Advanced Euclidean Geometry

Size: px
Start display at page:

Download "Advanced Euclidean Geometry"

Transcription

1 dvanced Euclidean Geometry Paul iu Department of Mathematics Florida tlantic University Summer 2016 July 11 Menelaus and eva Theorems

2 Menelaus theorem Theorem 0.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W 1

3 Menelaus theorem Proof. (= ) W Let W be the point on such that W//. Then, = W, and = W. It follows that = W W = W W = 1. 2

4 Menelaus theorem ( =) Suppose the line joining and intersects at. From above, = 1 =. It follows that =. The points and divide the segment in the same ratio. These must be the same point, and,, are collinear. 3

5 Example: The external bisectors The external angle bisectors of a triangle intersect their opposite sides at three collinear points. c b a Proof. If the external bisectors are,, with,, on,, respectively, then = c b, = a c, = b a. It follows that = 1 and the points,, are collinear. 4

6 Example Given triangle and points on, on, and on the extension of, such that,, are collinear. If = x, = z, and = y, and two of these lengths are given, calculate the remaining one. x a b y z c 5

7 x a b y z c (a, b, c) x y z (3, 4, 5) (3, 5, 6) 1 4 (3, 5, 7) 1 6 (4, 5, 6) 3 4 (4, 5, 7) 2 4 (5, 6, 7) 1 6 (6, 7, 8) 4 6 6

8 (2, 3, 4) triangle is a triangle with a =2, b =3, c =4. transversal intersects the sidelines at,, such that = = = t. alculate t

9 (7, 12, 18) triangle is a triangle with a =7, b =12, c =18. transversal intersects the sidelines at,, such that = = = t. alculate t

10 (9, 10, 12) triangle is a triangle with a =9, b =10, c =12. transversal intersects the sidelines at,, such that = = = t. alculate t

11 Example Given three circles with centers,, and distinct radii, show that the exsimilicenters of the three pairs of circles are collinear. 10

12 Line with equal intercepts on sidelines of a given triangle Given triangle, construct a line intersecting at externally, at and at internally so that = =. x x x 11

13 Solution Given triangle, construct a line intersecting at externally, at and at internally so that = =. x r r I If = x, by Menelaus theorem, we require a + x x x b x x c x = 1. From this, Note that x = bc a + b + c. bc sin x = 2s sin = Δ s 1 sin = r sin. This means that I is parallel to, and suggests the following simple construction of the line. 12

14 onstruction x r r I (1) onstruct the incenter I of triangle. (2) onstruct a line through I parallel to, to intersect at. (3) onstruct a circle with center, radius, to intersect externally at and internally at. Then,, are collinear with = = = r sin. 13

15 Line with equal intercepts on sidelines of a given triangle Given triangle, construct a line intersecting at externally, at and at internally so that = =. y y y 14

16 Solution Given triangle, construct a line intersecting at externally, at and at internally so that = =. c I c c y y y c If = = = y, by Menelaus theorem, we require a + y y y b y c y y = 1. From this, ca y = a + b c = r c sin, where r c is the radius of the excircle on the side. 15

17 eva s theorem Theorem 0.2 (eva). Given a triangle with points,, on the side lines,, respectively, the lines,, are concurrent if and only if =+1. P 16

18 Proof P Proof. (= ) Suppose the lines,, intersect at a point P. onsider the line P cutting the sides of triangle. y Menelaus theorem, P P = 1, or P P =+1. lso, consider the line P cutting the sides of triangle. y Menelaus theorem again, P P = 1, or P P =+1. Multiplying the two equations together, we have =+1. ( =) Exercise. 17

19 Example Given triangle and points on, on, on such that the cevians,, are concurrent. If = x, = z, and = y, and two of these lengths are given, calculate the remaining one. a x b y z c (a, b, c) x y z (3, 4, 6) (3, 5, 6) 1 4 (3, 5, 7) 1 3 (4, 5, 6) 3 4 (4, 5, 7) 1 4 (5, 6, 7) 3 4 (6, 7, 9)

20 (3, 4, 6) triangle is a triangle with a =3, b =4, c =6.,, are points on,, respectively such that = = = t. If the cevians,, are concurrent, calculate t

21 Example is a right triangle. Show that the lines,, and Q are concurrent. P Q 20

22 Solution is a right triangle. Show that the lines,, and Q are concurrent Q Let intersect at 0, intersect at 0, and Q intersect at = = 2 = 1. y eva s theorem, the lines 0, 0, 0 are concurrent. 21

23 The centroid If D, E, F are the midpoints of the sides,, of triangle, then clearly F F D D E E =1. The medians D, E, F are therefore concurrent. Their intersection is the centroid G of the triangle. F G E D onsider the line GE intersecting the sides of triangle D. y the Menelaus theorem, 1 = G GD D E E = G GD It follows that G : GD =2:1. The centroid of a triangle divides each median in the ratio 2:1. 22

24 The incenter Let,, be points on,, such that,, bisect angles, and respectively. Then = b a, = c b, = a c. I It follows that = b a c b a c =+1, and,, are concurrent. Their intersection is the incenter of the triangle. 23

25 Example Given a point P, let the lines P, P, P intersect,, respectively at,,. onstruct the circle through,,, to intersect the lines,, again at,,. Then the lines,, are concurrent. 24

26 Example Suppose two cevians, each through a vertex of a triangle, trisect each other. Show that these are medians of the triangle. P 25

27 Solution Suppose two cevians, each through a vertex of a triangle, trisect each other. Show that these are medians of the triangle. P Given: Triangle with cevians and intersecting at P such that P trisects and. To prove: and are medians, i.e., and are midpoints of and respectively. Proof. (1) Since P is a trisection of and Q, P = 3 p for p =1or 2, P = q 3 for q =1or 2. (2) pplying Menelaus theorem to triangle P with transversal, we have... 26

28 (3) Similarly, by applying Menelaus theorem to triangle P with transversal, we conclude that is the midpoint of, and is also a median. 27

29 Example Let,, be cevians of intersecting at a point P. (i) Show that if bisects angle, and =, then is isosceles. (ii) Show if if,, are bisectors, and P P = P, then is a right triangle. 28

30 Example is an isosceles triangle with β = γ =40. and are points on and respectively such that bisects angle and =30. Let P be the intersection of and. Show that P =. P 29

31 Example Let be a triangle with =40, =60. Let E and F be points lying on the sides and respectively, such that E =40 and F =70. Let E and F intersect at P. Show that P is perpendicular to. F P E 30

32 Example Let,,, D, E, F be six consecutive points on a circle. Show that the chords D, E, F are concurrent if and only if D EF = DE F. F E D 31

33 Example is a regular 12-gon. Show that the diagonals 1 5, 3 6, and 4 8 are concurrent

34 Kiepert perspectors If similar isosceles triangles, and (of base angle θ) are constructed on the sides of triangle, either all externally or all internally, the lines,, and are concurrent. θ α 1 α 2 θ θ P θ β 2 β 1 θ θ γ 1 γ2 33

35 Proof Proof. pplying the law of sines to triangles and,wehave Likewise, sin β 1 sin β 2 sin α 1 = sin α 1 sin(β + θ) sin(γ + θ) sin α 2 sin(β + θ) sin(γ + θ) sin α 2 = sin(β + θ) sin(γ + θ) sin(β + θ) = sin(γ + θ). = sin(γ+θ) sin(α+θ) and sin γ 1 sin γ 2 = sin(α+θ) sin(β+θ). From these sin α 1 sin α 2 sin β 1 sin β 2 sin γ 1 sin γ 2 =+1. and the lines,, are concurrent. The point of intersection is called the Kiepert perspector K(θ). In particular, it is called (1) a Fermat point if θ = ±60, (2) a Napoleon point if θ = ±30, (3) a Vecten point if θ = ±45. 34

36 Trigonmetric version of the eva Theorem Let be a point on the side of triangle such that the directed angles = α 1 and = α 2. y the sine formula, = / / = sin α 1/ sin β sin α 2 / sin γ = sin γ sin β sin α 1 = c sin α 2 b sin α 1. sin α 2 α 1 α 2 β 2 β 1 Likewise, if and be points on the lines, respectively, with = β 1, = β 2 and = γ 1, = γ 2,wehave = a c sin β 1, sin β 2 = b a sin γ 1. sin γ 2 These lead to the following trigonometric version of the eva theorem. γ 2 γ 1 35

37 Theorem 0.3 (eva). The lines,, are concurrent if and only if Proof. sin α 1 sin α 2 sin β 1 sin β 2 sin γ 1 sin γ 2 =+1. = sin α 1 sin β 1 sin γ 1. sin α 2 sin β 2 sin γ 2 36

Geometry. Class Examples (July 10) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 10) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 10) Paul iu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Menelaus theorem Theorem (Menelaus). Given a triangle with points,, on the side lines,,

More information

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 3 Menelaus and eva theorems 3.1 Menelaus theorem Theorem 3.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 21 Menelaus and eva theorems 21.1 Menelaus theorem Theorem 21.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem hapter 5 Menelaus theorem 5.1 Menelaus theorem Theorem 5.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof. (= ) LetW

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Example 1(a). Given a triangle, the intersection P of the perpendicular bisector of and

More information

The Menelaus and Ceva Theorems

The Menelaus and Ceva Theorems hapter 7 The Menelaus and eva Theorems 7.1 7.1.1 Sign convention Let and be two distinct points. point on the line is said to divide the segment in the ratio :, positive if is between and, and negative

More information

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 3) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 Example 11(a): Fermat point. Given triangle, construct externally similar isosceles triangles

More information

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 8) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 The incircle The internal angle bisectors of a triangle are concurrent at the incenter

More information

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC.

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC. hapter 2 The laws of sines and cosines 2.1 The law of sines Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle. 2R = a sin α = b sin β = c sin γ. α O O α as Since the area of a

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 21 Example 11: Three congruent circles in a circle. The three small circles are congruent.

More information

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 29) Paul Yiu Department of Mathematics Florida tlantic University c a Summer 2014 1 The Pythagorean Theorem Theorem (Pythagoras). The lengths a

More information

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem hapter 3 The angle bisectors 3.1 The angle bisector theorem Theorem 3.1 (ngle bisector theorem). The bisectors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If

More information

The circumcircle and the incircle

The circumcircle and the incircle hapter 4 The circumcircle and the incircle 4.1 The Euler line 4.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,.

More information

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C. hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a + b = c. roof. b a a 3 b b 4 b a b 4 1 a a 3

More information

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter hapter 8 Feuerbach s theorem 8.1 Distance between the circumcenter and orthocenter Y F E Z H N X D Proposition 8.1. H = R 1 8 cosαcos β cosγ). Proof. n triangle H, = R, H = R cosα, and H = β γ. y the law

More information

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIII GEOMETRIL OLYMPID IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to

More information

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a 2 + b 2 = c 2. roof. b a a 3 2 b 2 b 4 b a b

More information

Survey of Geometry. Supplementary Notes on Elementary Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University.

Survey of Geometry. Supplementary Notes on Elementary Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Survey of Geometry Supplementary Notes on Elementary Geometry Paul Yiu Department of Mathematics Florida tlantic University Summer 2007 ontents 1 The Pythagorean theorem i 1.1 The hypotenuse of a right

More information

Affine Transformations

Affine Transformations Solutions to hapter Problems 435 Then, using α + β + γ = 360, we obtain: ( ) x a = (/2) bc sin α a + ac sin β b + ab sin γ c a ( ) = (/2) bc sin α a 2 + (ac sin β)(ab cos γ ) + (ab sin γ )(ac cos β) =

More information

Singapore International Mathematical Olympiad Training Problems

Singapore International Mathematical Olympiad Training Problems Singapore International athematical Olympiad Training Problems 18 January 2003 1 Let be a point on the segment Squares D and EF are erected on the same side of with F lying on The circumcircles of D and

More information

Chapter 1. Theorems of Ceva and Menelaus

Chapter 1. Theorems of Ceva and Menelaus hapter 1 Theorems of eva and Menelaus We start these lectures by proving some of the most basic theorems in the geometry of a planar triangle. Let,, be the vertices of the triangle and,, be any points

More information

A Note on Reflections

A Note on Reflections Forum Geometricorum Volume 14 (2014) 155 161. FORUM GEOM SSN 1534-1178 Note on Reflections Emmanuel ntonio José García bstract. We prove some simple results associated with the triangle formed by the reflections

More information

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS GEOMETRY OF KIEPERT ND GRINERG MYKISHEV HYPEROLS LEXEY. ZSLVSKY bstract. new synthetic proof of the following fact is given: if three points,, are the apices of isosceles directly-similar triangles,, erected

More information

Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Conic Construction of a Triangle from the Feet of Its Angle Bisectors onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given

More information

A Note on the Barycentric Square Roots of Kiepert Perspectors

A Note on the Barycentric Square Roots of Kiepert Perspectors Forum Geometricorum Volume 6 (2006) 263 268. FORUM GEOM ISSN 1534-1178 Note on the arycentric Square Roots of Kiepert erspectors Khoa Lu Nguyen bstract. Let be an interior point of a given triangle. We

More information

Steiner s porism and Feuerbach s theorem

Steiner s porism and Feuerbach s theorem hapter 10 Steiner s porism and Feuerbach s theorem 10.1 Euler s formula Lemma 10.1. f the bisector of angle intersects the circumcircle at M, then M is the center of the circle through,,, and a. M a Proof.

More information

Heptagonal Triangles and Their Companions

Heptagonal Triangles and Their Companions Forum Geometricorum Volume 9 (009) 15 148. FRUM GEM ISSN 1534-1178 Heptagonal Triangles and Their ompanions Paul Yiu bstract. heptagonal triangle is a non-isosceles triangle formed by three vertices of

More information

Homogeneous Barycentric Coordinates

Homogeneous Barycentric Coordinates hapter 9 Homogeneous arycentric oordinates 9. bsolute and homogeneous barycentric coordinates The notion of barycentric coordinates dates back to. F. Möbius ( ). Given a reference triangle, we put at the

More information

Construction of a Triangle from the Feet of Its Angle Bisectors

Construction of a Triangle from the Feet of Its Angle Bisectors onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study the problem of construction of a triangle from the feet of its internal angle bisectors. conic solution is possible.

More information

Three Natural Homoteties of The Nine-Point Circle

Three Natural Homoteties of The Nine-Point Circle Forum Geometricorum Volume 13 (2013) 209 218. FRUM GEM ISS 1534-1178 Three atural omoteties of The ine-point ircle Mehmet Efe kengin, Zeyd Yusuf Köroğlu, and Yiğit Yargiç bstract. Given a triangle with

More information

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid hapter 6 asic triangle centers 6.1 The Euler line 6.1.1 The centroid Let E and F be the midpoints of and respectively, and G the intersection of the medians E and F. onstruct the parallel through to E,

More information

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS 22 SPL PROLS WITH SOLUTIOS FRO 555 GOTRY PROLS SOLUTIOS S O GOTRY I FIGURS Y. V. KOPY Stanislav hobanov Stanislav imitrov Lyuben Lichev 1 Problem 3.9. Let be a quadrilateral. Let J and I be the midpoints

More information

Survey of Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007

Survey of Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007 Survey of Geometry Paul Yiu Department of Mathematics Florida tlantic University Spring 2007 ontents 1 The circumcircle and the incircle 1 1.1 The law of cosines and its applications.............. 1 1.2

More information

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30.

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. 1. (V. Yasinsky) In trapezoid D angles and are right, = D, D = + D, < D. Prove that

More information

Nagel, Speiker, Napoleon, Torricelli. Centroid. Circumcenter 10/6/2011. MA 341 Topics in Geometry Lecture 17

Nagel, Speiker, Napoleon, Torricelli. Centroid. Circumcenter 10/6/2011. MA 341 Topics in Geometry Lecture 17 Nagel, Speiker, Napoleon, Torricelli MA 341 Topics in Geometry Lecture 17 Centroid The point of concurrency of the three medians. 07-Oct-2011 MA 341 2 Circumcenter Point of concurrency of the three perpendicular

More information

On the Circumcenters of Cevasix Configurations

On the Circumcenters of Cevasix Configurations Forum Geometricorum Volume 3 (2003) 57 63. FORUM GEOM ISSN 1534-1178 On the ircumcenters of evasix onfigurations lexei Myakishev and Peter Y. Woo bstract. We strengthen Floor van Lamoen s theorem that

More information

MATH 243 Winter 2008 Geometry II: Transformation Geometry Solutions to Problem Set 1 Completion Date: Monday January 21, 2008

MATH 243 Winter 2008 Geometry II: Transformation Geometry Solutions to Problem Set 1 Completion Date: Monday January 21, 2008 MTH 4 Winter 008 Geometry II: Transformation Geometry Solutions to Problem Set 1 ompletion Date: Monday January 1, 008 Department of Mathematical Statistical Sciences University of lberta Question 1. Let

More information

Unit 8. ANALYTIC GEOMETRY.

Unit 8. ANALYTIC GEOMETRY. Unit 8. ANALYTIC GEOMETRY. 1. VECTORS IN THE PLANE A vector is a line segment running from point A (tail) to point B (head). 1.1 DIRECTION OF A VECTOR The direction of a vector is the direction of the

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

The Kiepert Pencil of Kiepert Hyperbolas

The Kiepert Pencil of Kiepert Hyperbolas Forum Geometricorum Volume 1 (2001) 125 132. FORUM GEOM ISSN 1534-1178 The Kiepert Pencil of Kiepert Hyperbolas Floor van Lamoen and Paul Yiu bstract. We study Kiepert triangles K(φ) and their iterations

More information

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIV GEOMETRIL OLYMPI IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (L.Shteingarts, grade 8) Three circles lie inside a square. Each of them touches externally two remaining circles. lso

More information

Trigonometric Fundamentals

Trigonometric Fundamentals 1 Trigonometric Fundamentals efinitions of Trigonometric Functions in Terms of Right Triangles Let S and T be two sets. function (or mapping or map) f from S to T (written as f : S T ) assigns to each

More information

A quick introduction to (Ceva s and) Menelaus s Theorem

A quick introduction to (Ceva s and) Menelaus s Theorem quick introduction to (eva s and) Menelaus s Theorem 1 Introduction Michael Tang May 17, 2015 Menelaus s Theorem, often partnered with eva s Theorem, is a geometric result that determines when three points

More information

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true?

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true? 0809ge 1 Based on the diagram below, which statement is true? 3 In the diagram of ABC below, AB AC. The measure of B is 40. 1) a b ) a c 3) b c 4) d e What is the measure of A? 1) 40 ) 50 3) 70 4) 100

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1) Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

Mathematical Structures for Computer Graphics Steven J. Janke John Wiley & Sons, 2015 ISBN: Exercise Answers

Mathematical Structures for Computer Graphics Steven J. Janke John Wiley & Sons, 2015 ISBN: Exercise Answers Mathematical Structures for Computer Graphics Steven J. Janke John Wiley & Sons, 2015 ISBN: 978-1-118-71219-1 Updated /17/15 Exercise Answers Chapter 1 1. Four right-handed systems: ( i, j, k), ( i, j,

More information

Plane geometry Circles: Problems with some Solutions

Plane geometry Circles: Problems with some Solutions The University of Western ustralia SHL F MTHMTIS & STTISTIS UW MY FR YUNG MTHMTIINS Plane geometry ircles: Problems with some Solutions 1. Prove that for any triangle, the perpendicular bisectors of the

More information

XIV Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade

XIV Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade XIV Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade 1. (M.Volchkevich) The incircle of right-angled triangle A ( = 90 ) touches at point K. Prove that the chord

More information

Harmonic Division and its Applications

Harmonic Division and its Applications Harmonic ivision and its pplications osmin Pohoata Let d be a line and,,, and four points which lie in this order on it. he four-point () is called a harmonic division, or simply harmonic, if =. If is

More information

Homework Assignments Math /02 Fall 2014

Homework Assignments Math /02 Fall 2014 Homework Assignments Math 119-01/02 Fall 2014 Assignment 1 Due date : Friday, September 5 6th Edition Problem Set Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14,

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1 Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

The regular pentagon. Chapter The golden ratio

The regular pentagon. Chapter The golden ratio hapter 22 The regular pentagon 22.1 The golden ratio The construction of the regular pentagon is based on the division of a segment in the golden ratio. 1 Given a segment, to divide it in the golden ratio

More information

Hagge circles revisited

Hagge circles revisited agge circles revisited Nguyen Van Linh 24/12/2011 bstract In 1907, Karl agge wrote an article on the construction of circles that always pass through the orthocenter of a given triangle. The purpose of

More information

Classical Theorems in Plane Geometry 1

Classical Theorems in Plane Geometry 1 BERKELEY MATH CIRCLE 1999 2000 Classical Theorems in Plane Geometry 1 Zvezdelina Stankova-Frenkel UC Berkeley and Mills College Note: All objects in this handout are planar - i.e. they lie in the usual

More information

Homework Assignments Math /02 Fall 2017

Homework Assignments Math /02 Fall 2017 Homework Assignments Math 119-01/02 Fall 2017 Assignment 1 Due date : Wednesday, August 30 Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14, 16, 17, 18, 20, 22,

More information

Circle Chains Inside a Circular Segment

Circle Chains Inside a Circular Segment Forum eometricorum Volume 9 (009) 73 79. FRUM EM ISSN 534-78 ircle hains Inside a ircular Segment iovanni Lucca bstract. We consider a generic circles chain that can be drawn inside a circular segment

More information

9.7 Extension: Writing and Graphing the Equations

9.7 Extension: Writing and Graphing the Equations www.ck12.org Chapter 9. Circles 9.7 Extension: Writing and Graphing the Equations of Circles Learning Objectives Graph a circle. Find the equation of a circle in the coordinate plane. Find the radius and

More information

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE I. Length of a Line Segment: The distance between two points A ( x1, 1 ) B ( x, ) is given b A B = ( x x1) ( 1) To find the length of a line segment joining

More information

XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade

XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade Ratmino, 2016, July 31 1. (Yu.linkov) n altitude H of triangle bisects a median M. Prove that the medians of

More information

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks.

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. Straight Line Paper 1 Section Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of a?.

More information

Midterm Review Packet. Geometry: Midterm Multiple Choice Practice

Midterm Review Packet. Geometry: Midterm Multiple Choice Practice : Midterm Multiple Choice Practice 1. In the diagram below, a square is graphed in the coordinate plane. A reflection over which line does not carry the square onto itself? (1) (2) (3) (4) 2. A sequence

More information

7. m JHI = ( ) and m GHI = ( ) and m JHG = 65. Find m JHI and m GHI.

7. m JHI = ( ) and m GHI = ( ) and m JHG = 65. Find m JHI and m GHI. 1. Name three points in the diagram that are not collinear. 2. If RS = 44 and QS = 68, find QR. 3. R, S, and T are collinear. S is between R and T. RS = 2w + 1, ST = w 1, and RT = 18. Use the Segment Addition

More information

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry.

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry. SOME NEW THEOREMS IN PLNE GEOMETRY LEXNDER SKUTIN 1. Introduction arxiv:1704.04923v3 [math.mg] 30 May 2017 In this article we will represent some ideas and a lot of new theorems in plane geometry. 2. Deformation

More information

Activity Sheet 1: Constructions

Activity Sheet 1: Constructions Name ctivity Sheet 1: Constructions Date 1. Constructing a line segment congruent to a given line segment: Given a line segment B, B a. Use a straightedge to draw a line, choose a point on the line, and

More information

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

QUESTION BANK ON STRAIGHT LINE AND CIRCLE QUESTION BANK ON STRAIGHT LINE AND CIRCLE Select the correct alternative : (Only one is correct) Q. If the lines x + y + = 0 ; 4x + y + 4 = 0 and x + αy + β = 0, where α + β =, are concurrent then α =,

More information

Part (1) Second : Trigonometry. Tan

Part (1) Second : Trigonometry. Tan Part (1) Second : Trigonometry (1) Complete the following table : The angle Ratio 42 12 \ Sin 0.3214 Cas 0.5321 Tan 2.0625 (2) Complete the following : 1) 46 36 \ 24 \\ =. In degrees. 2) 44.125 = in degrees,

More information

right angle an angle whose measure is exactly 90ᴼ

right angle an angle whose measure is exactly 90ᴼ right angle an angle whose measure is exactly 90ᴼ m B = 90ᴼ B two angles that share a common ray A D C B Vertical Angles A D C B E two angles that are opposite of each other and share a common vertex two

More information

Introduction Circle Some terms related with a circle

Introduction Circle Some terms related with a circle 141 ircle Introduction In our day-to-day life, we come across many objects which are round in shape, such as dials of many clocks, wheels of a vehicle, bangles, key rings, coins of denomination ` 1, `

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

Collinearity/Concurrence

Collinearity/Concurrence Collinearity/Concurrence Ray Li (rayyli@stanford.edu) June 29, 2017 1 Introduction/Facts you should know 1. (Cevian Triangle) Let ABC be a triangle and P be a point. Let lines AP, BP, CP meet lines BC,

More information

Definitions. (V.1). A magnitude is a part of a magnitude, the less of the greater, when it measures

Definitions. (V.1). A magnitude is a part of a magnitude, the less of the greater, when it measures hapter 8 Euclid s Elements ooks V 8.1 V.1-3 efinitions. (V.1). magnitude is a part of a magnitude, the less of the greater, when it measures the greater. (V.2). The greater is a multiple of the less when

More information

Some Collinearities in the Heptagonal Triangle

Some Collinearities in the Heptagonal Triangle Forum Geometricorum Volume 16 (2016) 249 256. FRUM GEM ISSN 1534-1178 Some ollinearities in the Heptagonal Triangle bdilkadir ltintaş bstract. With the methods of barycentric coordinates, we establish

More information

BOARD ANSWER PAPER :OCTOBER 2014

BOARD ANSWER PAPER :OCTOBER 2014 BRD NSWER PPER :CTBER 04 GEETRY. Solve any five sub-questions: BE i. BE ( BD) D BE 6 ( BD) 9 ΔBE (ΔBD) ----[Ratio of areas of two triangles having equal base is equal to the ratio of their corresponding

More information

Geometry JWR. Monday September 29, 2003

Geometry JWR. Monday September 29, 2003 Geometry JWR Monday September 29, 2003 1 Foundations In this section we see how to view geometry as algebra. The ideas here should be familiar to the reader who has learned some analytic geometry (including

More information

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152]

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152] foot of the altitude of ABM from M and let A M 1 B. Prove that then MA > MB if and only if M 1 A > M 1 B. 8. If M is the midpoint of BC then AM is called a median of ABC. Consider ABC such that AB < AC.

More information

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths Topic 2 [312 marks] 1 The rectangle ABCD is inscribed in a circle Sides [AD] and [AB] have lengths [12 marks] 3 cm and (\9\) cm respectively E is a point on side [AB] such that AE is 3 cm Side [DE] is

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Quiz #1. Wednesday, 13 September. [10 minutes] 1. Suppose you are given a line (segment) AB. Using

More information

6.2: Isosceles Triangles

6.2: Isosceles Triangles 6.2: Isosceles Triangles Dec 5 4:34 PM 1 Define an Isosceles Triangle. A triangle that has (at least) two sides of equal length. Dec 5 4:34 PM 2 Draw an Isosceles Triangle. Label all parts and mark the

More information

0611ge. Geometry Regents Exam Line segment AB is shown in the diagram below.

0611ge. Geometry Regents Exam Line segment AB is shown in the diagram below. 0611ge 1 Line segment AB is shown in the diagram below. In the diagram below, A B C is a transformation of ABC, and A B C is a transformation of A B C. Which two sets of construction marks, labeled I,

More information

TOPIC 4 Line and Angle Relationships. Good Luck To. DIRECTIONS: Answer each question and show all work in the space provided.

TOPIC 4 Line and Angle Relationships. Good Luck To. DIRECTIONS: Answer each question and show all work in the space provided. Good Luck To Period Date DIRECTIONS: Answer each question and show all work in the space provided. 1. Name a pair of corresponding angles. 1 3 2 4 5 6 7 8 A. 1 and 4 C. 2 and 7 B. 1 and 5 D. 2 and 4 2.

More information

Revised Edition: 2016 ISBN All rights reserved.

Revised Edition: 2016 ISBN All rights reserved. Revised Edition: 2016 ISBN 978-1-280-29557-7 All rights reserved. Published by: Library Press 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: info@wtbooks.com Table of Contents

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

Statistics. To find the increasing cumulative frequency, we start with the first

Statistics. To find the increasing cumulative frequency, we start with the first Statistics Relative frequency = frequency total Relative frequency in% = freq total x100 To find the increasing cumulative frequency, we start with the first frequency the same, then add the frequency

More information

IX Geometrical Olympiad in honour of I.F.Sharygin Final round. Ratmino, 2013, August 1 = 90 ECD = 90 DBC = ABF,

IX Geometrical Olympiad in honour of I.F.Sharygin Final round. Ratmino, 2013, August 1 = 90 ECD = 90 DBC = ABF, IX Geometrical Olympiad in honour of I.F.Sharygin Final round. Ratmino, 013, ugust 1 Solutions First day. 8 grade 8.1. (N. Moskvitin) Let E be a pentagon with right angles at vertices and E and such that

More information

Ch 5 Practice Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch 5 Practice Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Ch 5 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the value of x. The diagram is not to scale. a. 32 b. 50 c.

More information

GEOMETRY. Similar Triangles

GEOMETRY. Similar Triangles GOMTRY Similar Triangles SIMILR TRINGLS N THIR PROPRTIS efinition Two triangles are said to be similar if: (i) Their corresponding angles are equal, and (ii) Their corresponding sides are proportional.

More information

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line Triangles III Stewart s Theorem, Orthocenter, uler Line 23-Sept-2011 M 341 001 1 Stewart s Theorem (1746) With the measurements given in the triangle below, the following relationship holds: a 2 n + b

More information

Bicevian Tucker Circles

Bicevian Tucker Circles Forum Geometricorum Volume 7 (2007) 87 97. FORUM GEOM ISSN 1534-1178 icevian Tucker ircles ernard Gibert bstract. We prove that there are exactly ten bicevian Tucker circles and show several curves containing

More information

2013 Sharygin Geometry Olympiad

2013 Sharygin Geometry Olympiad Sharygin Geometry Olympiad 2013 First Round 1 Let ABC be an isosceles triangle with AB = BC. Point E lies on the side AB, and ED is the perpendicular from E to BC. It is known that AE = DE. Find DAC. 2

More information

Berkeley Math Circle, May

Berkeley Math Circle, May Berkeley Math Circle, May 1-7 2000 COMPLEX NUMBERS IN GEOMETRY ZVEZDELINA STANKOVA FRENKEL, MILLS COLLEGE 1. Let O be a point in the plane of ABC. Points A 1, B 1, C 1 are the images of A, B, C under symmetry

More information

Pythagoras Theorem and Its Applications

Pythagoras Theorem and Its Applications Lecture 10 Pythagoras Theorem and Its pplications Theorem I (Pythagoras Theorem) or a right-angled triangle with two legs a, b and hypotenuse c, the sum of squares of legs is equal to the square of its

More information

0612ge. Geometry Regents Exam

0612ge. Geometry Regents Exam 0612ge 1 Triangle ABC is graphed on the set of axes below. 3 As shown in the diagram below, EF intersects planes P, Q, and R. Which transformation produces an image that is similar to, but not congruent

More information

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES STATE PLAYOFFS Arithmetic and Number Theory 1.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES STATE PLAYOFFS Arithmetic and Number Theory 1. STTE PLYOFFS 004 Round 1 rithmetic and Number Theory 1.. 3. 1. How many integers have a reciprocal that is greater than 1 and less than 1 50. 1 π?. Let 9 b,10 b, and 11 b be numbers in base b. In what

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Quiz #1. Tuesday, 17 January, 2012. [10 minutes] 1. Given a line segment AB, use (some of) Postulates I V,

More information

POINT. Preface. The concept of Point is very important for the study of coordinate

POINT. Preface. The concept of Point is very important for the study of coordinate POINT Preface The concept of Point is ver important for the stud of coordinate geometr. This chapter deals with various forms of representing a Point and several associated properties. The concept of coordinates

More information

0610ge. Geometry Regents Exam The diagram below shows a right pentagonal prism.

0610ge. Geometry Regents Exam The diagram below shows a right pentagonal prism. 0610ge 1 In the diagram below of circle O, chord AB chord CD, and chord CD chord EF. 3 The diagram below shows a right pentagonal prism. Which statement must be true? 1) CE DF 2) AC DF 3) AC CE 4) EF CD

More information

Intermediate Math Circles Wednesday October Problem Set 3

Intermediate Math Circles Wednesday October Problem Set 3 The CETRE for EDUCTI in MTHEMTICS and CMPUTIG Intermediate Math Circles Wednesday ctober 24 2012 Problem Set 3.. Unless otherwise stated, any point labelled is assumed to represent the centre of the circle.

More information

1. Matrices and Determinants

1. Matrices and Determinants Important Questions 1. Matrices and Determinants Ex.1.1 (2) x 3x y Find the values of x, y, z if 2x + z 3y w = 0 7 3 2a Ex 1.1 (3) 2x 3x y If 2x + z 3y w = 3 2 find x, y, z, w 4 7 Ex 1.1 (13) 3 7 3 2 Find

More information

One Theorem, Six Proofs

One Theorem, Six Proofs 50/ ONE THEOREM, SIX PROOFS One Theorem, Six Proofs V. Dubrovsky It is often more useful to acquaint yourself with many proofs of the same theorem rather than with similar proofs of numerous results. The

More information

0811ge. Geometry Regents Exam

0811ge. Geometry Regents Exam 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 ) 8 3) 3 4) 6 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information