Riemann Surface. David Gu. SMI 2012 Course. University of New York at Stony Brook. 1 Department of Computer Science

Size: px
Start display at page:

Download "Riemann Surface. David Gu. SMI 2012 Course. University of New York at Stony Brook. 1 Department of Computer Science"

Transcription

1 Riemann Surface 1 1 Department of Computer Science University of New York at Stony Brook SMI 2012 Course

2 Thanks Thanks for the invitation.

3 Collaborators The work is collaborated with Shing-Tung Yau, Feng Luo, Tony Chan, Paul Thompson, Yalin Wang, Ronald Lok Ming Lui, Hong Qin, Dimitris Samaras, Jie Gao, Arie Kaufman, and many other mathematicians, computer scientists and medical doctors.

4 Klein s Program Klein s Erlangen Program Different geometries study the invariants under different transformation groups. Geometries Topology - homeomorphisms - Conformal Transformations Riemannian Geometry - Isometries Differential Geometry - Rigid Motion

5 Motivation Scientific View Conformal structure is a natural geometric structure; many physics phenomena are governed by conformal geometry, such as electro-magnetic fields, brownian motion, phase transition, percolation... Conformal geometry is part of nature.

6 Motivation Practical View Conformal geometry offers the theoretic frameworks for Shape Space Mapping Space

7 Shape Space A shape embedded in E 3 has the following level of information 1 Topological structure (genus, boundaries) 2 Conformal structure, (conformal module ) 3 Riemannian metric, (conformal factor) 4 Embedding structure, (mean curvature )

8 Shape Space Surfaces can be classified according to their geometric structures Each topological equivalent class has infinite many conformal equivalent classes, which form a finite dimensional Riemannian manifold. Each conformal equivalent class has infinite many isometric classes, which form an infinite dimensional space.

9 Mapping Space Given two metric surfaces, fixing the homotopy type, there are infinite many of diffeomorphisms between them, which form the mapping space. Each mapping uniquely determines a differential - Beltrami differential. Each Beltrami differential essentially uniquely determines a diffeomorphism. The mapping space is converted to a convex functional space. Variational calculus can be carried out in the functional space.

10 Motivation Conformal geometry lays down the theoretic foundation for Surface mapping Shape classification Shape analysis Applied in computer graphics, computer vision, geometric modeling, wireless sensor networking and medical imaging, and many other engineering, medical fields.

11 Sample of Applications 1 Computational Topology: Shortest word problem 2 Geometric Modeling: Manifold Spline 3 Graph Theory: Graph embedding 4 Meshing: Smooth surface meshing that ensures curvature convergence. 5 Shape Analysis: A discrete Heat kernel determines the discrete metric.

12 History History In pure mathematics, conformal geometry is the intersection of complex analysis, algebraic topology, Riemann surface theory, algebraic curves, differential geometry, partial differential equation. In applied mathematics, computational complex function theory has been developed, which focuses on the conformal mapping between planar domains. Recently, computational conformal geometry has been developed, which focuses on the conformal mapping between surfaces.

13 History History Conventional conformal geometric method can only handle the mappings among planar domains. Applied in thin plate deformation (biharmonic equation) Membrane vibration Electro-magnetic field design (Laplace equation) Fluid dynamics Aerospace design

14 Reasons for Booming Data Acquisition 3D scanning technology becomes mature, it is easier to obtain surface data.

15 System Layout

16 3D Scanning Results

17 3D Scanning Results

18 System Layout

19 Reasons for Booming Our group has developed high speed 3D scanner, which can capture dynamic surfaces 180 frames per second. Computational Power Computational power has been increased tremendously. With the incentive in graphics, GPU becomes mature, which makes numerical methods for solving PDE s much easier.

20 Fundamental Problems 1 Given a Riemannian metric on a surface with an arbitrary topology, determine the corresponding conformal structure. 2 Compute the complete conformal invariants (conformal modules), which are the coordinates of the surface in the Teichmuller shape space. 3 Fix the conformal structure, find the simplest Riemannian metric among all possible Riemannian metrics 4 Given desired Gaussian curvature, compute the corresponding Riemannian metric. 5 Given the distortion between two conformal structures, compute the quasi-conformal mapping. 6 Compute the extremal quasi-conformal maps. 7 Conformal welding, glue surfaces with various conformal modules, compute the conformal module of the glued surface.

21 Complete Tools Computational Library 1 Compute conformal mappings for surfaces with arbitrary topologies 2 Compute conformal modules for surfaces with arbitrary topologies 3 Compute Riemannian metrics with prescribed curvatures 4 Compute quasi-conformal mappings by solving Beltrami equation

22 Books The theory, algorithms and sample code can be found in the following books. You can find them in the book store.

23 Source Code Library Please me for updated code library on computational conformal geometry.

24 Conformal Mapping

25 Holomorphic Function Definition (Holomorphic Function) Suppose f :C C is a complex function, f : x+ iy u(x,y)+iv(x,y), if f satisfies Riemann-Cauchy equation u x = v y, u y = v x, then f is a holomorphic function. Denote dz= dx+idy,d z= dx idy, z = 1 2 ( x i y ), z = 1 2 ( x +i y ) then if f z = 0, then f is holomorphic.

26 biholomorphic Function Definition (biholomorphic Function) Suppose f :C C is invertible, both f and f 1 are holomorphic, then then f is a biholomorphic function. γ0 D 0 γ1 γ2 D 1

27 Conformal Map S 1 {(U α,φ α )} S 2 {(V β,τ β )} U α f V β φ α τ β z τ β f φ 1 α w The restriction of the mapping on each local chart is biholomorphic, then the mapping is conformal.

28 Conformal Mapping

29 Definition (Conformal Map) Let φ :(S 1,g 1 ) (S 2,g 2 ) is a homeomorphism, φ is conformal if and only if φ g 2 = e 2u g 1. Conformal Mapping preserves angles. θ θ

30 Conformal Mapping Conformal maps Properties Map a circle field on the surface to a circle field on the plane.

31 Quasi-Conformal Map Diffeomorphisms: maps ellipse field to circle field.

32 Conformal Structure

33 Riemann Surface Intuition 1 A conformal structure is a equipment on a surface, such that the angles can be measured, but the lengths, areas can not. 2 A Riemannian metric naturally induces a conformal structure. 3 Different Riemannian metrics can induce a same conformal structure.

34 Manifold Definition (Manifold) M is a topological space, {U α } α I is an open covering of M, M α U α. For each U α, φ α : U α R n is a homeomorphism. The pair (U α,φ α ) is a chart. Suppose U α U β = /0, the transition function φ αβ : φ α (U α U β ) φ β (U α U β ) is smooth φ αβ = φ β φ 1 α then M is called a smooth manifold, {(U α,φ α )} is called an atlas.

35 Manifold U α U β S φ α φ β φ αβ φ α (U α ) φ β (U β )

36 Conformal Atlas Definition (Conformal Atlas) Suppose S is a topological surface, (2 dimensional manifold), A is an atlas, such that all the chart transition functions φ αβ :C C are bi-holomorphic, then A is called a conformal atlas. Definition (Compatible Conformal Atlas) Suppose S is a topological surface, (2 dimensional manifold), A 1 and A 2 are two conformal atlases. If their union A 1 A 2 is still a conformal atlas, we say A 1 and A 2 are compatible.

37 Conformal Structure The compatible relation among conformal atlases is an equivalence relation. Definition (Conformal Structure) Suppose S is a topological surface, consider all the conformal atlases on M, classified by the compatible relation {all conformal atlas}/ each equivalence class is called a conformal structure. In other words, each maximal conformal atlas is a conformal structure.

38 Conformal Structure Definition (Conformal equivalent metrics) Suppose g 1,g 2 are two Riemannian metrics on a manifold M, if g 1 = e 2u g 2,u : M R then g 1 and g 2 are conformal equivalent. Definition (Conformal Structure) Consider all Riemannian metrics on a topological surface S, which are classified by the conformal equivalence relation, {Riemannian metrics on S}/, each equivalence class is called a conformal structure.

39 Relation between Riemannian metric and Conformal Structure Definition (Isothermal coordinates) Suppose (S,g) is a metric surface, (U α,φ α ) is a coordinate chart, (x, y) are local parameters, if g = e 2u (dx 2 + dy 2 ), then we say (x, y) are isothermal coordinates. Theorem Suppose S is a compact metric surface, for each point p, there exits a local coordinate chart (U,φ), such that p U, and the local coordinates are isothermal.

40 Riemannian metric and Conformal Structure Corollary For any compact metric surface, there exists a natural conformal structure. Definition (Riemann surface) A topological surface with a conformal structure is called a Riemann surface.

41 Riemannian metric and Conformal Structure Theorem All compact orientable metric surfaces are Riemann surfaces.

42 Uniformization

43 Conformal Canonical Representations Theorem (Poincaré Uniformization Theorem) Let (Σ, g) be a compact 2-dimensional Riemannian manifold. Then there is a metric g=e 2λ g conformal to g which has constant Gauss curvature. Spherical David Euclidean Gu Hyperbolic

44 Uniformization of Open Surfaces Definition (Circle Domain) A domain in the Riemann sphere Ĉ is called a circle domain if every connected component of its boundary is either a circle or a point. Theorem Any domain Ω in Ĉ, whose boundary Ω has at most countably many components, is conformally homeomorphic to a circle domain Ω in Ĉ. Moreover Ω is unique upto Möbius transformations, and every conformal automorphism of Ω is the restriction of a Möbius transformation.

45 Uniformization of Open Surfaces Spherical Euclidean Hyperbolic

46 Conformal Canonical Representation Simply Connected Domains

47 Conformal Canonical Forms Topological Quadrilateral p 4 p 3 p 1 p 2 p 4 p 3 p 1 p 2

48 Conformal Canonical Forms Multiply Connected Domains

49 Conformal Canonical Forms Multiply Connected Domains

50 Conformal Canonical Forms Multiply Connected Domains

51 Conformal Canonical Forms Multiply Connected Domains

52 Conformal Canonical Representations Definition (Circle Domain in a Riemann Surface) A circle domain in a Riemann surface is a domain, whose complement s connected components are all closed geometric disks and points. Here a geometric disk means a topological disk, whose lifts in the universal cover or the Riemann surface (which is H 2, R 2 or S 2 are round. Theorem Let Ω be an open Riemann surface with finite genus and at most countably many ends. Then there is a closed Riemann surface R such that Ω is conformally homeomorphic to a circle domain Ω in R. More over, the pair (R,Ω ) is unique up to conformal homeomorphism.

53 Conformal Canonical Form Tori with holes

54 Conformal Canonical Form High Genus Surface with holes

55 Teichmüller Space

56 Teichmüller Space Shape Space - Intuition 1 All metric surfaces are classified by conformal equivalence relation. 2 All conformal equivalences form a finite dimensional manifold. 3 The manifold has a natural Riemannian metric, which measures the distortions between two conformal structures.

57 Teichmüller Theory: Conformal Mapping Definition (Conformal Mapping) Suppose (S 1,g 1 ) and (S 2,g 2 ) are two metric surfaces, φ : S 1 S 2 is conformal, if on S 1 g 1 = e 2λ φ g 2, where φ g 2 is the pull-back metric induced by φ. Definition (Conformal Equivalence) Suppose two surfaces S 1,S 2 with marked homotopy group generators, {a i,b i } and {α i,β i }. If there exists a conformal map φ : S 1 S 2, such that φ [a i ]=[α i ],φ [b i ]=[β i ], then we say two marked surfaces are conformal equivalent.

58 Teichmüller Space Definition (Teichmüller Space) Fix the topology of a marked surface S, all conformal equivalence classes sharing the same topology of S, form a manifold, which is called the Teichmüller space of S. Denoted as T S. Each point represents a class of surfaces. A path represents a deformation process from one shape to the other. The Riemannian metric of Teichmüller space is well defined.

59 Teichmüller Space Topological Quadrilateral p 4 p 3 p 1 p 2 Conformal module: h w. The Teichmüller space is 1 dimensional.

60 Teichmüller Space Multiply Connected Domains Conformal Module : centers and radii, with Möbius ambiguity. The Teichmüller space is 3n 3 dimensional, n is the number of holes.

61 Topological Pants Genus 0 surface with 3 boundaries is conformally mapped to the hyperbolic plane, such that all boundaries become geodesics.

62 Teichmüller Space Topological Pants γ 1 γ 2 γ 0 γ 0 τ 2 γ 0 2 τ0 γ1 2 γ1 τ0 γ 1 2 τ 1 τ 22 γ2 2 τ1 τ2 2 γ2 2 τ1 τ 0 τ 22 γ0 2 γ0 2 γ 1 2 τ 1 τ 2 γ 0 2

63 Teichmüller Space Topological Pants Decomposition - 2g 2 pairs of Pants P1 γ p1 p2 P2 θ

64 Compute Teichmüller coordinates Step 1. Compute the hyperbolic uniformization metric. Step 2. Compute the Fuchsian group generators.

65 Compute Teichmüller Coordinates Step 3. Pants decomposition using geodesics and compute the twisting angle.

66 Teichmüller Coordinates Compute Teichmüller coordinates Compute the pants decomposition using geodesics and compute the twisting angle.

67 Quasi-Conformal Maps

68 Quasi-Conformal Mappings Intuition 1 All diffeomorphisms between two compact Riemann surfaces are quasi-conformal. 2 Each quasi-conformal mapping corresponds to a unique Beltrami differential. 3 The space of diffeomorphisms equals to the space of all Beltrami differentials. 4 Variational calculus can be carried out on the space of diffeomorphisms.

69 Quasi-Conformal Map Most homeomorphisms are quasi-conformal, which maps infinitesimal circles to ellipses.

70 Beltrami-Equation Beltrami Coefficient Let φ : S 1 S 2 be the map, z,w are isothermal coordinates of S 1, S 2, Beltrami equation is defined as µ < 1 φ z = µ(z) φ z

71 Diffeomorphism Space Theorem Given two genus zero metric surface with a single boundary, {Diffeomorphisms} = {Beltrami Coefficient}. {Mobius}

72 Solving Beltrami Equation The problem of computing Quasi-conformal map is converted to compute a conformal map. Solveing Beltrami Equation Given metric surfaces (S 1,g 1 ) and (S 2,g 2 ), let z,w be isothermal coordinates of S 1,S 2,w = φ(z). Then g 1 = e 2u 1 dzd z (1) g 2 = e 2u 2 dwd w, (2) φ :(S 1,g 1 ) (S 2,g 2 ), quasi-conformal with Beltrami coefficient µ. φ :(S 1,φ g 2 ) (S 2,g 2 ) is isometric φ g 2 = e u 2 dw 2 = e u 2 dz+ µddz 2. φ :(S 1, dz+ µddz 2 ) (S 2,g 2 ) is conformal.

73 Quasi-Conformal Map Examples D3 D2 D0 p q p q D1 D3 D2 D0 p q D1

74 Quasi-Conformal Map Examples

75 Variational Calculus on Diffeomorphism Space Let {µ(t)} be a family of Beltrami coefficients depends on a parameter t, µ(t)(z) = µ(z)+tν(z)+tε(t)(z) for z C, with suitable µ, ν,ε(t) L (C), where as t 0, f µ(t) (w)=f µ (w)+tv(f µ,ν)(w)+o( t ), V(f µ,ν)(w)= f µ (w)(f µ (w) 1) ν(z)((f µ ) z (z)) 2 π C f µ (z)(f µ (z) 1)(f µ (z) f µ (w)) dx

76 Solving Beltrami Equation

77 Summary Conformal structure is more flexible than Riemannian metric Conformal structure is more rigid than topology Conformal geometry can be used for a broad range of engineering applications.

78 Thanks For more information, please to Thank you!

Tutorial on Surface Ricci Flow, Theory, Algorithm and Application

Tutorial on Surface Ricci Flow, Theory, Algorithm and Application Tutorial on Surface Ricci Flow, Theory, Algorithm and Application 1 1 Department of Computer Science University of New York at Stony Brook Graduate Summer School: Computer Vision, IPAM, UCLA Collaborators

More information

Möbius Transformation

Möbius Transformation Möbius Transformation 1 1 June 15th, 2010 Mathematics Science Center Tsinghua University Philosophy Rigidity Conformal mappings have rigidity. The diffeomorphism group is of infinite dimension in general.

More information

Introduction to Teichmüller Spaces

Introduction to Teichmüller Spaces Introduction to Teichmüller Spaces Jing Tao Notes by Serena Yuan 1. Riemann Surfaces Definition 1.1. A conformal structure is an atlas on a manifold such that the differentials of the transition maps lie

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 00 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

TEICHMÜLLER SPACE MATTHEW WOOLF

TEICHMÜLLER SPACE MATTHEW WOOLF TEICHMÜLLER SPACE MATTHEW WOOLF Abstract. It is a well-known fact that every Riemann surface with negative Euler characteristic admits a hyperbolic metric. But this metric is by no means unique indeed,

More information

PICARD S THEOREM STEFAN FRIEDL

PICARD S THEOREM STEFAN FRIEDL PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A

More information

The Geometrization Theorem

The Geometrization Theorem The Geometrization Theorem Matthew D. Brown Wednesday, December 19, 2012 In this paper, we discuss the Geometrization Theorem, formerly Thurston s Geometrization Conjecture, which is essentially the statement

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

Quasi-conformal maps and Beltrami equation

Quasi-conformal maps and Beltrami equation Chapter 7 Quasi-conformal maps and Beltrami equation 7. Linear distortion Assume that f(x + iy) =u(x + iy)+iv(x + iy) be a (real) linear map from C C that is orientation preserving. Let z = x + iy and

More information

612 CLASS LECTURE: HYPERBOLIC GEOMETRY

612 CLASS LECTURE: HYPERBOLIC GEOMETRY 612 CLASS LECTURE: HYPERBOLIC GEOMETRY JOSHUA P. BOWMAN 1. Conformal metrics As a vector space, C has a canonical norm, the same as the standard R 2 norm. Denote this dz one should think of dz as the identity

More information

ON FENCHEL NIELSEN COORDINATES ON TEICHMÜLLER SPACES OF SURFACES OF INFINITE TYPE

ON FENCHEL NIELSEN COORDINATES ON TEICHMÜLLER SPACES OF SURFACES OF INFINITE TYPE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 36, 2011, 621 659 ON FENCHEL NIELSEN COORDINATES ON TEICHMÜLLER SPACES OF SURFACES OF INFINITE TYPE Daniele Alessandrini, Lixin Liu, Athanase Papadopoulos,

More information

Discrete Euclidean Curvature Flows

Discrete Euclidean Curvature Flows Discrete Euclidean Curvature Flows 1 1 Department of Computer Science SUNY at Stony Brook Tsinghua University 2010 Isothermal Coordinates Relation between conformal structure and Riemannian metric Isothermal

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 1 Check the calculations above that the Gaussian curvature of the upper half-plane and Poincaré disk models of the hyperbolic plane is 1. Proof. The calculations

More information

HYPERBOLIC GEOMETRY AND HEEGAARD SPLITTINGS

HYPERBOLIC GEOMETRY AND HEEGAARD SPLITTINGS HYPERBOLIC GEOMETRY AND HEEGAARD SPLITTINGS TALK GIVEN BY HOSSEIN NAMAZI 1. Preliminary Remarks The lecture is based on joint work with J. Brock, Y. Minsky and J. Souto. Example. Suppose H + and H are

More information

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p.

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p. 13. Riemann surfaces Definition 13.1. Let X be a topological space. We say that X is a topological manifold, if (1) X is Hausdorff, (2) X is 2nd countable (that is, there is a base for the topology which

More information

Grafting Coordinates for Teichmüller Space

Grafting Coordinates for Teichmüller Space Grafting Coordinates for Teichmüller Space October 2006 David Dumas (ddumas@math.brown.edu) http://www.math.brown.edu/ ddumas/ (Joint work with Mike Wolf) 2 Grafting Start with X, a closed hyperbolic surface,

More information

Action of mapping class group on extended Bers slice

Action of mapping class group on extended Bers slice Action of mapping class group on extended Bers slice (Kentaro Ito) 1 Introduction Let S be an oriented closed surface of genus g 2. Put V (S) = Hom(π 1 (S), PSL 2 (C))/PSL 2 (C). Let X be an element of

More information

THE UNIFORMISATION THEOREM OF RIEMANN SURFACES

THE UNIFORMISATION THEOREM OF RIEMANN SURFACES THE UNIFORISATION THEORE OF RIEANN SURFACES 1. What is the aim of this seminar? Recall that a compact oriented surface is a g -holed object. (Classification of surfaces.) It can be obtained through a 4g

More information

Quasiconformal Maps and Circle Packings

Quasiconformal Maps and Circle Packings Quasiconformal Maps and Circle Packings Brett Leroux June 11, 2018 1 Introduction Recall the statement of the Riemann mapping theorem: Theorem 1 (Riemann Mapping). If R is a simply connected region in

More information

Masahiro Yanagishita. Riemann surfaces and Discontinuous groups 2014 February 16th, 2015

Masahiro Yanagishita. Riemann surfaces and Discontinuous groups 2014 February 16th, 2015 Complex analytic structure on the p-integrable Teichmüller space Masahiro Yanagishita Department of Mathematics, Waseda University JSPS Research Fellow Riemann surfaces and Discontinuous groups 2014 February

More information

New Deformations of Classical Minimal Surfaces

New Deformations of Classical Minimal Surfaces New Deformations of Classical Minimal Surfaces Adam G. Weyhaupt Department of Mathematics Indiana University Southern Illinois University Edwardsville March 7, 2006 Outline Minimal surfaces: definitions,

More information

The Theorem of Gauß-Bonnet in Complex Analysis 1

The Theorem of Gauß-Bonnet in Complex Analysis 1 The Theorem of Gauß-Bonnet in Complex Analysis 1 Otto Forster Abstract. The theorem of Gauß-Bonnet is interpreted within the framework of Complex Analysis of one and several variables. Geodesic triangles

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

Bending deformation of quasi-fuchsian groups

Bending deformation of quasi-fuchsian groups Bending deformation of quasi-fuchsian groups Yuichi Kabaya (Osaka University) Meiji University, 30 Nov 2013 1 Outline The shape of the set of discrete faithful representations in the character variety

More information

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture)

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) Building Geometric Structures: Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) A geometric structure on a manifold is a cover

More information

274 Curves on Surfaces, Lecture 4

274 Curves on Surfaces, Lecture 4 274 Curves on Surfaces, Lecture 4 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 4 Hyperbolic geometry Last time there was an exercise asking for braids giving the torsion elements in PSL 2 (Z). A 3-torsion

More information

Geometric structures on 3 manifolds

Geometric structures on 3 manifolds CHAPTER 3.14159265358979... Geometric structures on 3 manifolds Francis Bonahon Department of Mathematics University of Southern California Los Angeles, CA 90089 1113, U.S.A. Contents 1. Geometric structures.........................................................

More information

Convex Projective Structures on Non-hyperbolic 3-manifolds

Convex Projective Structures on Non-hyperbolic 3-manifolds Convex Projective Structures on Non-hyperbolic 3-manifolds Sam Ballas (joint with J. Danciger and G.-S. Lee) Higher Teichmüller theory and Higgs bundles Heidelberg November 3, 2015 Overview If you want

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Bounded and integrable quadratic differentials: hyperbolic and extremal lengths on Riemann surfaces

Bounded and integrable quadratic differentials: hyperbolic and extremal lengths on Riemann surfaces Geometric Complex Analysis edited by Junjiro Noguchi et al. World Scientific, Singapore, 1995 pp.443 450 Bounded and integrable quadratic differentials: hyperbolic and extremal lengths on Riemann surfaces

More information

Before you begin read these instructions carefully.

Before you begin read these instructions carefully. MATHEMATICAL TRIPOS Part IB Thursday, 6 June, 2013 9:00 am to 12:00 pm PAPER 3 Before you begin read these instructions carefully. Each question in Section II carries twice the number of marks of each

More information

The 3-Dimensional Geometrisation Conjecture Of W. P. Thurston

The 3-Dimensional Geometrisation Conjecture Of W. P. Thurston The 3-Dimensional Geometrisation Conjecture Of W. P. Thurston May 14, 2002 Contents 1 Introduction 2 2 G-manifolds 3 2.1 Definitions and basic examples................... 3 2.2 Foliations...............................

More information

Min-max methods in Geometry. André Neves

Min-max methods in Geometry. André Neves Min-max methods in Geometry André Neves Outline 1 Min-max theory overview 2 Applications in Geometry 3 Some new progress Min-max Theory Consider a space Z and a functional F : Z [0, ]. How to find critical

More information

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 Manifolds, Lie Groups, Lie Algebras, with Applications Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 1 Motivations and Goals 1. Motivations Observation: Often, the set of all objects

More information

Hyperbolic Discrete Ricci Curvature Flows

Hyperbolic Discrete Ricci Curvature Flows Hyperbolic Discrete Ricci Curvature Flows 1 1 Mathematics Science Center Tsinghua University Tsinghua University 010 Unified Framework of Discrete Curvature Flow Unified framework for both Discrete Ricci

More information

Quasi-local mass and isometric embedding

Quasi-local mass and isometric embedding Quasi-local mass and isometric embedding Mu-Tao Wang, Columbia University September 23, 2015, IHP Recent Advances in Mathematical General Relativity Joint work with Po-Ning Chen and Shing-Tung Yau. The

More information

ON THE MEAN CURVATURE FUNCTION FOR COMPACT SURFACES

ON THE MEAN CURVATURE FUNCTION FOR COMPACT SURFACES J. DIFFERENTIAL GEOMETRY 16 (1981) 179-183 ON THE MEAN CURVATURE FUNCTION FOR COMPACT SURFACES H. BLAINE LAWSON, JR. & RENATO DE AZEVEDO TRIBUZY Dedicated to Professor Buchin Su on his SOth birthday It

More information

Index. Bertrand mate, 89 bijection, 48 bitangent, 69 Bolyai, 339 Bonnet s Formula, 283 bounded, 48

Index. Bertrand mate, 89 bijection, 48 bitangent, 69 Bolyai, 339 Bonnet s Formula, 283 bounded, 48 Index acceleration, 14, 76, 355 centripetal, 27 tangential, 27 algebraic geometry, vii analytic, 44 angle at a corner, 21 on a regular surface, 170 angle excess, 337 angle of parallelism, 344 angular velocity,

More information

ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE

ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 315 326 ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE Hiroshige Shiga Tokyo Institute of Technology, Department of

More information

SMSTC Geometry and Topology

SMSTC Geometry and Topology SMSTC Geometry and Topology 2013-2014 1 Andrew Ranicki http://www.maths.ed.ac.uk/ aar SMSTC Symposium Perth, 9th October, 2013 http://www.smstc.ac.uk http://www.maths.ed.ac.uk/ aar/smstc/gt34info.pdf http://www.maths.ed.ac.uk/

More information

Introduction to Minimal Surface Theory: Lecture 2

Introduction to Minimal Surface Theory: Lecture 2 Introduction to Minimal Surface Theory: Lecture 2 Brian White July 2, 2013 (Park City) Other characterizations of 2d minimal surfaces in R 3 By a theorem of Morrey, every surface admits local isothermal

More information

Chapter 19 Clifford and the Number of Holes

Chapter 19 Clifford and the Number of Holes Chapter 19 Clifford and the Number of Holes We saw that Riemann denoted the genus by p, a notation which is still frequently used today, in particular for the generalizations of this notion in higher dimensions.

More information

Delaunay triangulations on hyperbolic surfaces

Delaunay triangulations on hyperbolic surfaces Delaunay triangulations on hyperbolic surfaces Master Project Mathematics August 1, 017 Student: Y.M. Ebbens First supervisor: Prof.dr. G. Vegter Second supervisor: Dr. A.E. Sterk Abstract There exist

More information

Groups up to quasi-isometry

Groups up to quasi-isometry OSU November 29, 2007 1 Introduction 2 3 Topological methods in group theory via the fundamental group. group theory topology group Γ, a topological space X with π 1 (X) = Γ. Γ acts on the universal cover

More information

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts.

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts. RIEMANN SURFACES 2. Week 2. Basic definitions 2.1. Smooth manifolds. Complex manifolds. Let X be a topological space. A (real) chart of X is a pair (U, f : U R n ) where U is an open subset of X and f

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and Mostow Rigidity W. Dison June 17, 2005 0 Introduction Lie Groups and Symmetric Spaces We will be concerned with (a) semi-simple Lie groups with trivial centre and no compact factors and (b) simply connected,

More information

Introduction 3. Lecture 1. Hyperbolic Surfaces 5. Lecture 2. Quasiconformal Maps 19

Introduction 3. Lecture 1. Hyperbolic Surfaces 5. Lecture 2. Quasiconformal Maps 19 Contents Teichmüller Theory Ursula Hamenstädt 1 Teichmüller Theory 3 Introduction 3 Lecture 1. Hyperbolic Surfaces 5 Lecture 2. Quasiconformal Maps 19 Lecture 3. Complex Structures, Jacobians and the Weil

More information

What is a (compact) Riemann surface?

What is a (compact) Riemann surface? What is a (compact) Riemann surface? Irwin Kra SUNY @ Stony Brook irwinkra@gmail.com Wednesday, March 5, 2014 Math CLUB talk. To help you make a decision about topics to study (in graduate school)? Irwin

More information

Riemann Surfaces and Algebraic Curves

Riemann Surfaces and Algebraic Curves Riemann Surfaces and Algebraic Curves JWR Tuesday December 11, 2001, 9:03 AM We describe the relation between algebraic curves and Riemann surfaces. An elementary reference for this material is [1]. 1

More information

THE COHOMOLOGY OF THE MODULI SPACE OF CURVES

THE COHOMOLOGY OF THE MODULI SPACE OF CURVES THE COHOMOLOGY OF THE MODULI SPACE OF CURVES The purpose of this unit is to give a brief survey about the cohomology and the tautological rings of the moduli space of curves. Unfortunately, for the most

More information

An introduction to orbifolds

An introduction to orbifolds An introduction to orbifolds Joan Porti UAB Subdivide and Tile: Triangulating spaces for understanding the world Lorentz Center November 009 An introduction to orbifolds p.1/0 Motivation Γ < Isom(R n )

More information

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary David Chopp and John A. Velling December 1, 2003 Abstract Let γ be a Jordan curve in S 2, considered as the ideal

More information

ON INFINITESIMAL STREBEL POINTS

ON INFINITESIMAL STREBEL POINTS ON ININITSIMAL STRBL POINTS ALASTAIR LTCHR Abstract. In this paper, we prove that if is a Riemann surface of infinite analytic type and [µ] T is any element of Teichmüller space, then there exists µ 1

More information

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d Möbius transformations Möbius transformations are simply the degree one rational maps of C: where and Then σ A : z az + b cz + d : C C ad bc 0 ( ) a b A = c d A σ A : GL(2C) {Mobius transformations } is

More information

Lecture 2. Smooth functions and maps

Lecture 2. Smooth functions and maps Lecture 2. Smooth functions and maps 2.1 Definition of smooth maps Given a differentiable manifold, all questions of differentiability are to be reduced to questions about functions between Euclidean spaces,

More information

Plane hyperbolic geometry

Plane hyperbolic geometry 2 Plane hyperbolic geometry In this chapter we will see that the unit disc D has a natural geometry, known as plane hyperbolic geometry or plane Lobachevski geometry. It is the local model for the hyperbolic

More information

The Skinning Map. 1 Motivation

The Skinning Map. 1 Motivation The Skinning Map The skinning map σ is a particular self-map of the Teichmüller space T (Σ). It arises in the theory of geometrization of 3-manifolds. Let us start by understanding the geometrization of

More information

Complete Surfaces of Constant Gaussian Curvature in Euclidean Space R 3.

Complete Surfaces of Constant Gaussian Curvature in Euclidean Space R 3. Summary of the Thesis in Mathematics by Valentina Monaco Complete Surfaces of Constant Gaussian Curvature in Euclidean Space R 3. Thesis Supervisor Prof. Massimiliano Pontecorvo 19 May, 2011 SUMMARY The

More information

A crash course the geometry of hyperbolic surfaces

A crash course the geometry of hyperbolic surfaces Lecture 7 A crash course the geometry of hyperbolic surfaces 7.1 The hyperbolic plane Hyperbolic geometry originally developed in the early 19 th century to prove that the parallel postulate in Euclidean

More information

Intrinsic Geometry. Andrejs Treibergs. Friday, March 7, 2008

Intrinsic Geometry. Andrejs Treibergs. Friday, March 7, 2008 Early Research Directions: Geometric Analysis II Intrinsic Geometry Andrejs Treibergs University of Utah Friday, March 7, 2008 2. References Part of a series of thee lectures on geometric analysis. 1 Curvature

More information

Eigenvalue (mis)behavior on manifolds

Eigenvalue (mis)behavior on manifolds Bucknell University Lehigh University October 20, 2010 Outline 1 Isoperimetric inequalities 2 3 4 A little history Rayleigh quotients The Original Isoperimetric Inequality The Problem of Queen Dido: maximize

More information

How curvature shapes space

How curvature shapes space How curvature shapes space Richard Schoen University of California, Irvine - Hopf Lecture, ETH, Zürich - October 30, 2017 The lecture will have three parts: Part 1: Heinz Hopf and Riemannian geometry Part

More information

Uniformization and percolation

Uniformization and percolation Uniformization and percolation Itai Benjamini October 2015 Conformal maps A conformal map, between planar domains, is a function that infinitesimally preserves angles. The derivative of a conformal map

More information

Minimal submanifolds: old and new

Minimal submanifolds: old and new Minimal submanifolds: old and new Richard Schoen Stanford University - Chen-Jung Hsu Lecture 1, Academia Sinica, ROC - December 2, 2013 Plan of Lecture Part 1: Volume, mean curvature, and minimal submanifolds

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Quasi-conformal minimal Lagrangian diffeomorphisms of the

Quasi-conformal minimal Lagrangian diffeomorphisms of the Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane (joint work with J.M. Schlenker) January 21, 2010 Quasi-symmetric homeomorphism of a circle A homeomorphism φ : S 1 S 1 is quasi-symmetric

More information

Perelman s proof of the Poincaré conjecture

Perelman s proof of the Poincaré conjecture University of California, Los Angeles Clay/Mahler Lecture Series In a series of three papers in 2002-2003, Grisha Perelman solved the famous Poincaré conjecture: Poincaré conjecture (1904) Every smooth,

More information

Introduction. Hamilton s Ricci flow and its early success

Introduction. Hamilton s Ricci flow and its early success Introduction In this book we compare the linear heat equation on a static manifold with the Ricci flow which is a nonlinear heat equation for a Riemannian metric g(t) on M and with the heat equation on

More information

MATH DIFFERENTIAL GEOMETRY. Contents

MATH DIFFERENTIAL GEOMETRY. Contents MATH 3968 - DIFFERENTIAL GEOMETRY ANDREW TULLOCH Contents 1. Curves in R N 2 2. General Analysis 2 3. Surfaces in R 3 3 3.1. The Gauss Bonnet Theorem 8 4. Abstract Manifolds 9 1 MATH 3968 - DIFFERENTIAL

More information

HILBERT S THEOREM ON THE HYPERBOLIC PLANE

HILBERT S THEOREM ON THE HYPERBOLIC PLANE HILBET S THEOEM ON THE HYPEBOLIC PLANE MATTHEW D. BOWN Abstract. We recount a proof of Hilbert s result that a complete geometric surface of constant negative Gaussian curvature cannot be isometrically

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information

Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10

Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10 Riemann surfaces Paul Hacking and Giancarlo Urzua 1/28/10 A Riemann surface (or smooth complex curve) is a complex manifold of dimension one. We will restrict to compact Riemann surfaces. It is a theorem

More information

DIFFERENTIAL GEOMETRY HW 5. Show that the law of cosines in spherical geometry is. cos c = cos a cos b + sin a sin b cos θ.

DIFFERENTIAL GEOMETRY HW 5. Show that the law of cosines in spherical geometry is. cos c = cos a cos b + sin a sin b cos θ. DIFFEENTIAL GEOMETY HW 5 CLAY SHONKWILE Show that the law of cosines in spherical geometry is 5 cos c cos a cos b + sin a sin b cos θ. Proof. Consider the spherical triangle depicted below: Form radii

More information

Geometry of the Moduli Space of Curves and Algebraic Manifolds

Geometry of the Moduli Space of Curves and Algebraic Manifolds Geometry of the Moduli Space of Curves and Algebraic Manifolds Shing-Tung Yau Harvard University 60th Anniversary of the Institute of Mathematics Polish Academy of Sciences April 4, 2009 The first part

More information

COMPLEX ANALYSIS-II HOMEWORK

COMPLEX ANALYSIS-II HOMEWORK COMPLEX ANALYSIS-II HOMEWORK M. LYUBICH Homework (due by Thu Sep 7). Cross-ratios and symmetries of the four-punctured spheres The cross-ratio of four distinct (ordered) points (z,z 2,z 3,z 4 ) Ĉ4 on the

More information

Estimates in surfaces with positive constant Gauss curvature

Estimates in surfaces with positive constant Gauss curvature Estimates in surfaces with positive constant Gauss curvature J. A. Gálvez A. Martínez Abstract We give optimal bounds of the height, curvature, area and enclosed volume of K-surfaces in R 3 bounding a

More information

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces Algebraic Curves and Riemann Surfaces Rick Miranda Graduate Studies in Mathematics Volume 5 If American Mathematical Society Contents Preface xix Chapter I. Riemann Surfaces: Basic Definitions 1 1. Complex

More information

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF D. D. LONG and A. W. REID Abstract We prove that the fundamental group of the double of the figure-eight knot exterior admits

More information

Riemann surfaces. 3.1 Definitions

Riemann surfaces. 3.1 Definitions 3 Riemann surfaces In this chapter we define and give the first properties of Riemann surfaces. These are the holomorphic counterpart of the (real) differential manifolds. We will see how the Fuchsian

More information

Junior Seminar: Hyperbolic Geometry Lecture Notes

Junior Seminar: Hyperbolic Geometry Lecture Notes Junior Seminar: Hyperbolic Geometry Lecture Notes Tim Campion January 20, 2010 1 Motivation Our first construction is very similar in spirit to an analogous one in Euclidean space. The group of isometries

More information

Mapping problems and harmonic univalent mappings

Mapping problems and harmonic univalent mappings Mapping problems and harmonic univalent mappings Antti Rasila Helsinki University of Technology antti.rasila@tkk.fi (Mainly based on P. Duren s book Harmonic mappings in the plane) Helsinki Analysis Seminar,

More information

CHARACTERIZATIONS OF CIRCLE PATTERNS AND CONVEX POLYHEDRA IN HYPERBOLIC 3-SPACE

CHARACTERIZATIONS OF CIRCLE PATTERNS AND CONVEX POLYHEDRA IN HYPERBOLIC 3-SPACE CHARACTERIZATIONS OF CIRCLE PATTERNS AND CONVEX POLYHEDRA IN HYPERBOLIC 3-SPACE XIAOJUN HUANG AND JINSONG LIU ABSTRACT In this paper we consider the characterization problem of convex polyhedrons in the

More information

Stein fillings of contact 3-manifolds obtained as Legendrian sur

Stein fillings of contact 3-manifolds obtained as Legendrian sur Stein fillings of contact 3-manifolds obtained as Legendrian surgeries Youlin Li (With Amey Kaloti) Shanghai Jiao Tong University A Satellite Conference of Seoul ICM 2014 Knots and Low Dimensional Manifolds

More information

arxiv: v1 [math.dg] 28 Jun 2008

arxiv: v1 [math.dg] 28 Jun 2008 Limit Surfaces of Riemann Examples David Hoffman, Wayne Rossman arxiv:0806.467v [math.dg] 28 Jun 2008 Introduction The only connected minimal surfaces foliated by circles and lines are domains on one of

More information

X G X by the rule x x g

X G X by the rule x x g 18. Maps between Riemann surfaces: II Note that there is one further way we can reverse all of this. Suppose that X instead of Y is a Riemann surface. Can we put a Riemann surface structure on Y such that

More information

Lecture 1. Introduction

Lecture 1. Introduction Lecture 1. Introduction In Differential Geometry we study spaces which are smooth enough to do calculus. These include such familiar objects as curves and surfaces in space. In its earliest manifestation,

More information

CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP

CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP TOSHIHIRO SHODA Abstract. In this paper, we study a compact minimal surface in a 4-dimensional flat

More information

LECTURE Itineraries We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial

LECTURE Itineraries We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial LECTURE. Itineraries We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial f λ : R R x λx( x), where λ [, 4). Starting with the critical point x 0 := /2, we

More information

DIFFERENTIAL GEOMETRY. LECTURE 12-13,

DIFFERENTIAL GEOMETRY. LECTURE 12-13, DIFFERENTIAL GEOMETRY. LECTURE 12-13, 3.07.08 5. Riemannian metrics. Examples. Connections 5.1. Length of a curve. Let γ : [a, b] R n be a parametried curve. Its length can be calculated as the limit of

More information

ABELIAN COVERINGS, POINCARÉ EXPONENT OF CONVERGENCE AND HOLOMORPHIC DEFORMATIONS

ABELIAN COVERINGS, POINCARÉ EXPONENT OF CONVERGENCE AND HOLOMORPHIC DEFORMATIONS Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 20, 1995, 81 86 ABELIAN COVERINGS, POINCARÉ EXPONENT OF CONVERGENCE AND HOLOMORPHIC DEFORMATIONS K. Astala and M. Zinsmeister University

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

Surface Registration by Optimization in Constrained Diffeomorphism Space

Surface Registration by Optimization in Constrained Diffeomorphism Space Surface Registration by Optimization in Constrained Diffeomorphism Space Wei Zeng Florida International University, Florida wzeng@cs.fiu.edu Lok Ming Lui Chinese University of Hong Kong, Hong Kong Xianfeng

More information

Uniformization and percolation

Uniformization and percolation Uniformization and percolation Itai Benjamini May 2016 Conformal maps A conformal map, between planar domains, is a function that infinitesimally preserves angles. The derivative of a conformal map is

More information

Discrete Differential Geometry. Discrete Laplace-Beltrami operator and discrete conformal mappings.

Discrete Differential Geometry. Discrete Laplace-Beltrami operator and discrete conformal mappings. Discrete differential geometry. Discrete Laplace-Beltrami operator and discrete conformal mappings. Technische Universität Berlin Geometric Methods in Classical and Quantum Lattice Systems, Caputh, September

More information

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 An introduction to arithmetic groups Lizhen Ji CMS, Zhejiang University Hangzhou 310027, China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 June 27, 2006 Plan. 1. Examples of arithmetic groups

More information

Complex manifolds, Kahler metrics, differential and harmonic forms

Complex manifolds, Kahler metrics, differential and harmonic forms Complex manifolds, Kahler metrics, differential and harmonic forms Cattani June 16, 2010 1 Lecture 1 Definition 1.1 (Complex Manifold). A complex manifold is a manifold with coordinates holomorphic on

More information

NON-DIVERGENT INFINITELY DISCRETE TEICHMÜLLER MODULAR TRANSFORMATION

NON-DIVERGENT INFINITELY DISCRETE TEICHMÜLLER MODULAR TRANSFORMATION NON-DIVERGENT INFINITELY DISCRETE TEICHMÜLLER MODULAR TRANSFORMATION EGE FUJIKAWA AND KATSUHIKO MATSUZAKI Abstract. We consider a classification of Teichmüller modular transformations of an analytically

More information