MAGNETIC FIELDS CURRENT & RESISTANCE

Size: px
Start display at page:

Download "MAGNETIC FIELDS CURRENT & RESISTANCE"

Transcription

1 Fiels an Waves I Spring 005 MAGNETIC FIELDS CURRENT & RESISTANCE Name Slutin Sectin Typs Crrecte Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, each questin may have mre than ne crrect answer; circle all f them.. Fr multiple chice questins, yu may a sme cmments t justify yur answer. 3. Make sure yur calculatr is set t perfrm trignmetric functins in raians & nt egrees. Regular Questins 6. (0 Pts) 7. (0 Pts) 8. (Opt 1 0 Pts) 8. (Opt 0 Pts) 8. (Opt 3 0 Pts) Ttal (100 Pts) Sme Cmments an Helpful Inf: In this test, we use tw types f ntatin fr unit vectrs. Keep in min that a$ $ = a$ = y$ a$ z$ y z = a$ r$ r = a$ $ φ = φ a$ $ θ = θ Be sure t shw yur wrk fr the multiple chice questins. Draw pictures fr each prblem t be sure that yu unerstan the prblem statement. Please nte that there are 3 ptins fr the last prblem. Yu shul quickly ecie which ne yu want t an wrk it thrugh. 1 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

2 Fiels an Waves I Spring 005 MULTIPLE CHOICE QUESTIONS Ecept fr prblem 4, there is nly ne answer t any f these questins. 1. Frce (8 pints) A rectangular lp with a time-invariant current I is place in a unifrm magnetstatic fiel. The lp can rtate abut its ais nrmal t the page. The magnetic fiel eerts a trque n the lp fr a. cases (a) an (b) nly. b. case (c) nly. c. cases (a), (b) an (c) nly.. cases () an (e) nly. e. cases (c), () an (e) nly. K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

3 Fiels an Waves I Spring 005. Magnetic Cre (8 Pints) A thin trial cre, mae f a ferrmagnetic material f permeability μ, has an air gap, as shwn in the figure. There is a time-invariant current thrugh the wining. The magnitue f the magnetic fiel intensity vectr in the ferrmagnetic cre with respect t the clck-wise reference irectin is H c. The magnitue f the magnetic fiel intensity vectr in the gap with respect t the same reference irectin is H g f. H = H g g. H g = 0 h. H μ H g c = c i. Hg = μ H μ j. Hg = μ H μ c c 3. Mutual Inuctance (8 Pints) Of the fur mutual psitins f the tw lps shwn, the magnitue f the mutual inuctance between the lps is largest fr the psitin in i. Figure (a) ii. Figure (b) iii. Figure (c) iv. Figure () v. Cannt tell 3 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

4 Fiels an Waves I Spring Fiels an Waves Heres (8 Pints) Ientify which name ges with each equatin. Equatin (c) es nt have a name an ne name ges with all f the equatins. a) b) c) ) r r r r E l = B S t r r r r r r H l = J S + D S t Faraay (a) r r B S = 0 Gauss () r r D S = ρ v Ampere (b) v Mawell All 5. Ampere s Law (8 pints) A cylinrical cnuctr f a circular crss sectin (raius = a) carries a time-invariant current I (I > 0) irecte ut f the page. The line integral f the magnetic flu ensity vectr, r B, alng a clse circular cntur C psitine insie the cnuctr (the cntur raius r is smaller than the cnuctr raius a) is a r a) μ I b) μ I c) greater than μ I ) less than μ I e) less than μ I an psitive f) greater than μ I an negative g) zer 4 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

5 Fiels an Waves I Spring 005 REGULAR QUESTIONS 6. Bunary Cnitins (0 pints) y μ μ 1 The magnetic fiel in regin 1 is H = H ( a + 1 ay) r H = H( a$ a$ y) r $ $. The magnetic fiel in regin is. Assuming that ne f these regins is free space, what is the permeability μ f the ther regin? (10) The tw bunary cnitins are Ht1 = H1 = H = Ht = H = Han B = n1 μ H = 1 y1 μ H = 1 B = n μh 1000H y = μ. Thus, μ1h = μ1000han μ = μ, μ1 = 1000μ Ientify which regin is free space (air), regin 1 r regin. (10) Regin is air an regin 1 is the magnetic material with μ1 = 1000μ 5 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

6 Fiels an Waves I Spring Ampere s Law (0 pints) y σ = σ a A lng, straight, sli cylinrical cnuctr with a raius f a is shwn abve. The surruning meium is free space. There is a ttal current I carrie by this cnuctr irecte int the page. What is the current ensity vectr? (6) The current ensity is J r I = $ z. The current is int the page an the z-ais pints ut π a f the page. Thus, the current ensity vectr is negative. What is the magnetic fiel intensity vectr H r insie the cnuctr (r<a)? (7) r r πr H l = Hφ πr = Iencl = I πa. Slving fr H r, we have H r Ir = $ φ πa What is the magnetic fiel intensity vectr H r utsie the cnuctr (r>a)? (7) r r Outsie f the wire, H l = Hφ πr = Iencl = I. Slving fr H r, we have H r I = $ φ πr 6 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

7 Fiels an Waves I Spring (Optin 1) Magnetic Circuits (0 pints) Tw winings are wrappe arun the magnetic cre shwn belw. The cil at the left carries a current I 1 an the cil at the right carries a current I. 3.. g.. w. w The permeability f the cre is μ which is very much larger than μ. There are N 1 turns arun the left leg an N turns arun the right leg. The with an epth f all legs are eactly the same an equal t w. The height f the cre is an the ttal with f the cre is 3 as shwn. Fr the first few questins, assume that the gap g es nt eist. It will be ae in at the en. Als, assume that the current in the right han cil (I ) is zer. a. Fin the reluctance f the cre seen by the cil at the left. (3) The circuit iagram fr the reluctance lks like 5R NI R 3R where R 0 = since each f the legs f length have the same reluctance. Thus, the μ w 3R ttal reluctance seen by the surce is Rttal = 5R+ R 3R = 5R+ = 575. R 4R 7 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

8 Fiels an Waves I Spring 005 b. Fin the ttal flu linke by all the turns f this cil. (3) NNI N Iμw Λ= N1ψ 1 = = R 575. ttal c. Fin the inuctance f this cil. (3) Λ NNI N μw L = = = I IR 575. ttal. Fin the flu pruce by this cil that links all the turns f the secn cil. (3) The flu f part b ivies by the usual current ivier relatinship. The ttal flu linking R NN1I NN1Iμw all f the turns f the secn cil is given by N ψ 1 = = 4R 4R 4(. 575) ttal e. Fin the mutual inuctance between the tw cils. (3) The mutual inuctance is M N ψ1 R NN1 NN1μw = = = I 4R 4R 4(. 575) ttal f. Nw a in the gap an repeat questin a abve. Make any reasnable apprimatins. (3) Since the gap reluctance will be much larger than R, it will appear as an pen circuit in parallel with 3R. Thus the ttal reluctance seen by the surce will be 8R. g. Will the self inuctance f the left cil increase, ecrease r stay the same when the gap is ae? Be sure t justify yur answer. () Since the reluctance will be larger (8>5.75), the flu will be smaller fr the same current an, thus, the inuctance will be smaller. 8 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

9 Fiels an Waves I Spring (Optin ) Faraay s Law (0 Pints) In this prblem we will aress ey current heating, which is use etensively in manufacturing t eliver heat t a cnucting material. It is als the reasn why the can in the can crusher an the cin in the cin flipper are heate by their interactin with the crushing r launching cil. Basically, currents inuce in cnuctrs heat the cnuctrs because f their finite resistance. First etermine the inuctance f an N-turn sleni, each turn carrying a current I, which we will use t inuce the currents in a cnucting shell. Wires a Nn-Magnetic Cre fr Wining the Cil b Cnucting Shell a. Given that the sleni has N turns an is wun t cmpletely cver a nnmagnetic cre (like a tilet paper tube) with ne thin layer f wire, fin the magnetic fiel r B. Assume that yu can neglect fringing an that the raius f the sleni is a an its length is. Recall that this type f sleni is calle an air cre sleni. (4) The magnetic fiel fr the sleni is slve fr in many places. It is given by r NI B = z$ μ 9 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

10 Fiels an Waves I Spring 005 b. Determine the inuctance f this sleni using either the flu meth r energy meth. Please inicate which meth yu are using. (4) Λ N r r μ N a Frm the flu meth, the inuctance is L = = B S = I I π NI B Hv a r r μ π μ N πa Frm the energy meth, L = = = I I c. A cnucting shell is place insie the sleni, as shwn. This shell has a raius f b, a length an a thickness Δ. Fr current flwing arun the circumference f the cyliner (in theφ -irectin) what is the resistance f the shell? Assume that it has a cnuctivityσ. (4) r R = π σδ. If the current riving the sleni varies sinusially, etermine the ttal current inuce in the shell. Assume It () = I csω t. Hint: etermine the inuce emf first. (4) The inuce emf is given by the time erivative f the flu linke. Nte that the number f turns in the secnary, in this case, is nly 1 since the cnucting shell has nly ne turn. Λ= r r μ Nπb B S = I csωt s that Λ μ Nπb N b emf = = I ωt = ω μ π cs I sinωt t t emf N b Iinuce = = σ Δ ωμ π I sin ωt R πb e. Determine the pwer elivere t the cnucting shell. (4) This can be answere either with pwer r average pwer. Either are OK. N b P = VI = I t ω μ π σ Δ sinω πb Fr average pwer, leave ut the sin term an ivie by. 10 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

11 Fiels an Waves I Spring (Optin 3) Unifrm Plane Waves in Lssless an Lssy Materials (0 Pints) A unifrm plane wave is prpagating in a material with prperties similar t thse f istille water. That is,ε = 81ε. The frequency f the wave is 100MHz. The average pwer ensity f the wave is 10 Watts per square meter. a. Determine the angular frequencyω, the prpagatin cnstant β, the wavelength λ, an the intrinsic impeanceη fr this wave. (4) ω = πf = π10 8 ω π β = ω με = 9 λ = μ 10π η = = c β ε 9 b. Write bth the electric an magnetic fiels in phasr ntatin. (4) 1 E m η = 10 E = 0η E = E e m m jβz H E m = e η jβz c. Nw sme pllutants are ae t the water which nt change the real part f ε but result in a small imaginary cmpnent s thatεc = ε' jε". In particular,ε" = 00. ε'. Fin the ecay cnstant α an the cmple intrinsic impeanceη c. (4) ε" ε" γ = jω μεc = jω με' 1 j = jω με' 1 j ε' ε' β = jω μ ε' ε ω μ εε α = ω μ ε " '" j ' j = ε' ε' μ ηc = = ε c μ 1 = ε' ε" 1 j ε' μ 1 μ = 1+ ε' ε" ε' 1 j ε' ε" j ε' 11 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

12 Fiels an Waves I Spring 005. Write the phasr frm f the electric an magnetic fiels. (4) αz E = E e e m jβz H E α = e e η m z jβz e. Determine the average pwer elivere t a cubic meter f this material. (4) This is the same calculatin as n the HW prblem. 1 Em Save e αz = We can apprimate the cmple intrinsic impeance with the * η c lssless value, since the lss is nt large. η meter is then: ( α z α ) = ( ) c μ. The pwer elivere per cubic ε' 1 e 10Watts 1 e 10Watts since the epth is equal t 1. ( ) 8 ( 310 ) ( ) () α ω μ εε 8 '" π10 9 π 9 = = 00. = 00. = 006. π ε' π ( ) 1 e 10Watts = 31. Watts 1 K. A. Cnnr Rensselaer Plytechnic Institute 5 April 005

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS GENERAL PHYSICS PH -A (MIROV) Exam 3 (03/31/15) STUDENT NAME: STUDENT i #: ------------------------------------------------------------------------------------------------------------------------------------------

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

" E ds = 0 becomes " E ds = 0 # d$ B. ! Not only charges produce E-field. ! a changing B-field also produces an E-field.

 E ds = 0 becomes  E ds = 0 # d$ B. ! Not only charges produce E-field. ! a changing B-field also produces an E-field. Faraay s aw & EM waves This ecture Displacement currents Mawell s equatins EM Waves MTE2 results Sme peple that ha the alternate will have a minr grae change talk t me after lecture Ave= 72/15 = 68% Frm

More information

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector Pwer Flw in Electrmagnetic Waves Electrmagnetic Fields The time-dependent pwer flw density f an electrmagnetic wave is given by the instantaneus Pynting vectr P t E t H t ( ) = ( ) ( ) Fr time-varying

More information

Chapter 8. The Steady Magnetic Field 8.1 Biot-Savart Law

Chapter 8. The Steady Magnetic Field 8.1 Biot-Savart Law hapter 8. The teady Magnetic Field 8. Bit-avart Law The surce f steady magnetic field a permanent magnet, a time varying electric field, a direct current. Hayt; /9/009; 8- The magnetic field intensity

More information

WYSE Academic Challenge Sectional Physics 2007 Solution Set

WYSE Academic Challenge Sectional Physics 2007 Solution Set WYSE caemic Challenge Sectinal Physics 7 Slutin Set. Crrect answer: E. Energy has imensins f frce times istance. Since respnse e. has imensins f frce ivie by istance, it clearly es nt represent energy.

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

Experiment #4 Gauss s Law Prelab Hints

Experiment #4 Gauss s Law Prelab Hints Eperiment #4 Gauss s Law Prela Hints This la an prela will make etensive use f Ptentials an Gauss s Law, an using calculus t recast the electric fiel in terms f ptential The intent f this is t prvie sme

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Fields and Waves I. Lecture 3

Fields and Waves I. Lecture 3 Fields and Waves I ecture 3 Input Impedance n Transmissin ines K. A. Cnnr Electrical, Cmputer, and Systems Engineering Department Rensselaer Plytechnic Institute, Try, NY These Slides Were Prepared by

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 ) + - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

More information

Pre-Calculus Individual Test 2017 February Regional

Pre-Calculus Individual Test 2017 February Regional The abbreviatin NOTA means Nne f the Abve answers and shuld be chsen if chices A, B, C and D are nt crrect. N calculatr is allwed n this test. Arcfunctins (such as y = Arcsin( ) ) have traditinal restricted

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

M thematics. National 5 Practice Paper D. Paper 1. Duration 1 hour. Total marks 40

M thematics. National 5 Practice Paper D. Paper 1. Duration 1 hour. Total marks 40 N5 M thematics Natinal 5 Practice Paper D Paper 1 Duratin 1 hur Ttal marks 40 Yu may NOT use a calculatr Attempt all the questins. Use blue r black ink. Full credit will nly be given t slutins which cntain

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

DINGWALL ACADEMY NATIONAL QUALIFICATIONS. Mathematics Higher Prelim Examination 2009/2010 Paper 1 Assessing Units 1 & 2. Time allowed - 1 hour 30

DINGWALL ACADEMY NATIONAL QUALIFICATIONS. Mathematics Higher Prelim Examination 2009/2010 Paper 1 Assessing Units 1 & 2. Time allowed - 1 hour 30 INGWLL EMY Mathematics Higher Prelim Eaminatin 009/00 Paper ssessing Units & NTIONL QULIFITIONS Time allwed - hur 0 minutes Read carefull alculatrs ma NOT be used in this paper. Sectin - Questins - 0 (0

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations chedule Time Varying electrmagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 nly) 6.3 Maxwell s equatins Wave quatin (3 Week) 6.5 Time-Harmnic fields 7.1 Overview 7.2 Plane Waves in Lssless

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

M thematics. National 5 Practice Paper B. Paper 1. Duration 1 hour. Total marks 40

M thematics. National 5 Practice Paper B. Paper 1. Duration 1 hour. Total marks 40 M thematics Natinal 5 Practice Paper B Paper 1 Duratin 1 hur Ttal marks 40 Yu may NOT use a calculatr Attempt all the questins. Use blue r black ink. Full credit will nly be given t slutins which cntain

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

PHYS College Physics II Final Examination Review

PHYS College Physics II Final Examination Review PHYS 1402- Cllege Physics II Final Examinatin Review The final examinatin will be based n the fllwing Chapters/Sectins and will cnsist f tw parts. Part 1, cnsisting f Multiple Chice questins, will accunt

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

CHAPTER 5. Solutions for Exercises

CHAPTER 5. Solutions for Exercises HAPTE 5 Slutins fr Exercises E5. (a We are given v ( t 50 cs(00π t 30. The angular frequency is the cefficient f t s we have ω 00π radian/s. Then f ω / π 00 Hz T / f 0 ms m / 50 / 06. Furthermre, v(t attains

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

Physical Nature of the Covalent Bond Appendix H + H > H 2 ( ) ( )

Physical Nature of the Covalent Bond Appendix H + H > H 2 ( ) ( ) Physical Nature f the Cvalent Bn Appeni his stuy f the nature f the H cvalent bn frms a mlecular rbital as a linear cmbinatin f scale hyrgenic rbitals, LCAO-MO. he quantum mechanical integrals necessary

More information

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm Faculty f Engineering and Department f Physics Engineering Physics 131 Midterm Examinatin February 27, 2006; 7:00 pm 8:30 pm N ntes r textbks allwed. Frmula sheet is n the last page (may be remved). Calculatrs

More information

Chapter 5: Force and Motion I-a

Chapter 5: Force and Motion I-a Chapter 5: rce and Mtin I-a rce is the interactin between bjects is a vectr causes acceleratin Net frce: vectr sum f all the frces n an bject. v v N v v v v v ttal net = i = + + 3 + 4 i= Envirnment respnse

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION Instructins: If asked t label the axes please use real wrld (cntextual) labels Multiple Chice Answers: 0 questins x 1.5 = 30 Pints ttal Questin Answer Number 1

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

MATHEMATICS Higher Grade - Paper I

MATHEMATICS Higher Grade - Paper I Higher Mathematics - Practice Eaminatin D Please nte the frmat f this practice eaminatin is different frm the current frmat. The paper timings are different and calculatrs can be used thrughut. MATHEMATICS

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec U n i t 6 AdvF Date: Name: Trignmetric Functins Unit 6 Tentative TEST date Big idea/learning Gals In this unit yu will study trignmetric functins frm grade, hwever everything will be dne in radian measure.

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 AC Machinery Fundamentals 1 The Vltage Induced in a Rtating Lp e v B ind v = velcity f the cnductr B = Magnetic Flux Density vectr l = Length f the Cnductr Figure 3-1 A simple rtating lp in a

More information

Energy considerations Energy considerations

Energy considerations Energy considerations Energy cnsieratins 99.0.8 DRFT. Energy cnsieratins The wrk reuire t assemble tw charges, an is fun by first bringing frm infinity t its esire psitin (which reuires n wrk) an then bringing frm infinity

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

M thematics. National 5 Practice Paper C. Paper 1. Duration 1 hour. Total marks 40

M thematics. National 5 Practice Paper C. Paper 1. Duration 1 hour. Total marks 40 N5 M thematics Natinal 5 Practice Paper C Paper 1 Duratin 1 hur Ttal marks 40 Yu may NOT use a calculatr Attempt all the questins. Use blue r black ink. Full credit will nly be given t slutins which cntain

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Capacitance. Applications of Electric Potential. Capacitors in Kodak Cameras 3/17/2014. AP Physics B

Capacitance. Applications of Electric Potential. Capacitors in Kodak Cameras 3/17/2014. AP Physics B 3/7/04 apacitance P Physics B pplicatins f Electric Ptential Is there any way we can use a set f plates with an electric fiel? YES! We can make what is calle a Parallel Plate apacitr an Stre harges between

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

MATHEMATICS Higher Grade - Paper I

MATHEMATICS Higher Grade - Paper I Higher Mathematics - Practice Eaminatin B Please nte the frmat f this practice eaminatin is different frm the current frmat. The paper timings are different and calculatrs can be used thrughut. MATHEMATICS

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W Eample 1 rbt has a mass f 60 kg. Hw much des that rbt weigh sitting n the earth at sea level? Given: m Rbt = 60 kg ind: Rbt Relatinships: Slutin: Rbt =589 N = mg, g = 9.81 m/s Rbt = mrbt g = 60 9. 81 =

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 7: Magnetism and Electrmagnetism Ntes (Cntent in bld is fr Higher Tier nly) Magnets - Nrth and Suth Ples - Same Ples repel - Oppsite ples attract Permanent Magnets - Always magnetic,

More information

Higher. Specimen NAB Assessment

Higher. Specimen NAB Assessment hsn.uk.net Higher Mathematics UNIT Specimen NAB Assessment HSN50 This dcument was prduced speciall fr the HSN.uk.net website, and we require that an cpies r derivative wrks attribute the wrk t Higher Still

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

Trigonometric Ratios Unit 5 Tentative TEST date

Trigonometric Ratios Unit 5 Tentative TEST date 1 U n i t 5 11U Date: Name: Trignmetric Ratis Unit 5 Tentative TEST date Big idea/learning Gals In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)?

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)? THESE ARE SAMPLE QUESTIONS FOR EACH OF THE STUDENT LEARNING OUTCOMES (SLO) SET FOR THIS COURSE. SLO 1: Understand and use the cncept f the limit f a functin i. Use prperties f limits and ther techniques,

More information

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property Functin ntatin & cmpsite functins Factring Dividing plynmials Remainder therem & factr prperty Can d s by gruping r by: Always lk fr a cmmn factr first 2 numbers that ADD t give yu middle term and MULTIPLY

More information

Introduction to Spacetime Geometry

Introduction to Spacetime Geometry Intrductin t Spacetime Gemetry Let s start with a review f a basic feature f Euclidean gemetry, the Pythagrean therem. In a twdimensinal crdinate system we can relate the length f a line segment t the

More information

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit : TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric

More information

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot Mathematics DM 05 Tpic : Trignmetric Functins LECTURE OF 5 TOPIC :.0 TRIGONOMETRIC FUNCTIONS SUBTOPIC :. Trignmetric Ratis and Identities LEARNING : At the end f the lessn, students shuld be able t: OUTCOMES

More information

PHYS 314 HOMEWORK #3

PHYS 314 HOMEWORK #3 PHYS 34 HOMEWORK #3 Due : 8 Feb. 07. A unifrm chain f mass M, lenth L and density λ (measured in k/m) hans s that its bttm link is just tuchin a scale. The chain is drpped frm rest nt the scale. What des

More information

Physics 101 Math Review. Solutions

Physics 101 Math Review. Solutions Physics 0 Math eview Slutins . The fllwing are rdinary physics prblems. Place the answer in scientific ntatin when apprpriate and simplify the units (Scientific ntatin is used when it takes less time t

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information