X-Attributes Classifier (XAC): A New Multiclass Classification Method by Using Simple Linear Regression and Its Geometrical Properties

Size: px
Start display at page:

Download "X-Attributes Classifier (XAC): A New Multiclass Classification Method by Using Simple Linear Regression and Its Geometrical Properties"

Transcription

1 Proceedgs o the World Cogress o Egeerg ad Computer Scece 05 Vol II WCECS 05, October -3, 05, Sa Fracsco, USA X-Attrbutes Classer (XAC): A New Multclass Classcato Method by Usg Smple Lear Regresso ad Its Geometrcal Propertes Jeremas T. Lals, Member, IAENG Abstract I ths paper, a ew multclass classcato method has bee proposed. Durg the trag process, the smple lear regresso was used to d the lear relatoshp betwee the pared varables as well as ts cetrod o every class. The three pots: based o lear uctos, cetrods, ad put values, were used to d the class membershp o the preseted ew obect by usg the ormula calculatg the area o tragle. Four stadard ad publc datasets take rom UCI mache learg repostory were used to evaluate the perormace o the proposed algorthm usg 5-old crossvaldato. Emprcal results show the satsactory perormace o XAC algorthm o learly ad olearly separable classes wth small trag sze ad/or hgh dmeso. Ide Terms data mg, multclass classcato, smple lear regresso, geometrc propertes U I. INTRODUCTION coverg hdde useul kowledge wth large datasets s the ma goal o data mg. It helps people makg proactve ad kowledge drve decsos. Hece, varous data mg techques emerged deret research topcs lke sequetal rules, patter recogto, clusterg, regresso ad classcato. Amog these topcs, data classcato became oe o maor researches due to ts wde applcatos [][3], such as bomedcal modelg, bologcal modelg ad etc. Classcato s a supervsed learg method that reers to the task o aalyzg a set o data cotag observatos order to lear a model or ucto that ca be used detyg the ew observato to oe o the predeed classes. It has bee a actve research topc ot oly the mache learg area, but also statstcs []. Early work o classcato ocused o dg whch varables dscrmate betwee two or more classes, or also kow as dscrmat ucto aalyss (DFA). The uderlyg dea DFA s to use the predctor varables rom the trag set to costruct the dscrmat uctos, lke lear uctos, that wll determe the group membershp o the usee Mauscrpt receved May, 05; revsed July 0, 05. Jeremas T. Lals s a Assstat Proessor the College o Computer Studes ad the Drector o the Isttutoal Research ad Publcato Oce o La Salle Uversty, Ozamz Cty, Phlppes, e-mal: eremas.lals@gmal.com obect. Moder classcato approaches ocused o automatc geerato o rule (e.g. decso tree), the use o codtoal probabltes ( e.g. Naïve Bayes), calculatg the dstaces the eature space (e.g. K-earest eghbor), ad eve through lear ad olear regresso (e.g. support vector mache) creatg more leble models. I ths paper, the researcher presets a ew ad smple classcato method based o smple lear regresso dg the lear relatoshps betwee the obect s attrbutes ad to use ts geometrcal propertes, area o tragle, calculatg the dstace o the ew obect rom the predetermed classes. Ths study also shows the applcablty o smple lear regresso lear ad olear separable multclass classcato problems. Four stadard datasets rom the UCI mache learg repostory were used to measure ad evaluate the perormace o the proposed algorthm. II. RELATED WORK A. Smple Lear Regresso Lear regresso s the task o dg the best-ttg straght le, or also kow as regresso le, through the eature space []. The ma dea ths techque s to reveal the lear relatoshp or to derve a lear ucto that lks varable ad y, deoted as y m b () where y s the crtero varable, m s the slope, s the predctor varable, ad b as y-tercept o the tredle. I ths case, the value o varable y s predcted based oly o varable, thus, t s called as smple lear regresso. There are some other lear ad bary classcato methods that apply ths techque to classy learly separable classes, such as perceptro ad support vector maches (SVM). However, the best-ttg le these methods s used to separate the two classes, where t s called as hyperplae. B. Lear Classcato va Hyperplae Regresso ad classcato are both learg techques data mg that are used to create predctve models based o the preseted data. However, these methods produce deret values or output varables, ad thus, used ISBN: ISSN: (Prt); ISSN: (Ole) WCECS 05

2 Proceedgs o the World Cogress o Egeerg ad Computer Scece 05 Vol II WCECS 05, October -3, 05, Sa Fracsco, USA deretly. Sce regresso takes cotuous values as output, the t s used to estmate or predct a respose. O the other had, classcato takes class labels as output so t s used to d the class membershp o the obect. However, there are some classcato methods, lke perceptro ad SVM, that adopted the cocept o lear regresso to classy obects but a deret ad ar more comple maer. Perceptro Perceptro s oe o the earlest algorthms or lear classcato veted by Frak Roseblatt at the Corell Aeroautcal Laboratory 957 [4]. It s also cosdered as a smple model o euro that has a set o eteral put that ca be o ay umber, a teral put b, ad oe Boolea output value. The ma dea ths method s to d the sutable values or the weghts w the separatg hyperplae, (), so that the trag eamples are correctly classed. The hyperplae s geometrcally deed as A. Trag Phase I order or ay classer to dety the correct class membershp o the ew obect, t should be traed rst usg the trag set ad create a predctve model. Fg. shows the block dagram o -attrbutes classer (XAC) trag procedure. ) Gve the trag dataset wth umber o attrbutes ad k tuples, d the lear relatoshp betwee the pars o attrbutes each class, w b 0 ( ) () 0 otherwse However, the separatg hyperplae s oly guarateed to be oud the learg set s learly separable, otherwse, the trag process wll ever stop. Ths maor drawback makes ths algorthm less applcable to may patter recogto problems. Support Vector Mache (SVM) Lke perceptro, support vector mache (SVM) s a hyperplae based classer, but t s backed wth sold theoretcal groudg [5]. The obectve ths method s to d a optmal hyperplae, w. + b = 0, that separates the two classes wth the largest marg. It meas that ths hyperplae has the largest mmum dstace to the trag set. The hyperplae ca be ormally deed as T ( ) sg ( w b) (3) where w s the weght vector ad b as the bas whch ca be computed based o the trag data pot by solvg a costraed quadratc optmzato problem. The al decso ca the be derved ad deed as ( ) sg N y ( ) b (4) Where ths ucto depeds o a o-zero support vectors α whch are ote a small racto o the orgal dataset. III. XAC ALGORITHM The ma obectve o ths study s to use the lear ucto, () = m. + b, classyg lear ad olear separable multclass obects. I geeral, the proposed algorthm has two stages, the trag phase ad classcato phase. Fg.. Block dagram o the proposed trag procedure o -attrbutes classer.... ( ( ( ) ) ) (5) where ( ) s the lear ucto betwee attrbutes ad +, α s the slope, ad β s the oset. The slope α ( ) ca be computed as: k ( ) (6) k whle the oset β ( ) s computed as: (7) k The resultg values o α ad β betwee the pared attrbutes each class wll the be used as teral puts to calculate the output value durg the classcato stage. ) Calculate the cetrod C o the pared varables ad + or each class, deoted as C (, ): ISBN: ISSN: (Prt); ISSN: (Ole) WCECS 05

3 Proceedgs o the World Cogress o Egeerg ad Computer Scece 05 Vol II WCECS 05, October -3, 05, Sa Fracsco, USA, (8) Fgs., 3 ad 4 llustrate the scatter plot o each par o attrbutes as well as ts correspodg regresso le or each class the Irs lower dataset. classcato process o XAC algorthm. To determe the class membershp o the put obect: ) Fd the rst pot o the tragle or every pared attrbutes o ts respectve class by usg the Fg.. Scatter plot ad lear relatoshps betwee sepal legth ad sepal wdth o the three classes. Fg. 3. Scatter plot ad lear relatoshps betwee sepal wdth ad petal legth 3 o the three classes. Fg. 4. Scatter plot ad lear relatoshps betwee petal legth 3 ad petal wdth 4 o the three classes. B. Classcato Phase Ater the trag process, the resultg model ca ow be used to classy the ew obect. Fg. 5 shows the Fg. 5. Block dagram o the classcato process o XAC. ISBN: ISSN: (Prt); ISSN: (Ole) WCECS 05

4 Proceedgs o the World Cogress o Egeerg ad Computer Scece 05 Vol II WCECS 05, October -3, 05, Sa Fracsco, USA prevously calculated lear uctos ( ), ( ), ( 3 ),, ( - ) ad ts correspodg put values,, 3,, -. The resultg y-coordates would be o the orm o (eteral put, teral put ( )). ) The prevously computed cetrod C o each pared attrbute class wll serve as the secod pot o the correspodg tragles, the orm o (teral put, teral put ). 3) Par the put values, e.g. (eteral put, eteral put ), to obta the thrd pot o the correspodg tragles class. 4) Use the three pots o each pared attrbutes class to calculate the area o ts correspodg tragles, Area ( ) ( ) 5) Calculate the dstace o the put obect rom the eature vectors every class by summg up all the correspodg Area o ts pared attrbutes, (9) dst Area (0) where s the umber o attrbutes. 6) The class that obtaed the least dstace wll be declared as the wer or the class membershp o the ew obect. IV. EXPERIMENTS A. Dataset To measure ad valdate the perormace o the proposed algorthm, our publc datasets rom UCI Mache Learg Repostory were cosdered: Irs Flower [6], Wheat Seed Kerel [7], Breast Tssue [8], Breast Cacer Wscos (Dagostc) [9], ad Oe Hudred Plat Speces Leaves [0]. Table I shows the characterstcs o each dataset used the epermets. B. Evaluato To evaluate the perormace o the proposed method, 5- old cross-valdato was used each epermet. The trag ad testg steps were perormed ve tmes by TABLE I DATASET CHARACTERISTICS Dataset Trag Sze Testg Sze # o Classes Dm Irs Flower 0 per class 40 per class 3 4 Wheat Seed 4 per class 56 per class 3 7 Breast Tssue 4 or class 7 or class or class 3 or class 3 4 or class 4 39 or class or class 3 8 or class 4 Breast Cacer 7 or class 86 or class 30 4 or class 70 or class Leaves-Shape 3 per class 3 per class 5 64 parttog the dataset to ve mutually eclusve subsets or olds. Accuracy, precso, recall ad F score were also used to measure the correctess, eactess, completeess, ad retreval perormace, respectvely, o the model beg produced by XAC every epermet. V. RESULTS AND DISCUSSION The summary o epermets results usg the our datasets s reported Table II. As we ca see, the XAC algorthm perorms best wth the Irs lower dataset compared wth the other three datasets. The result proves the applcablty o smple lear regresso classyg ot oly learly separable, but Dataset TABLE II EXPERIMENTS RESULTS SUMMARY Mea Accuracy Mea Precso cludg olearly separable classes. Net to t are the results o the epermets coducted wth the breast cacer dataset havg a mea precso o Note that the dvso o the dataset, trag ad testg, s slghtly mbalaced, where 6 s comg rom the beg class ad the rest s rom the malgat class. However, results rom the epermets usg the wheat seed dataset are ar more better terms o mea accuracy, mea recall, ad mea F-score compared to the results wth the breast cacer dataset. It s also otable that the algorthm was able to produce a acceptable result or leaves dataset terms o precso at despte o the lmted umber o trag set, three per class, ad hgh dmesoalty. Addg to the dculty o the classcato problem ths dataset s that may o the sub speces resemble close appearace wth the other maor speces, ad may sub speces resemble a radcally deret appearace wth ts maor spece []. Furthermore, results also show the robustess o the approach by usg oly the shape-based dataset durg trag ad testg. However, results gve by XAC usg the breast tssue dataset gve the lowest result, especally terms o completeess at Ths s due to the mbalace o the umber o trag ad testg sets each class, where, 48 o the total umber o t s comg rom oe class oly. I geeral, the proposed algorthm perorms satsactorly eve wth small umber o trag set at 0 o the total sze o each dataset. VI. CONCLUSION Mea Recall Mea F-Score Irs Flower Wheat Seed Breast Tssue Breast Cacer Leaves (Shape) Ths paper has preseted a ew method that ca be used or multclass classcato problems wth learly ad olearly separable classes usg smple lear regresso whch s orgally desged or bary classcato ISBN: ISSN: (Prt); ISSN: (Ole) WCECS 05

5 Proceedgs o the World Cogress o Egeerg ad Computer Scece 05 Vol II WCECS 05, October -3, 05, Sa Fracsco, USA problem wth learly separable classes oly. Emprcal results rom the epermets coducted usg the our stadard ad publc datasets take rom UCI mache learg repostory showed the satsactory perormace o the proposed algorthm. For the uture work, several aveues or mprovemet ca stll be cosdered lke usg the olear regresso to cater those pared attrbutes wth olear relatoshp. REFERENCES [] V. S. M. Tseg ad C. Lee, Cbs: A ew classcato method by usg sequetal patters, Proc.005 SIAM Iteratoal Data Mg Coerece, CA, 005, pp [] A. A, Classcato methods. CA: Idea Group Ic, 005, pp. -6. [3] A. Arakeya, L. Nersya, A. Gevorgya, ad A. Boyaya, Geometrc approach or Gaussa-kerel bolstered error estmato or lear classcato computatoal bology, Iteratoal Joural Iormato Theores ad Applcatos, vol., o., pp , 04. [4] F. Roseblatt, The perceptro-a percevg ad recogzg automato, Corell Aeroautcal Laboratory, New York, Report , 957. [5] C. Cortes ad V. Vapk, Support-vector etworks, Mache Learg, vol. 0, o. 3, pp , 995. [6] UCI Mache Learg Repostory, Irs data set, 988. [Ole]. Avalable: archve.cs.uc.edu/ml/datasets/irs [7] UCI Mache Learg Repostory, Seeds data set, 0. [Ole]. Avalable: archve.cs.uc.edu/ml/datasets/seeds [8] UCI Mache Learg Repostory, Breast tssue data set, 00. [Ole]. Avalable: archve.cs.uc.edu/ml/datasets/breast+tssue [9] UCI Mache Learg Repostory, Breast cacer wscos (dagostc), 995. [Ole]. Avalable: archve.cs.uc.edu/ml/datasets/breast+cacer+wscos+(dagost c) [0] UCI Mache Learg Repostory, Oe-hudred plat speces leaves data set, 0. [Ole]. Avalable: archve.cs.uc.edu/ml/datasets/oehudred+plat+speces+leaves+data+set [] C. Mallah, Probablstc Classcato rom a K-Nearest-Neghbor Classer, Computatoal Research, vol., o., pp. -9, 03. [] Wkpeda, Lear regresso, 05. [Ole]. Avalable: ISBN: ISSN: (Prt); ISSN: (Ole) WCECS 05

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Applications of Multiple Biological Signals

Applications of Multiple Biological Signals Applcatos of Multple Bologcal Sgals I the Hosptal of Natoal Tawa Uversty, curatve gastrectomy could be performed o patets of gastrc cacers who are udergoe the curatve resecto to acqure sgal resposes from

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Machine Learning. knowledge acquisition skill refinement. Relation between machine learning and data mining. P. Berka, /18

Machine Learning. knowledge acquisition skill refinement. Relation between machine learning and data mining. P. Berka, /18 Mache Learg The feld of mache learg s cocered wth the questo of how to costruct computer programs that automatcally mprove wth eperece. (Mtchell, 1997) Thgs lear whe they chage ther behavor a way that

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Correlation and Regression Analysis

Correlation and Regression Analysis Chapter V Correlato ad Regresso Aalss R. 5.. So far we have cosdered ol uvarate dstrbutos. Ma a tme, however, we come across problems whch volve two or more varables. Ths wll be the subject matter of the

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR Pot Patter Aalyss Part I Outle Revst IRP/CSR, frst- ad secod order effects What s pot patter aalyss (PPA)? Desty-based pot patter measures Dstace-based pot patter measures Revst IRP/CSR Equal probablty:

More information

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK Ram Rzayev Cyberetc Isttute of the Natoal Scece Academy of Azerbaa Republc ramrza@yahoo.com Aygu Alasgarova Khazar

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Research on SVM Prediction Model Based on Chaos Theory

Research on SVM Prediction Model Based on Chaos Theory Advaced Scece ad Techology Letters Vol.3 (SoftTech 06, pp.59-63 http://dx.do.org/0.457/astl.06.3.3 Research o SVM Predcto Model Based o Chaos Theory Sog Lagog, Wu Hux, Zhag Zezhog 3, College of Iformato

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Pinaki Mitra Dept. of CSE IIT Guwahati

Pinaki Mitra Dept. of CSE IIT Guwahati Pak Mtra Dept. of CSE IIT Guwahat Hero s Problem HIGHWAY FACILITY LOCATION Faclty Hgh Way Farm A Farm B Illustrato of the Proof of Hero s Theorem p q s r r l d(p,r) + d(q,r) = d(p,q) p d(p,r ) + d(q,r

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 750 Mache Learg Lecture 3 Dmesoalty reducto Feature selecto Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 750 Mache Learg Dmesoalty reducto. Motvato. Classfcato problem eample: We have a put data

More information

Chapter Statistics Background of Regression Analysis

Chapter Statistics Background of Regression Analysis Chapter 06.0 Statstcs Backgroud of Regresso Aalyss After readg ths chapter, you should be able to:. revew the statstcs backgroud eeded for learg regresso, ad. kow a bref hstory of regresso. Revew of Statstcal

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Prof. YoginderVerma. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar

Prof. YoginderVerma. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar Paper:5, Quattatve Techques or aagemet Decsos odule:5 easures o Cetral Tedecy: athematcal Averages (A, G, H) Prcpal Ivestgator Co-Prcpal Ivestgator Paper Coordator Cotet Wrter Pro. S P Basal Vce Chacellor

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance Chapter, Part A Aalyss of Varace ad Epermetal Desg Itroducto to Aalyss of Varace Aalyss of Varace: Testg for the Equalty of Populato Meas Multple Comparso Procedures Itroducto to Aalyss of Varace Aalyss

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

On Signed Product Cordial Labeling

On Signed Product Cordial Labeling Appled Mathematcs 55-53 do:.436/am..6 Publshed Ole December (http://www.scrp.or/joural/am) O Sed Product Cordal Label Abstract Jayapal Baskar Babujee Shobaa Loaatha Departmet o Mathematcs Aa Uversty Chea

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

Probability and. Lecture 13: and Correlation

Probability and. Lecture 13: and Correlation 933 Probablty ad Statstcs for Software ad Kowledge Egeers Lecture 3: Smple Lear Regresso ad Correlato Mocha Soptkamo, Ph.D. Outle The Smple Lear Regresso Model (.) Fttg the Regresso Le (.) The Aalyss of

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use.

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use. INTRODUCTORY NOTE ON LINEAR REGREION We have data of the form (x y ) (x y ) (x y ) These wll most ofte be preseted to us as two colum of a spreadsheet As the topc develops we wll see both upper case ad

More information

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn:

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn: Chapter 3 3- Busess Statstcs: A Frst Course Ffth Edto Chapter 2 Correlato ad Smple Lear Regresso Busess Statstcs: A Frst Course, 5e 29 Pretce-Hall, Ic. Chap 2- Learg Objectves I ths chapter, you lear:

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Chapter Two. An Introduction to Regression ( )

Chapter Two. An Introduction to Regression ( ) ubject: A Itroducto to Regresso Frst tage Chapter Two A Itroducto to Regresso (018-019) 1 pg. ubject: A Itroducto to Regresso Frst tage A Itroducto to Regresso Regresso aalss s a statstcal tool for the

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150 CMPT- Itroducto to Computer Desg SFU Harbour Cetre Sprg 7 Lecture : Ja. 6 7 Stadard orms or boolea uctos Sum o Products Product o Sums Stadard Forms or Boolea Fuctos (cot ) It s useul to spec Boolea uctos

More information

Mechanics of Materials CIVL 3322 / MECH 3322

Mechanics of Materials CIVL 3322 / MECH 3322 Mechacs of Materals CVL / MECH Cetrods ad Momet of erta Calculatos Cetrods = A = = = A = = Cetrod ad Momet of erta Calculatos z= z A = = Parallel As Theorem f ou kow the momet of erta about a cetrodal

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan M E M O R A N D U M DATE: 1 September, 1999 TO: Jm Russell FROM: Peter Tkack RE: Aalyss of wde ply tube wdg as compared to Kova Kore CC: Larry McMlla The goal of ths report s to aalyze the spral tube wdg

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Chapter 13 Student Lecture Notes 13-1

Chapter 13 Student Lecture Notes 13-1 Chapter 3 Studet Lecture Notes 3- Basc Busess Statstcs (9 th Edto) Chapter 3 Smple Lear Regresso 4 Pretce-Hall, Ic. Chap 3- Chapter Topcs Types of Regresso Models Determg the Smple Lear Regresso Equato

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

About a Fuzzy Distance between Two Fuzzy Partitions and Application in Attribute Reduction Problem

About a Fuzzy Distance between Two Fuzzy Partitions and Application in Attribute Reduction Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND IORMATION TECHNOLOGIES Volume 6, No 4 Sofa 206 Prt ISSN: 3-9702; Ole ISSN: 34-408 DOI: 0.55/cat-206-0064 About a Fuzzy Dstace betwee Two Fuzzy Parttos ad Applcato

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

Double Dominating Energy of Some Graphs

Double Dominating Energy of Some Graphs Iter. J. Fuzzy Mathematcal Archve Vol. 4, No., 04, -7 ISSN: 30 34 (P), 30 350 (ole) Publshed o 5 March 04 www.researchmathsc.org Iteratoal Joural of V.Kaladev ad G.Sharmla Dev P.G & Research Departmet

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE Joural o Mathematcs ad tatstcs 9 (3): 49-55, 03 I: 549-3644 03 cece Publcatos do:0.3844/jmssp.03.49.55 Publshed Ole 9 (3) 03 (http://www.thescpub.com/jmss.toc) ADAPTIVE CLUTER AMPLIG UIG AUXILIARY VARIABLE

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

STA 105-M BASIC STATISTICS (This is a multiple choice paper.)

STA 105-M BASIC STATISTICS (This is a multiple choice paper.) DCDM BUSINESS SCHOOL September Mock Eamatos STA 0-M BASIC STATISTICS (Ths s a multple choce paper.) Tme: hours 0 mutes INSTRUCTIONS TO CANDIDATES Do ot ope ths questo paper utl you have bee told to do

More information

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods Malaysa Umodalty Joural Tests of Mathematcal for Global Optmzato Sceces (): of 05 Sgle - 5 Varable (007) Fuctos Usg Statstcal Methods Umodalty Tests for Global Optmzato of Sgle Varable Fuctos Usg Statstcal

More information

A New Development on ANN in China Biomimetic Pattern Recognition and Multi Weight Vector Neurons

A New Development on ANN in China Biomimetic Pattern Recognition and Multi Weight Vector Neurons A New Developmet o ANN Cha Bommetc atter Recogto ad Mult Weght Vector Neuros houue Wag Lab of Artfcal Neural Networks. Ist. of emcoductors. CA. Beg 00083 Cha wsue@red.sem.ac.c Abstract. A ew model of patter

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Mache Learg CSE6740/CS764/ISYE6740, Fall 0 Itroducto to Regresso Le Sog Lecture 4, August 30, 0 Based o sldes from Erc g, CMU Readg: Chap. 3, CB Mache learg for apartmet hutg Suppose ou are to move to

More information

Fault Diagnosis Using Feature Vectors and Fuzzy Fault Pattern Rulebase

Fault Diagnosis Using Feature Vectors and Fuzzy Fault Pattern Rulebase Fault Dagoss Usg Feature Vectors ad Fuzzy Fault Patter Rulebase Prepared by: FL Lews Updated: Wedesday, ovember 03, 004 Feature Vectors The requred puts for the dagostc models are termed the feature vectors

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Grou M D L M Chater 4 No-Parameter Estmato X-Shu Xu @ SDU School of Comuter Scece ad Techology, Shadog Uversty Cotets Itroducto Parze Wdows K-Nearest-Neghbor Estmato Classfcato Techques The Nearest-Neghbor

More information