmonic generation N. Brimhall *, J. C. Painter, M. Turner, S. V. Voronov, R. S. Turley, M. Ware, and J. Peatross Department of Physics

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

Photothermal measurement of absorption and wavefront deformations in UV optics

Photothermal measurement of absorption and wavefront deformations in UV optics Journal of Physics: Conference Series Photothermal measurement of absorption and wavefront deformations in UV optics To cite this article: K Mann et al 21 J. Phys.: Conf. Ser. 214 1215 View the article

More information

Present Capabilities and Future Concepts for Intense THz from SLAC Accelerators

Present Capabilities and Future Concepts for Intense THz from SLAC Accelerators Present Capabilities and Future Concepts for Intense THz from SLAC Accelerators Alan Fisher SLAC National Accelerator Laboratory Frontiers of Terahertz Science SLAC 2012 September 6 1 THz from an Accelerated

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

Lab 1 Entanglement and Bell s Inequalities

Lab 1 Entanglement and Bell s Inequalities Quantum Optics Lab Review Justin Winkler Lab 1 Entanglement and Bell s Inequalities Entanglement Wave-functions are non-separable Measurement of state of one particle alters the state of the other particle

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Modern optics Lasers

Modern optics Lasers Chapter 13 Phys 322 Lecture 36 Modern optics Lasers Reminder: Please complete the online course evaluation Last lecture: Review discussion (no quiz) LASER = Light Amplification by Stimulated Emission of

More information

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence Chin. Phys. B Vol. 0, No. 1 011) 01407 Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence Chu Xiu-Xiang ) College of Sciences, Zhejiang Agriculture and Forestry

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Hierarchical Dynamics of Soft Matters & Prospects of Japanese Future Light Sources

Hierarchical Dynamics of Soft Matters & Prospects of Japanese Future Light Sources XDL Workshop 6 @ Cornell Univ. Hierarchical Dynamics of Soft Matters & Prospects of Japanese Future Light Sources Yuya Shinohara Department of Advanced Materials Science, Graduate School of Frontier Sciences,

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

X-ray photoelectron spectroscopy with a laser-plasma source

X-ray photoelectron spectroscopy with a laser-plasma source Proc. SPIE Vol.3157 (1997) pp.176-183 X-ray photoelectron spectroscopy with a laser-plasma source Toshihisa TOMIE a, Hiroyuki KONDO b, Hideaki SHIMIZU a, and Peixiang Lu a a Electrotechnical Laboratory,

More information

arxiv: v1 [quant-ph] 18 Mar 2008

arxiv: v1 [quant-ph] 18 Mar 2008 Real-time control of the periodicity of a standing wave: an optical accordion arxiv:0803.2733v1 [quant-ph] 18 Mar 2008 T. C. Li, H. Kelkar, D. Medellin, and M. G. Raizen Center for Nonlinear Dynamics and

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics EUV and Soft X-Ray Optics David Attwood University of California, Berkeley Cheiron School September 2011 SPring-8 1 The short wavelength region of the electromagnetic spectrum n = 1 δ + iβ δ, β

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1878 I. Experimental setup OPA, DFG Ti:Sa Oscillator, Amplifier PD U DC U Analyzer HV Energy analyzer MCP PS CCD Polarizer UHV Figure S1: Experimental setup used in mid infrared photoemission

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Petros Zerom, Matthew S. Bigelow and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 Now

More information

arxiv: v1 [physics.acc-ph] 17 Jul 2014

arxiv: v1 [physics.acc-ph] 17 Jul 2014 DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum der Helmholtz-Gemeinschaft DESY 14-19 July 014 arxiv:1407.4591v1 [physics.acc-ph] 17 Jul 014 Brightness of Synchrotron radiation from Undulators and

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy.

Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy. Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy. David Gachet, Nicolas Sandeau, Hervé Rigneault * Institut Fresnel, Mosaic team, Domaine Univ. St Jérôme, 13397 Marseille

More information

Unbalanced lensless ghost imaging with thermal light

Unbalanced lensless ghost imaging with thermal light 886 J. Opt. Soc. Am. A / Vol. 3, No. 4 / April 04 Gao et al. Unbalanced lensless ghost imaging with thermal light Lu Gao,,3 Xiao-long Liu, hiyuan heng, and Kaige Wang, * School of Science, China University

More information