Thermodynamic of computing. Fisica dell Energia - a.a. 2017/2018

Size: px
Start display at page:

Download "Thermodynamic of computing. Fisica dell Energia - a.a. 2017/2018"

Transcription

1 Thermodynamic of computing Fisica dell Energia - a.a. 2017/2018

2 Landauer principle Minimum amount of energy required greater than zero Let assume the operation of bit reset # of initial states: 2 # of final states: 1

3 Landauer principle S = k B log W Q T S Initial condition: two possible states Final condition: one possible state Heat produced S i = k B log 2 S f = k B log 1 S = S f S i = k B log 2 Q T S = k B T log 2

4 Landauer principle experimental verification The physics of information: from Maxwell s demon to Landauer - Eric Lutz - University of Erlangen-Nürnberg

5 Landauer principle experimental verification Even if you're not burning books, destroying information generates heat. - Sergio Ciliberto

6 Landauer principle experimental verification The physics of information: from Maxwell s demon to Landauer - Eric Lutz - University of Erlangen-Nürnberg

7 Landauer principle experimental verification The physics of information: from Maxwell s demon to Landauer - Eric Lutz - University of Erlangen-Nürnberg

8 Landauer principle experimental verification The physics of information: from Maxwell s demon to Landauer - Eric Lutz - University of Erlangen-Nürnberg

9 Landauer principle experimental verification Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer s Principle in a Feedback Trap. Physical Review Letters, 113(19),

10 Landauer principle experimental verification Feedback Trap Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer s Principle in a Feedback Trap. Physical Review Letters, 113(19),

11 Landauer principle experimental verification Erasure protocol Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer s Principle in a Feedback Trap. Physical Review Letters, 113(19),

12 Landauer principle experimental verification Work series for individual cycles Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer s Principle in a Feedback Trap. Physical Review Letters, 113(19),

13 Time-dependent study of bit reset

14 Reset on colloidal particles Chiuchiú, D. "Time-dependent study of bit reset." EPL (Europhysics Letters) (2015):

15 Time-dependent study For a fixed τpr with Q(τpr) T S(τpr), study T S(t), Q(t), W (t), E(t). Chiuchiú, D. "Time-dependent study of bit reset." EPL (Europhysics Letters) (2015):

16 MEMS/NEMS Memory Device

17 NEMS Memory Devices Ionescu, Adrian M. "Nano Electro Mechanical (NEM) Memory Devices." Emerging Nanoelectronic Devices (2014):

18 NEMS Memory Devices Ionescu, Adrian M. "Nano Electro Mechanical (NEM) Memory Devices." Emerging Nanoelectronic Devices (2014):

19 NEMS Memory Devices Ionescu, Adrian M. "Nano Electro Mechanical (NEM) Memory Devices." Emerging Nanoelectronic Devices (2014):

20 NEMS Memory Devices

21 NEMS system

22 NEMS system armchair direction 6x1 nm atoms a = 2.42 Å Y = 0.85 TPa T = 10 K Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

23 2-DOF potential landscape Energy (J) A2 A A1 (Å) A2 (Å) 5 Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

24 Reset protocol Objective: move the system from an unknown state to known state ΔS = kb log(2) Qmin = kb T log(2) A1 A1 A2 Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015): A2

25 Reset protocol Quick and dirty: apply a positive force along Z on all atoms WRONG: it is not possible to control the velocity!

26 Reset protocol Quick and dirty: apply a positive force along Z on all atoms

27 Reset protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration f MaxUp f 0Up f MaxDw f 0Dw t 0 t 1 t 2 t 3 t 4 Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

28 t 0 t 1 t 2 t 3 t 4 Reset protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration f MaxUp f 0Up f MaxDw f 0Dw

29 Reset protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

30 Reset protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration 0.4 τ p =110 ns counts 0.2 Q/kBT Q/kBT QL=kBTln2 τp (ns) Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

31 Switch protocol Objective: move the system from a known state to another known state ΔS = 0 Qmin = 0 A1 A1 A2 Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015): A2

32 Switch protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration f MaxUp f 0Up f MaxDw f 0Dw t 0 t 1 t 2 t 3 t 4 t 5 t 6 Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

33 t t t t t t t Switch protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration f MaxUp f 0Up f MaxDw f 0Dw

34 Switch protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

35 Switch protocol Controlled way: apply a set of forces in to gently put the system in the desired configuration 0.4 τ p =210 ns counts 0.2 Q/kBT Q/kBT τp (ns) Neri, I., et al. "Reset and switch protocols at Landauer limit in a graphene buckled ribbon." EPL (Europhysics Letters) (2015):

36 t t t t t t t Switch protocol Wrong way: apply the switch protocol from the wrong initial state f MaxUp f 0Up f MaxDw f 0Dw

37 Switch protocol Wrong way: apply the switch protocol from the wrong initial state Qmin > 2QL

38 Micro-electromechanical memory bit based on magnetic repulsion

39 Micro-electromechanical memory bit based on magnetic repulsion Micro-electromechanical memory bit based on magnetic repulsion, López-Suárez, Miquel and Neri, Igor, Applied Physics Letters, 109, (2016)

40 Micro-electromechanical memory bit based on magnetic repulsion Micro-electromechanical memory bit based on magnetic repulsion, López-Suárez, Miquel and Neri, Igor, Applied Physics Letters, 109, (2016)

41 Micro-electromechanical memory bit based on magnetic repulsion Micro-electromechanical memory bit based on magnetic repulsion, López-Suárez, Miquel and Neri, Igor, Applied Physics Letters, 109, (2016)

42 Micro-electromechanical memory bit based on magnetic repulsion Orders of magnitude above Landauer limit! Micro-electromechanical memory bit based on magnetic repulsion, López-Suárez, Miquel and Neri, Igor, Applied Physics Letters, 109, (2016)

43 Solution: increase the temperature

44 Solution: increase the temperature Neri, Igor, and Miquel López-Suárez. "Heat production and error probability relation in Landauer reset at effective temperature." Scientific Reports 6 (2016).

45 Reset protocol Q=W-ΔU Neri, Igor, and Miquel López-Suárez. "Heat production and error probability relation in Landauer reset at effective temperature." Scientific Reports 6 (2016).

46 Landauer reset with error Neri, Igor, and Miquel López-Suárez. "Heat production and error probability relation in Landauer reset at effective temperature." Scientific Reports 6 (2016).

47 Unconventional computing

48 Robust Soldier Crab Ball Gate Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky

49 Robust Soldier Crab Ball Gate OR gate Robust Soldier Crab Ball Gate - Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky

50 Robust Soldier Crab Ball Gate AND gate Robust Soldier Crab Ball Gate - Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky

51 Robust Soldier Crab Ball Gate Robust Soldier Crab Ball Gate - Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky

52 Robust Soldier Crab Ball Gate How much energy? Crabs usually eat algae. Crabs are omnivorous, meaning that they will eat both plants and other animals for sustenance. Energy Content of Algae: 5kcal for 3g Average weight of the crabs was 42g Suppose daily need is 50% of its weight: 21g of algae and thus 35kcal J of energy for daily operating a crab logic gate or 1.7W of power

53 Mechanical logic gate

54 Mechanical logic gate AND gate

55 Mechanical logic gate López-Suárez, M. et al. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 7:12068 (2016)

56 Mechanical logic gate Ω0 Ω1 López-Suárez, M. et al. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 7:12068 (2016)

57 Mechanical logic gate López-Suárez, M. et al. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 7:12068 (2016)

58 Mechanical logic gate ΔU = W Q = 0 López-Suárez, M. et al. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 7:12068 (2016)

59 Mechanical logic gate López-Suárez, M. et al. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 7:12068 (2016)

60 Full adder López-Suárez, M. et al. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 7:12068 (2016)

Thermodynamic of computing. Fisica dell Energia - a.a. 2015/2016

Thermodynamic of computing. Fisica dell Energia - a.a. 2015/2016 Thermodynamic of computing Fisica dell Energia - a.a. 2015/2016 Landauer principle Minimum amount of energy required greater than zero Let assume the operation of bit reset # of initial states: 2 # of

More information

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg The physics of information: from Maxwell s demon to Landauer Eric Lutz University of Erlangen-Nürnberg Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer

More information

Even if you're not burning books, destroying information generates heat.

Even if you're not burning books, destroying information generates heat. Even if you're not burning books, destroying information generates heat. Information and Thermodynamics: Experimental verification of Landauer's erasure principle with a colloidal particle Antoine Bérut,

More information

Physics of switches. Luca Gammaitoni NiPS Laboratory

Physics of switches. Luca Gammaitoni NiPS Laboratory Physics of switches Luca Gammaitoni NiPS Laboratory Logic switches A logic switch is a device that can assume physically distinct states as a result of external inputs. Usually the output of a physical

More information

arxiv: v4 [cond-mat.stat-mech] 3 Mar 2017

arxiv: v4 [cond-mat.stat-mech] 3 Mar 2017 Memory Erasure using Time Multiplexed Potentials Saurav Talukdar, Shreyas Bhaban and Murti V. Salapaka University of Minnesota, Minneapolis, USA. (Dated: March, 7) arxiv:69.87v [cond-mat.stat-mech] Mar

More information

Information and Physics Landauer Principle and Beyond

Information and Physics Landauer Principle and Beyond Information and Physics Landauer Principle and Beyond Ryoichi Kawai Department of Physics University of Alabama at Birmingham Maxwell Demon Lerner, 975 Landauer principle Ralf Landauer (929-999) Computational

More information

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom Thermodynamic Computing 1 14 Forward Through Backwards Time by RocketBoom The 2nd Law of Thermodynamics Clausius inequality (1865) S total 0 Total Entropy increases as time progresses Cycles of time R.Penrose

More information

Physics of switches. Luca Gammaitoni NiPS Laboratory

Physics of switches. Luca Gammaitoni NiPS Laboratory Physics of switches Luca Gammaitoni NiPS Laboratory Logic switches A logic switch is a device that can assume physically dis=nct states as a result of external inputs. Usually the output of a physical

More information

Information and thermodynamics: Experimental verification of Landauer s erasure principle

Information and thermodynamics: Experimental verification of Landauer s erasure principle arxiv:153.6537v1 [cond-mat.stat-mech] 23 Mar 215 Information and thermodynamics: Experimental verification of Landauer s erasure principle Antoine Bérut, Artyom Petrosyan and Sergio Ciliberto Université

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

DEMONS: MAXWELL S DEMON, SZILARD S ENGINE AND LANDAUER S ERASURE DISSIPATION

DEMONS: MAXWELL S DEMON, SZILARD S ENGINE AND LANDAUER S ERASURE DISSIPATION In: Proceedings of the first conference on Hot Topics in Physical Informatics (HoTPI, 2013 November). Paper is in press at International Journal of Modern Physics: Conference Series (2014). DEMONS: MAXWELL

More information

arxiv: v3 [cond-mat.stat-mech] 10 May 2018

arxiv: v3 [cond-mat.stat-mech] 10 May 2018 Cost of remembering a bit of information D. Chiuchiù, 1, M. López-Suárez, 1 I. Neri, 1,, M. C. Diamantini, 1, and L. Gammaitoni 1 arxiv:1703.05544v3 [cond-mat.stat-mech] 10 May 018 1 NiPS Lab, Università

More information

Maxwell s Demon. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (October 3, 2004)

Maxwell s Demon. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (October 3, 2004) 1 Problem Maxwell s Demon Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (October 3, 2004) This problem is prob. 2 of [1]. One of the earliest conceptual supercomputers

More information

arxiv: v2 [cond-mat.stat-mech] 4 Apr 2018

arxiv: v2 [cond-mat.stat-mech] 4 Apr 2018 arxiv:180.01511v [cond-mat.stat-mech] 4 Ar 018 Designing Memory Bits with Dissiation lower than the Landauer s Bound Saurav Talukdar, Shreyas Bhaban, James Melbourne and Murti V. Salaaka* 00 Union Street

More information

Maxwell s Demon. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (October 3, 2004; updated September 20, 2016)

Maxwell s Demon. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (October 3, 2004; updated September 20, 2016) 1 Problem Maxwell s Demon Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (October 3, 2004; updated September 20, 2016) This problem is prob. 2 of [1]. One of the

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Sequential circuit: A circuit that includes memory elements. In this case the output depends not only on the current input but also on the past inputs. Memory A synchronous

More information

Lecture 6 - LANDAUER: Computing with uncertainty

Lecture 6 - LANDAUER: Computing with uncertainty Lecture 6 - LANDAUER: Computing with uncertainty Igor Neri - NiPS Laboratory, University of Perugia July 18, 2014!! NiPS Summer School 2014 ICT-Energy: Energy management at micro and nanoscales for future

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Thermodynamics of feedback controlled systems. Francisco J. Cao

Thermodynamics of feedback controlled systems. Francisco J. Cao Thermodynamics of feedback controlled systems Francisco J. Cao Open-loop and closed-loop control Open-loop control: the controller actuates on the system independently of the system state. Controller Actuation

More information

04. Information and Maxwell's Demon. I. Dilemma for Information-Theoretic Exorcisms.

04. Information and Maxwell's Demon. I. Dilemma for Information-Theoretic Exorcisms. 04. Information and Maxwell's Demon. I. Dilemma for Information-Theoretic Exorcisms. Two Options: (S) (Sound). The combination of object system and demon forms a canonical thermal system. (P) (Profound).

More information

ON BROWNIAN COMPUTATION

ON BROWNIAN COMPUTATION ON BROWNIAN COMPUTATION JOHN D. NORTON Department of History and Philosophy of Science Center for Philosophy of Science University of Pittsburgh Pittsburgh PA USA 15260 jdnorton@pitt.edu Draft: October10,

More information

Thermodynamics of computation

Thermodynamics of computation C. THERMODYNAMICS OF COMPUTATION 37 C Thermodynamics of computation This lecture is based on Charles H. Bennett s The Thermodynamics of Computation a Review, Int. J. Theo. Phys., 1982 [B82]. Unattributed

More information

Demons: Maxwell demon; Szilard engine; and Landauer's erasure-dissipation

Demons: Maxwell demon; Szilard engine; and Landauer's erasure-dissipation "Everything should be made as simple as possible, but not simpler." Albert Einstein Demons: Maxwell demon; Szilard engine; and Landauer's erasure-dissipation Laszlo B. Kish (1), Claes-Göran Granqvist (2),

More information

Fundamental work cost of quantum processes

Fundamental work cost of quantum processes 1607.03104 1709.00506 Fundamental work cost of quantum processes Philippe Faist 1,2, Renato Renner 1 1 Institute for Theoretical Physics, ETH Zurich 2 Institute for Quantum Information and Matter, Caltech

More information

The thermodynamics of cellular computation

The thermodynamics of cellular computation The thermodynamics of cellular computation Sourjik and Wingreen (2012) Cur. Opinions in Cell Bio. Pankaj Mehta Collaborators: David Schwab, Charles Fisher, Mo Khalil Cells perform complex computations

More information

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg Irreversibility and the arrow of time in a quenched quantum system Eric Lutz Department of Physics University of Erlangen-Nuremberg Outline 1 Physics far from equilibrium Entropy production Fluctuation

More information

Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems.

Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems. Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems http://csc.ucdavis.edu/~cmg/ Jim Crutchfield Complexity Sciences Center Physics Department University of

More information

2.2 Classical circuit model of computation

2.2 Classical circuit model of computation Chapter 2 Classical Circuit Models for Computation 2. Introduction A computation is ultimately performed by a physical device. Thus it is a natural question to ask what are the fundamental limitations

More information

Quantum computing! quantum gates! Fisica dell Energia!

Quantum computing! quantum gates! Fisica dell Energia! Quantum computing! quantum gates! Fisica dell Energia! What is Quantum Computing?! Calculation based on the laws of Quantum Mechanics.! Uses Quantum Mechanical Phenomena to perform operations on data.!

More information

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland Jonne Koski, now ETH Olli-Pentti Saira, now Caltech Ville

More information

arxiv: v1 [cond-mat.stat-mech] 24 Sep 2018

arxiv: v1 [cond-mat.stat-mech] 24 Sep 2018 Realizing Information Erasure in Finite Time James. Melbourne, Saurav. Talukdar, Murti. V. Salapaka arxiv:1809.09216v1 [cond-mat.stat-mech] 24 Sep 2018 Abstract In this article, we focus on erasure of

More information

Robust Soldier Crab Ball Gate

Robust Soldier Crab Ball Gate Robust Soldier Crab Ball Gate Yukio-Pegio Gunji Yuta Nishiyama Department of Earth and Planetary Sciences Kobe University Kobe 657-8501, Japan Andrew Adamatzky Unconventional Computing Centre University

More information

Lecture 17: Designing Sequential Systems Using Flip Flops

Lecture 17: Designing Sequential Systems Using Flip Flops EE210: Switching Systems Lecture 17: Designing Sequential Systems Using Flip Flops Prof. YingLi Tian April 11, 2019 Department of Electrical Engineering The City College of New York The City University

More information

Information entropy and thermal entropy: apples and oranges

Information entropy and thermal entropy: apples and oranges Information entropy and thermal entropy: apples and oranges L.B. Kish 1 and D.K. Ferry 2 1 Department of Electrical and Computer Engineering, Texas A&M University, TAMUS 3128, College Station, TX 77843-3128

More information

Thermodynamical cost of accuracy and stability of information processing

Thermodynamical cost of accuracy and stability of information processing Thermodynamical cost of accuracy and stability of information processing Robert Alicki Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, Poland e-mail: fizra@univ.gda.pl Fields Institute,

More information

Response to Comment on Zero and negative energy dissipation at information-theoretic erasure

Response to Comment on Zero and negative energy dissipation at information-theoretic erasure Response to Comment on Zero and negative energy dissipation at information-theoretic erasure Laszlo Bela Kish, Claes-Göran Granqvist, Sunil P. Khatri, Ferdinand Peper Abstract We prove that statistical

More information

Second law, entropy production, and reversibility in thermodynamics of information

Second law, entropy production, and reversibility in thermodynamics of information Second law, entropy production, and reversibility in thermodynamics of information Takahiro Sagawa arxiv:1712.06858v1 [cond-mat.stat-mech] 19 Dec 2017 Abstract We present a pedagogical review of the fundamental

More information

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

More information

Quantum computation: a tutorial

Quantum computation: a tutorial Quantum computation: a tutorial Samuel L. Braunstein Abstract: Imagine a computer whose memory is exponentially larger than its apparent physical size; a computer that can manipulate an exponential set

More information

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop EE210: Switching Systems Lecture 14: State Tables, Diagrams, Latches, and Flip Flop Prof. YingLi Tian Nov. 6, 2017 Department of Electrical Engineering The City College of New York The City University

More information

Implementation of Boolean Logic by Digital Circuits

Implementation of Boolean Logic by Digital Circuits Implementation of Boolean Logic by Digital Circuits We now consider the use of electronic circuits to implement Boolean functions and arithmetic functions that can be derived from these Boolean functions.

More information

Advanced Information Storage 02

Advanced Information Storage 02 dvanced Information Storage 02 tsufumi Hirohata Department of Electronics 16:00 10/October/2013 Thursday (V 120) Quick Review over the Last Lecture Von Neumann s model : Memory access : Bit / byte : 1

More information

İlke Ercan, PhD Assistant Professor, Electrical & Electronics Eng. Dep. Boğaziçi University, İstanbul, Turkey

İlke Ercan, PhD Assistant Professor, Electrical & Electronics Eng. Dep. Boğaziçi University, İstanbul, Turkey ENERGY EFFICIENCY LIMITS IN BROWNIAN CIRCUITS A PHYSICAL-INFORMATION-THEORETIC APPROACH, PhD Assistant Professor, Electrical & Electronics Eng. Dep. Boğaziçi University, İstanbul, Turkey Micro Energy 2017

More information

Comparative analysis of non-equilibrium quantum Landauer bounds

Comparative analysis of non-equilibrium quantum Landauer bounds Comparative analysis of non-equilibrium quantum Landauer bounds Steve Campbell in collaboration with: Giacomo Guarnieri, Mauro Paternostro, and Bassano Vacchini To Appear July(ish) 2017 Landauer s Principle

More information

Operating basic switches toward zero-power computing. Luca Gammaitoni NiPS Laboratory, Università di Perugia, Italy

Operating basic switches toward zero-power computing. Luca Gammaitoni NiPS Laboratory, Università di Perugia, Italy Operating basic switches toward zero-power computing Luca Gammaitoni NiPS Laboratory, Università di Perugia, Italy Perugia Luca Gammaitoni Helios Vocca Cristina Diamantini Florence Silvia Lombardi, Project

More information

arxiv: v1 [physics.class-ph] 14 Apr 2012

arxiv: v1 [physics.class-ph] 14 Apr 2012 arxiv:1204.4895v1 [physics.class-ph] 14 Apr 2012 IS THE CLAUSIUS INEQUALITY A CONSEQUENCE OF THE SECOND LAW? ALEXEY V. GAVRILOV Abstract. We present an analysis of the foundations of the well known Clausius

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017 UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 2-2016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

Finite-Time Thermodynamics of Port-Hamiltonian Systems

Finite-Time Thermodynamics of Port-Hamiltonian Systems Finite-Time Thermodynamics of Port-Hamiltonian Systems Henrik Sandberg Automatic Control Lab, ACCESS Linnaeus Centre, KTH (Currently on sabbatical leave at LIDS, MIT) Jean-Charles Delvenne CORE, UC Louvain

More information

Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications V. G. Santhi Swaroop et al Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Information Storage and Spintronics 02

Information Storage and Spintronics 02 Information Storage and Spintronics 02 tsufumi Hirohata Department of Electronic Engineering 09:00 Tuesday, 02/October/2018 (J/Q 004) Contents of Information Storage and Spintronics Lectures : tsufumi

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

Thermodynamic Cost Due to Changing the Initial Distribution Over States

Thermodynamic Cost Due to Changing the Initial Distribution Over States Thermodynamic Cost Due to Changing the Initial Distribution Over States Artemy Kolchinsky David H. Wolpert SFI WORKING AER: 2016-07-014 SFI Working apers contain accounts of scienti5ic work of the author(s)

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators Fluctuation relations U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) Fluctuation relations in a circuit Experiment on a double

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

Is the peculiar behavior of 1/f noise. inhomogeneities?

Is the peculiar behavior of 1/f noise. inhomogeneities? Is the peculiar behavior of 1/f noise in graphene the result of the interplay between band-structure and inhomogeneities? B. Pellegrini, P. Marconcini, M. Macucci, G. Fiori, and G. Basso Dipartimento di

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering Final Examination ECE 241F - Digital Systems Examiners: J. Rose and

More information

Digital Electronics II Mike Brookes Please pick up: Notes from the front desk

Digital Electronics II Mike Brookes Please pick up: Notes from the front desk NOTATION.PPT(10/8/2010) 1.1 Digital Electronics II Mike Brookes Please pick up: Notes from the front desk 1. What does Digital mean? 2. Where is it used? 3. Why is it used? 4. What are the important features

More information

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Sequential Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design Sequential Logic Combinational circuits with memory

More information

Design of Digital Adder Using Reversible Logic

Design of Digital Adder Using Reversible Logic RESEARCH ARTICLE Design of Digital Adder Using Reversible Logic OPEN ACCESS Gowthami P*, RVS Satyanarayana ** * (Research scholar, Department of ECE, S V University College of Engineering, Tirupati, AP,

More information

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine In a famous thought experiment discussing the second law of thermodynamics, James Clerk Maxwell imagined an intelligent being (a demon

More information

Digital Electronics. Part A

Digital Electronics. Part A Digital Electronics Final Examination Part A Winter 2004-05 Student Name: Date: lass Period: Total Points: Multiple hoice Directions: Select the letter of the response which best completes the item or

More information

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS SMALLER FASTER MORE SENSETIVE MORE EFFICIENT NANO CONNECT SCANDINAVIA www.nano-connect.org Chalmers University of Technology DTU Halmstad University

More information

arxiv: v2 [cond-mat.stat-mech] 18 Jun 2009

arxiv: v2 [cond-mat.stat-mech] 18 Jun 2009 Memory erasure in small systems Raoul Dillenschneider and Eric Lutz Department of Physics, University of Augsburg, D-86135 Augsburg, Germany arxiv:811.351v2 [cond-mat.stat-mech] 18 Jun 29 We consider an

More information

Introduction to Quantum Dynamics and Control

Introduction to Quantum Dynamics and Control EE 290O. Advanced Topics in Control: Introduction to Quantum Dynamics and Control Instructor: Alireza Shabani Contact : shabani@berkeley.edu Office: Gilman, Room 19 Cory 278 Office Hours: Wednesdays 3-4

More information

Information Equation of State

Information Equation of State Entropy 2008, 10, 150-159; DOI: 10.3390/entropy-e10030150 Article Information Equation of State OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.org/entropy M. Paul Gough Space Science Centre, University of

More information

Can the Second Law be violated?

Can the Second Law be violated? Remi Cornwall MSc(Lon) BSc(UMIST) Sabbatical presentation http://webspace.qmul.ac.uk/rocornwall/ http://vixra.org/author/remi_cornwall https://www.researchgate.net/profile/remi_cornwall Can the Second

More information

Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013)

Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) VLSI IMPLEMENTATION OF OPTIMIZED REVERSIBLE BCD ADDER Ruchi Gupta 1 (Assistant Professor, JPIET, MEERUT), Shivangi Tyagi 2

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

NRAM: High Performance, Highly Reliable Emerging Memory

NRAM: High Performance, Highly Reliable Emerging Memory NRAM: High Performance, Highly Reliable Emerging Memory Sheyang Ning,2, Tomoko Ogura Iwasaki, Darlene Viviani 2, Henry Huang 2, Monte Manning 2, Thomas Rueckes 2, Ken Takeuchi Chuo University 2 Nantero

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

QuantERA Co-funded Call 2017: Scientific Scope

QuantERA Co-funded Call 2017: Scientific Scope QuantERA Co-funded Call 2017: Scientific Scope Konrad Banaszek Konrad.Banaszek@ncn.gov.pl This project has received funding from the European Union s Horizon 2020 research and innovation programme under

More information

Quantum Computer Architecture

Quantum Computer Architecture Quantum Computer Architecture Scalable and Reliable Quantum Computers Greg Byrd (ECE) CSC 801 - Feb 13, 2018 Overview 1 Sources 2 Key Concepts Quantum Computer 3 Outline 4 Ion Trap Operation The ion can

More information

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs Appendix B Review of Digital Logic Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Elect. & Comp. Eng. 2 DeMorgan Symbols NAND (A.B) = A +B NOR (A+B) = A.B AND A.B = A.B = (A +B ) OR

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Kyoungmin Min, Namjung Kim and Ravi Bhadauria May 10, 2010 Abstract In this project, we investigate the shear properties of finite sized

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 04 (April 2015), PP.72-77 High Speed Time Efficient Reversible ALU Based

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

I. Motivation & Examples

I. Motivation & Examples I. Motivation & Examples Output depends on current input and past history of inputs. State embodies all the information about the past needed to predict current output based on current input. State variables,

More information

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY UNIT III Design of ombinational Logic ircuits Department of omputer Science SRM UNIVERSITY Introduction to ombinational ircuits Logic circuits for digital systems may be ombinational Sequential combinational

More information

ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter. Lab 3. Lab 3 Gate Timing. Lab 3 Steps in designing a State Machine. Timing diagram of a DFF

ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter. Lab 3. Lab 3 Gate Timing. Lab 3 Steps in designing a State Machine. Timing diagram of a DFF ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter Timing diagram of a DFF Lab 3 Gate Timing difference timing for difference kind of gate, cost dependence (1) Setup Time = t2-t1 (2) Propagation

More information

NEM Relays Using 2-Dimensional Nanomaterials for Low Energy Contacts

NEM Relays Using 2-Dimensional Nanomaterials for Low Energy Contacts NEM Relays Using 2-Dimensional Nanomaterials for Low Energy Contacts Seunghyun Lee, Ji Cao 10/29/2013 A Science & Technology Professor H. -S. Philip Wong Electrical Engineering, Stanford University Center

More information

Maxwell's Demon in Biochemical Signal Transduction

Maxwell's Demon in Biochemical Signal Transduction Maxwell's Demon in Biochemical Signal Transduction Takahiro Sagawa Department of Applied Physics, University of Tokyo New Frontiers in Non-equilibrium Physics 2015 28 July 2015, YITP, Kyoto Collaborators

More information

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 81-11 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12

More information

Arithme(c logic units and memory

Arithme(c logic units and memory Arithme(c logic units and memory CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac-on abstrac(on building blocks examples computer components Macbook Pro components

More information

The End of the Thermodynamics of Computation: A No Go Result

The End of the Thermodynamics of Computation: A No Go Result December 22, 28, 2011 June 20, 2012 March 31, August 20, 2013 The End of the Thermodynamics of Computation: A No Go Result John D. Norton Department of History and Philosophy of Science Center for Philosophy

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Physics I Lecture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ 1st & 2nd Laws of Thermodynamics The 1st law specifies that we cannot get more energy

More information

Department of ECE, Vignan Institute of Technology & Management,Berhampur(Odisha), India

Department of ECE, Vignan Institute of Technology & Management,Berhampur(Odisha), India IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Efficient Design Of 4-Bit Binary Adder Using Reversible Logic Gates Abinash Kumar Pala *, Jagamohan Das * Department of ECE, Vignan

More information

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition *WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII 1 Introduction

More information

All-Carbon Spin Logic Sensor for RRAM Arrays

All-Carbon Spin Logic Sensor for RRAM Arrays All-Carbon Spin Logic Sensor for RRAM Arrays Stephen K. Heinrich-Barna Connected Microcontrollers Texas Instruments, Inc Dallas, TX USA s-barna@ti.com Jean-Pierre Leburton Electrical and Computer Engineering

More information

Reversible Circuit Using Reversible Gate

Reversible Circuit Using Reversible Gate Reversible Circuit Using Reversible Gate 1Pooja Rawat, 2Vishal Ramola, 1M.Tech. Student (final year), 2Assist. Prof. 1-2VLSI Design Department 1-2Faculty of Technology, University Campus, Uttarakhand Technical

More information

Roger L. Tokheim. Chapter 8 Counters Glencoe/McGraw-Hill

Roger L. Tokheim. Chapter 8 Counters Glencoe/McGraw-Hill Digital Electronics Principles & Applications Sixth Edition Roger L. Tokheim Chapter 8 Counters 2003 Glencoe/McGraw-Hill INTRODUCTION Overview of Counters Characteristics of Counters Ripple Up Counter

More information

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Tiago Barbin Batalhão SUTD, Singapore Work done while at UFABC, Santo André, Brazil Singapore, January 11th, 2017

More information

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system.

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 1-The steady-state error of a feedback control system with an acceleration input becomes finite in a a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 2-A good control system has

More information

An Overview of Spin-based Integrated Circuits

An Overview of Spin-based Integrated Circuits ASP-DAC 2014 An Overview of Spin-based Integrated Circuits Wang Kang, Weisheng Zhao, Zhaohao Wang, Jacques-Olivier Klein, Yue Zhang, Djaafar Chabi, Youguang Zhang, Dafiné Ravelosona, and Claude Chappert

More information

Zero and negative energy dissipation at information-theoretic erasure

Zero and negative energy dissipation at information-theoretic erasure In press at J. Computational Electronics. http://vixra.org/abs/1507.0221 http://arxiv.org/abs/1507.08906 Zero and negative energy dissipation at information-theoretic erasure Laszlo Bela Kish, Claes-Göran

More information