Section 4. Nonlinear Circuits

Size: px
Start display at page:

Download "Section 4. Nonlinear Circuits"

Transcription

1 Section 4 Nonlinear Circuits

2 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : V OH and V OL should be far apart enough Response Time: t PD : The time it takes for the output to accomplish % 50 of its transition in response to a predetermined voltage step at the input Op amps as voltage comparators: If the speed is not critical op amp is an excellent comparator As a comparator op amp is open loop (no control on V N ) and most of the time it is in saturation

3 LM 301 (op amp) does not have any internal C C, and has higher slew rate. Compensation Is not necessary in open loop applications. In general op amps are intended for negative feedback operation and their dynamics Are not optimized for open-loop response. General purpose IC comparators: Output and GND are externally accessible (LM 319, LM 339) V P < V N : Q o (on) V CC (Logic) = 5 V, V EE (Logic) = 0 V V P > V N : Q o (off)

4 2 ) Comparator Applications Level Detectors Nonlinear Circuits Monitors a physical variable that can be expressed in terms of voltage V T = ( 1+ (R 2 /R 1 )) V REF V I < V T : Q o (off), LED (off) V I > V T : Q o (on), LED (on) If the input voltage is equal to V CC, we are monitoring the power supply

5 On Off Control T < T 0 : VP > VN, Q o (off), LM 395 (on), Heater (off) T > T 0 : VN < VP, Q o (on), LM 395 (off), Heater (on)

6 Window Detectors When the input voltage falls within a specified band, the output voltage is activated Window detectors are used in production line testing to sort out circuits that fail to meet a given tolerance.

7 Pulse-Width Modulation Applications are in signal transmission and power control V I : V m sin (ωt) V TR : Triangular wave T L, T H : the time spent by v o in the low and high state within a given cycle of TR D(%) = 100. (T H /(T H +T L )) or D (%) = 100. (V I / V m )

8 2 ) Schmitt Triggers Positive feedback forces the amplifier into saturation Inverting Schmitt Triggers: V TH = ( R 1 / (R 1 + R 2 )). V OH V TL = ( R 1 / (R 1 + R 2 )). V OL Inverting type threshold controller by the output voltage

9 A VTC with two separate tripping points is said to exhibit hysteresis : ΔV T = ( R 1 / (R 1 +R 2 ) ) (V OH V OL ) Non - Inverting Schmitt Triggers: V TH = ( - R 1 / R 2 ). V OH V TL = ( -R 1 / R 2 ). V OL ΔVT = ( R 2 / R 1 ) (V OH V OL )

10 Single Supply Schmitt Triggers: V TL = [( R 1 R 3 )/((R 1 R 3 )+R 2 )]. V CC V TH = [ R 1 /((R 1 R 3 )+R 2 )]. V CC R 4 << R 3 +( R 1 R 2 ) R 5 << ( R 3 + R 4 ) R 4 / R 3 = (V TH -V TL ) / V CC R 2 / R 1 = (V CC -V TL ) / V TH

11 3 ) Precision Rectifiers Half- Wave Rectifier: V o = V I ; V I > 0 and V o = 0 ; V I < 0 Full- Wave Rectifier: V o = V I ; V I > 0 and V o = - V I ; V I < 0 Rectifier Implementation: In diodes, the non-zero Vd (on) may cause intolerable errors In low-level signal rectification. Half- Wave Rectifiers: Case 1: V I > 0 : D (on), V o = V I Case 2: V I < 0 : D (off), V o = 0 Diode op amp combination : Super Diode

12 Case 1: V I > 0 : D1 (on), D2 (off)= 0, V o = 0 Case 2: V I < 0 : D1 (off), D2 (on)= 0, V o = (- R2 / R1) VI Full- Wave Rectifiers: V 0 = - ( R 5 / R 4 ). V I -( R 5 /R 3 ). V HW V HW = - (R 2 /R 1 ). V I, V I > 0 V HW = 0, V I < 0 V o = A p. V I, V I > 0 V o = - A n. V I, V I <0 A p =A n =A, V o = A V I R 1 =R 2 =R 4 =R, R 3 =R / 2, R 5 =A.R

13 AC DC Converters: AC signal is full-wave rectified, low-pass filtered and synthesize a DC voltage AC Dc converters are calibrated to give r.m.s. of the AC signal V(t) = V m. Sin (ω. t), V avg = (2/π). V m, V rms = V m, V rms = 1.11 V avg Example of an AC DC converter:

14 5 ) Peak Detectors We need four blocks for implementing a peak detector: Analog Memory to hold the value of the most recent peak (Capacitor, C H ) Unidirectional current switch to further charge the capacitor when a new peak comes along (Diode, D2) A device to force the capacitance voltage to track the input voltage when a new peak comes along (Voltage Follower, OA1) A switch to periodically reinitialize V o to zero (FET discharge switch in parallel with C) OA2 prevents discharge by R and external load D 1 and R prevent OA1 from saturating after A peak has been detected.

15 Track Mode: D 1 (off), D 2 (on), OA1 (feedback path, D 2 -OA2- R), No current through R so V o =V I (track) OA1 sources current to charge C H over D 2 Hold Mode: After peaking V I decreases so: D 1 (on), D 2 (off), OA1 (Alternative feedback path), R provides current path for D 1

16 6 ) Sample and Hold Circuits Nonlinear Circuits SHA: The value of the input signal is captured instantaneously THA: After capturing the signal the circuit tracks the signal until the next Capturing happens (More practical to implement) Track Mode: SW closed D 1 (off), D 2 (off), OA1 (feedback path, SW-OA2- R), No current through R so V o =V I (track), OA1 is a voltage follower Hold Mode: SW open D 1, D 2 prevent OA1 from saturation C H retains whatever voltage it had

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods EE 230 Lecture 20 Nonlinear Op Amp Applications The Comparator Nonlinear Analysis Methods Quiz 14 What is the major purpose of compensation when designing an operatinal amplifier? And the number is? 1

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Nonlinear Op-amp Circuits

Nonlinear Op-amp Circuits deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering IIT Bombay May 3, 2013 Overview of op-amp operating regions Linear Region Occurs when the op-amp output is stable i.e.

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

analyse and design a range of sine-wave oscillators understand the design of multivibrators. INTODUTION In this lesson, we investigate some forms of wave-form generation using op amps. Of course, we could use basic transistor circuits, but it makes sense to simplify the analysis by considering

More information

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B EECS 16A Spring 2018 Designing Information Devices and Systems I Discussion 8B 1. Bio-Molecule Detector We ve already seen how to build a bio-molecule detector where bio-molecules change the resistance

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A ECS 40, Fall 2008 Prof. ChangHasnain Test #3 Version A 10:10 am 11:00 am, Wednesday December 3, 2008 Total Time Allotted: 50 minutes Total Points: 100 1. This is a closed book exam. However, you are allowed

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1 Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Metal-Oxide-Semiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n- substrate - SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

4.4 The MOSFET as an Amp and Switch

4.4 The MOSFET as an Amp and Switch 10/31/004 section 4_4 The MSFET as an Amp and Switch blank 1/1 44 The MSFET as an Amp and Switch Reading Assignment: pp 70-80 Now we know how an enhancement MSFET works! Q: A: 1 H: The MSFET as an Amp

More information

High Reliability Hallogic Hall- Effect Sensors OMH090, OMH3019, OMH3020, OMH3040, OMH3075, OMH3131 (B, S versions)

High Reliability Hallogic Hall- Effect Sensors OMH090, OMH3019, OMH3020, OMH3040, OMH3075, OMH3131 (B, S versions) High Reliability Hallogic Hall Features: Designed for noncontact switching operations Operates over a broad range of supply voltages Excellent temperature stability operates in harsh environments Suitable

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1 Lecture 32 Improved OpenLoop Comparators and es (3/28/1) Page 321 LECTURE 32 IMPROVED OPENLOOP COMPARATORS AND LATCHES LECTURE ORGANIZATION Outline Autozeroing Hysteresis Simple es Summary CMOS Analog

More information

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset Description: The NTE74HC109 is a dual J K flip flip with set and reset in a 16 Lead plastic DIP

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Hallogic Hall-Effect Sensors OH090U, OH180U, OH360U OHN3000 series, OHS3000 series OHN3100 series, OHS3100 series

Hallogic Hall-Effect Sensors OH090U, OH180U, OH360U OHN3000 series, OHS3000 series OHN3100 series, OHS3100 series Hallogic HallEffect Sensors OH9U, OH18U, OH36U OHN3 series, OHS3 series OHN3 series, OHS3 series Features: Designed for noncontact switching operations Operates over broad range of supply voltages (4.5

More information

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

MM74C14 Hex Schmitt Trigger

MM74C14 Hex Schmitt Trigger MM74C14 Hex Schmitt Trigger General Description The MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The

More information

ENGR4300 Fall 2005 Test 3A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 3A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) ENGR4 Test A Fall 5 ENGR4 Fall 5 Test A Name Section Question (5 points) Question (5 points) Question (5 points) Question 4 (5 points) Total ( points): Please do not write on the crib sheets. On all questions:

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

Exploring Autonomous Memory Circuit Operation

Exploring Autonomous Memory Circuit Operation Exploring Autonomous Memory Circuit Operation October 21, 2014 Autonomous Au-to-no-mous: Merriam-Webster Dictionary (on-line) a. Existing independently of the whole. b. Reacting independently of the whole.

More information

MM74C14 Hex Schmitt Trigger

MM74C14 Hex Schmitt Trigger MM74C14 Hex Schmitt Trigger General Description The MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The

More information

EE 230 Lecture 21. Nonlinear Op Amp Applications. Nonlinear analysis methods Comparators with Hysteresis

EE 230 Lecture 21. Nonlinear Op Amp Applications. Nonlinear analysis methods Comparators with Hysteresis EE 230 Lecture 2 Nonlinear Op Amp Applications Nonlinear analysis methods Comparators with Hysteresis Quiz 5 Plot the transfer charactristics of the following circuit. Assume the op amp has =2 and SATL

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

Inducing Chaos in the p/n Junction

Inducing Chaos in the p/n Junction Inducing Chaos in the p/n Junction Renato Mariz de Moraes, Marshal Miller, Alex Glasser, Anand Banerjee, Ed Ott, Tom Antonsen, and Steven M. Anlage CSR, Department of Physics MURI Review 14 November, 2003

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Summary Notes ALTERNATING CURRENT AND VOLTAGE

Summary Notes ALTERNATING CURRENT AND VOLTAGE HIGHER CIRCUIT THEORY Wheatstone Bridge Circuit Any method of measuring resistance using an ammeter or voltmeter necessarily involves some error unless the resistances of the meters themselves are taken

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM

More information

ECE 2100 Lecture notes Wed, 1/22/03

ECE 2100 Lecture notes Wed, 1/22/03 HW #4, due, /24 Ch : 34, 37, 43 ECE 0 Lecture notes Wed, /22/03 Exercises: 2., 2.2, 2.4, 2.5 Stu or hints etc., see lecture notes or, /7 Problem Sessions: W, :50-2:40 am, WBB 22 (tall brick geology building),

More information

Hallogic Hall-effect Sensors OH090U, OH180U, OH360U OHN3000 Series, OHS3000 Series OHN3100 Series, OHS3100 Series

Hallogic Hall-effect Sensors OH090U, OH180U, OH360U OHN3000 Series, OHS3000 Series OHN3100 Series, OHS3100 Series Hallogic Halleffect Sensors Features: Designed for noncontact switching operations Operates over broad range of supply voltages (4.5 V to 24 V) Operates with excellent temperature stability in harsh environments

More information

NTE74HC165 Integrated Circuit TTL High Speed CMOS, 8 Bit Parallel In/Serial Out Shift Register

NTE74HC165 Integrated Circuit TTL High Speed CMOS, 8 Bit Parallel In/Serial Out Shift Register NTE74HC165 Integrated Circuit TTL High Speed CMOS, 8 Bit Parallel In/Serial Out Shift Register Description: The NTE74HC165 is an 8 bit parallel in/serial out shift register in a 16 Lead DIP type package

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

ECE2210 Final given: Spring 08

ECE2210 Final given: Spring 08 ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through

More information

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1 Sequential Logic Handouts: Lecture Slides 6.4 - Spring 2 2/27/ L6 Sequential Logic Roadmap so far Fets & voltages Logic gates Combinational logic circuits Sequential Logic Voltage-based encoding V OL,

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

MM54C14 MM74C14 Hex Schmitt Trigger

MM54C14 MM74C14 Hex Schmitt Trigger MM54C14 MM74C14 Hex Schmitt Trigger General Description The MM54C14 MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement

More information

Schmitt-Trigger Inverter/ CMOS Logic Level Shifter

Schmitt-Trigger Inverter/ CMOS Logic Level Shifter Schmitt-Trigger Inverter/ CMOS Logic Level Shifter with LSTTL Compatible Inputs The is a single gate CMOS Schmitt trigger inverter fabricated with silicon gate CMOS technology. It achieves high speed operation

More information

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8 EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»

More information

General Description DTS27X X -X X X -X. Lead. 27X coil1. R1 = R2 = 470Ω C1 = C2 = 2.2 μ F The R, C value need to be fine tuned base on coils design.

General Description DTS27X X -X X X -X. Lead. 27X coil1. R1 = R2 = 470Ω C1 = C2 = 2.2 μ F The R, C value need to be fine tuned base on coils design. Features - On-chip Hall sensor with two different sensitivity and hysteresis settings for - 3.5V to 18V operating voltage - 35mA (avg) output sink current - Built-in protecting diode only for chip reverse

More information

CD40106BC Hex Schmitt Trigger

CD40106BC Hex Schmitt Trigger CD40106BC Hex Schmitt Trigger General Description The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors.

More information

NAME SID EE42/100 Spring 2013 Final Exam 1

NAME SID EE42/100 Spring 2013 Final Exam 1 NAME SID EE42/100 Spring 2013 Final Exam 1 1. Short answer questions a. There are approximately 36x10 50 nucleons (protons and neutrons) in the earth. If we wanted to give each one a unique n-bit address,

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5 EECS 16A Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5 This homework is due on Sunday, July 23, 2017, at 23:59. Self-grades are due on Monday, July

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi

Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Module No. 07 Differential and Operational Amplifiers Lecture No. 39 Summing, Scaling and Averaging Amplifiers (Refer

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Power Circuits 10/4/17 Prof. William Dally Computer Systems Laboratory Stanford University HW2 due Monday 10/9 Lab groups have been formed Lab1 signed off this week Lab2 out

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part - Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits The

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING Subject Code: EE Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section B Section C Section D Section E Section F Section G Section H

More information

EE 435 Lecture 44. Switched-Capacitor Amplifiers Other Integrated Filters

EE 435 Lecture 44. Switched-Capacitor Amplifiers Other Integrated Filters EE 435 Lecture 44 Switched-Capacitor Amplifiers Other Integrated Filters Switched-Capacitor Amplifiers Noninverting Amplifier Inverting Amplifier C A V = C C A V = - C Accurate control of gain is possible

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Converter System Modeling via MATLAB/Simulink

Converter System Modeling via MATLAB/Simulink Converter System Modeling via MATLAB/Simulink A powerful environment for system modeling and simulation MATLAB: programming and scripting environment Simulink: block diagram modeling environment that runs

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC0 74C/CT/CU/CMOS Logic Family Specifications The IC0 74C/CT/CU/CMOS Logic Package Information The IC0 74C/CT/CU/CMOS

More information

An Ultra Low Resistance Continuity Checker

An Ultra Low Resistance Continuity Checker An Ultra Low Resistance Continuity Checker By R. G. Sparber Copyleft protects this document. 1 Some understanding of electronics is assumed. Although the title claims this is a continuity checker, its

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc E-MAIL: Features - On-chip Hall sensor with two different sensitivity and hysteresis settings for - 3.5V to 2V operating voltage - 4mA (avg) output sink current - Build-in protecting diode only for chip

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

DIRECTIONAL COUPLERS

DIRECTIONAL COUPLERS DIRECTIONAL COUPLERS Ing. rvargas@inictel.gob.pe INICTEL Abstract This paper analyzes two types of Directional Couplers. First, magnetic coupling between a transmission line and a secondary circuit is

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download:

More information

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS 1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS The IN74ACT138 is identical in pinout to the LS/ALS138, HC/HCT138. The IN74ACT138 may be used as a level converter for interfacing TTL or NMOS

More information

INSTRUMENTAL ENGINEERING

INSTRUMENTAL ENGINEERING INSTRUMENTAL ENGINEERING Subject Code: IN Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section

More information

74LCX112 Low Voltage Dual J-K Negative Edge-Triggered Flip-Flop with 5V Tolerant Inputs

74LCX112 Low Voltage Dual J-K Negative Edge-Triggered Flip-Flop with 5V Tolerant Inputs June 1998 Revised February 2001 74LCX112 Low oltage Dual J-K Negative Edge-Triggered Flip-Flop with 5 Tolerant Inputs General Description The LCX112 is a dual J-K flip-flop. Each flip-flop has independent

More information

ATS177. General Description. Features. Applications. Ordering Information SINGLE OUTPUT HALL EFFECT LATCH ATS177 - P L - X - X

ATS177. General Description. Features. Applications. Ordering Information SINGLE OUTPUT HALL EFFECT LATCH ATS177 - P L - X - X Features General Description 3.5V to 20V DC operation voltage Temperature compensation Wide operating voltage range Open-Collector pre-driver 25mA maximum sinking output current Reverse polarity protection

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

AN8814SB. 4-channel driver IC for optical disk drive. ICs for Compact Disc/CD-ROM Player. Overview. Features. Applications.

AN8814SB. 4-channel driver IC for optical disk drive. ICs for Compact Disc/CD-ROM Player. Overview. Features. Applications. AN884SB 4-channel driver IC for optical disk drive Overview The AN884SB is a BTL system 4-channel driver and is encapsulated in the SMD package which excels in heat radiation characteristic. 8.4±0. (5.5)

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

M74HCT138TTR 3 TO 8 LINE DECODER (INVERTING)

M74HCT138TTR 3 TO 8 LINE DECODER (INVERTING) 3 TO 8 LINE DECODER (INVERTING) HIGH SPEED: t PD = 16ns (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.) V IL = 0.8V (MAX) SYMMETRICAL

More information

74LVQ174 Low Voltage Hex D-Type Flip-Flop with Master Reset

74LVQ174 Low Voltage Hex D-Type Flip-Flop with Master Reset 74LVQ174 Low Voltage Hex D-Type Flip-Flop with Master Reset General Description The LVQ174 is a high-speed hex D-type flip-flop. The device is used primarily as a 6-bit edge-triggered storage register.

More information

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS DESCRIPTION The / optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. The devices are housed in a compact small-outline

More information

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )

More information