Chapter 4. Chapter 4


 Sharyl Walton
 4 years ago
 Views:
Transcription
1 Chapter 4
2 Energy 1 n Energy, W, is the ability to do work and is measured in joules. One joule is the work done when a force of one newton is applied through a distance of one meter. The symbol for energy, W, represents work, but should not be confused with the unit for power, the watt, W. 1 m
3 In general, energy (E) is equivalent to power (P) multiplied by time (t). The kilowatthour (kwh) is a unit of energy equivalent to one kilowatt (1 KW) of power expended for one hour (1h) of time. It is a much larger unit of energy than the joule. There are 3.6 x 10 6 J in a kwh. The kwh is convenient for electrical appliances. Energy What is the energy used in operating a 1200 W heater for 20 minutes? 1200 W = 1.2 kw 20 min = 1/3 h 1.2 kw X 1/3 h = 0.4 kwh
4 Power The symbol for Power is P Power is the rate energy is used (actually converted to heat or another form). Power is measured in watts (or kilowatts). Notice that rate always involves time. One watt = one joule/second Three equations for power in circuits that are collectively known as Watt s law are: P IV P I 2 R P V R 2
5 equals horsepower
6
7 Power Formulas There are three basic power formulas, but each can be in three forms for nine combinations. P VI P I 2 R P V R 2 I P V R P I 2 R V P 2 V P I I P R V PR Where: P = Power V = Voltage I = Current R=Resistance
8 Power Formulas Combining Ohm s Law and the Power Formula All nine power formulas are based on Ohm s Law. V = IR I = V R P = VI Substitute IR for V or V/R for I to obtain: * P = VI * P = VI * = (IR)I * = V x V/R * = I 2 R * = V2 / R
9 Applying Power Formulas 5 A P = VI = 20V 5A = 100 W 20 V 4 P = I 2 R = 25A 4Ω = 100 W P = V2 R = 400V 4Ω = 100 W
10 Electric Power To calculate electric cost, start with the power: An air conditioner operates at 240 volts and 20 amperes. The power is P = V I = = 4800 watts. Convert to kilowatts: 4800 watts = 4.8 kilowatts Multiply by hours: (Assume it runs half the day) energy = 4.8 kw 12 hours = 57.6 kwh Multiply by rate: (Assume a rate of $0.08/ kwh) cost = 57.6 $0.08 = $4.61 per day
11 Power Dissipation When current flows in a resistance, heat is produced from the friction between the moving free electrons and the atoms obstructing their path. What power is dissipated in a 27 resistor if the current is A? Given that you know the resistance and current, substitute the values into P =I 2 R. P 2 I R 2 (0.135 A) W Heat is evidence that power is used in producing current.
12 Power Dissipation What power is dissipated by a heater that draws 12 A of current from a 110 V supply? The most direct solution is to substitute into P = IV. P IV 12 A110 V 1320 W
13 Power Dissipation What power is dissipated in a 100 resistor with 5 V across it? 2 V The most direct solution is to substitute into P. 2 R V P R 5 V W It is useful to keep in mind that small resistors operating in low voltage systems need to be sized for the anticipated power.
14 Resistor failures Resistor failures are unusual except when they have been subjected to excessive heat. Look for discoloration (sometimes the color bands appear burned). Test with an ohmmeter by disconnecting one end from the circuit to isolate it and verify the resistance. Correct the cause of the heating problem (larger resistor?, wrong value?). Normal Overheated
15 Amperehour Rating of Batteries Expected battery life of batteries is given as the amperehours specification. Various factors affect this, so it is an approximation. (Factors include rate of current withdrawal, age of battery, temperature, etc.) How many hours can you expect to have a battery deliver 0.5 A if it is rated at 10 Ah? Battery 20 h
16 Power Supply Efficiency Efficiency of a power supply is a measure of how well it converts ac to dc. For all power supplies, some of the input power is wasted in the form of heat. As an equation, Efficiency = P P IN OUT Power lost Input power What is the efficiency of a power supply that converts 20 W of input power to 17 W of output power? 85% Output power
17 Amperehour rating Efficiency Energy Joule Selected Key Terms A number determined by multiplying the current (A) times the length of time (h) that a battery can deliver that current to a load. The ratio of output power to input power of a circuit, usually expressed as a percent. The ability to do work. The SI unit of energy.
18 Kilowatthour (kwh) Power Watt Selected Key Terms A large unit of energy used mainly by utility companies. The rate of energy useage The SI unit of power.
19 1. A unit of power is the a. joule b. kilowatthour c. both of the above d. none of the above
20 1. A unit of power is the a. joule b. kilowatthour c. both of the above d. none of the above It is the Watt (W)
21 2. The SI unit of energy is the a. volt b. joule c. watt d. kilowatthour
22 2. The SI unit of energy is the a. volt b. joule c. watt d. kilowatthour
23 3. If the voltage in a resistive circuit is doubled, the power will be a. halved b. unchanged c. doubled d. quadrupled
24 3. If the voltage in a resistive circuit is doubled, the power will be a. halved b. unchanged c. doubled d. quadrupled P E R 2
25 4. The smallest power rating you should use for a resistor that is 330 with 12 V across it is a. ¼ W b. ½ W c. 1 W d. 2 W
26 4. The smallest power rating you should use for a resistor that is 330 with 12 V across it is a. ¼ W b. ½ W c. 1 W (12V ) W d. 2 W
27 5. The power dissipated by a light operating on 12 V that has 3 A of current is a. 4 W b. 12 W c. 36 W d. 48 W
28 5. The power dissipated by a light operating on 12 V that has 3 A of current is a. 4 W b. 12 W c. 36 W d. 48 W ( 12V )(3A)
29 6. The power rating of a resistor is determined mainly by a. surface area b. length c. body color d. applied voltage
30 6. The power rating of a resistor is determined mainly by a. surface area b. length c. body color d. applied voltage
31 7. The circuit with the largest power dissipation is a. (a) b. (b) c. (c) d. (d) +10 V R +15 V R +20 V R +25 V R (a) (b) (c) (d)
32 7. The circuit with the largest power dissipation is a. (a) b. (b) c. (c) d. (d) 2 (25V ) W +10 V R +15 V R +20 V R +25 V R (a) (10V ) (b) (15V ) (c) (20V ) (d) 100 1W W W
33 8. The circuit with the smallest power dissipation is a. (a) b. (b) c. (c) d. (d) +10 V R +15 V R +20 V R +25 V R (a) (b) (c) (d)
34 8. The circuit with the smallest power dissipation is a. (a) b. (b) c. (c) d. (d) 2 (25V ) W +10 V R +15 V R +20 V R +25 V R (a) (10V ) (b) (15V ) (c) (20V ) (d) 100 1W W W
35 9. A battery rated for 20 Ah can supply 2 A for a minimum of a. 0.1 h b. 2 h c. 10 h d. 40 h
36 9. A battery rated for 20 Ah can supply 2 A for a minimum of a. 0.1 h b. 2 h c. 10 h d. 40 h 20Ah 2A
37 10. The efficiency of a power supply is determined by a. Dividing the output power by the input power. b. Dividing the output voltage by the input voltage. c. Dividing the input power by the output power. d. Dividing the input voltage by the output voltage.
38 10. The efficiency of a power supply is determined by a. Dividing the output power by the input power. b. Dividing the output voltage by the input voltage. c. Dividing the input power by the output power. d. Dividing the input voltage by the output voltage.
Chapter 3. Chapter 3
Chapter 3 Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit and is measured in volts. Current is the rate of charge flow
More information2007 The McGrawHill Companies, Inc. All rights reserved.
Chapter 3 Ohm s Law Topics Covered in Chapter 3 31: The Current I = V/R 32: The Voltage V = IR 33: The Resistance R = V/I 34: Practical Units 35: Multiple and Submultiple Units 2007 The McGrawHill
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationCircuitsOhm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?
1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250 ohm resistor.
More informationand in a simple circuit Part 2
Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly
More informationELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page
ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of
More information6. In a dry cell electrical energy is obtained due to the conversion of:
1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the
More informationSection 1 Electric Charge and Force
CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible
More information2. Basic Components and Electrical Circuits
1 2. Basic Components and Electrical Circuits 2.1 Units and Scales The International System of Units (SI) defines 6 principal units from which the units of all other physical quantities can be derived
More informationTrade of Electrician. Power and Energy
Trade of Electrician Standards Based Apprenticeship Power and Energy Phase 2 Module No. 2.1 Unit No. 2.1.6 COURSE NOTES SOLAS Electrical Course Notes  Unit 2.1.6 Created by Gerry Ryan  Galway TC Revision
More informationNama :.. Kelas/No Absen :
Nama :.. Kelas/No Absen : TASK 2 : CURRENT AND RESISTANCE 1. A car battery is rated at 80 A h. An amperehour is a unit of: A. power B. energy C. current D. charge E. force 2. Current has units: A. kilowatthour
More informationCHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1
CHAPTER ONE 1.1 International System of Units and scientific notation : 1.1.1 Basic Units: Quantity Basic unit Symbol as shown in table 1 Table 1 1.1.2 Some scientific notations : as shown in table 2 Table
More informationTest Review Electricity
Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show
More informationElectric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationClosed loop of moving charges (electrons move  flow of negative charges; positive ions move  flow of positive charges. Nucleus not moving)
Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit
More informationCurrent Electricity.notebook. December 17, 2012
1 Circuit Diagrams and Assembly 1. Draw a circuit diagram containing a battery, a single throw switch, and a light. 2. Once the diagram has been checked by your teacher, assemble the circuit. Keep the
More informationPhysics 7B1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20
Physics 7B1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making
More informationInformation for Makeup exam is posted on the course website.
Information for Makeup exam is posted on the course website. Three resistors are connected to a 6V battery as shown. The internal resistance of the battery is negligible. What is the current through the
More information1 of 23. Boardworks Ltd Electrical Power
1 of 23 Boardworks Ltd 2016 Electrical Power Electrical Power 2 of 23 Boardworks Ltd 2016 What is electrical power? 3 of 23 Boardworks Ltd 2016 Electrical power is the rate at which energy is transferred
More informationElectricity. dronstudy.com
Electricity Electricity is a basic part of our nature and it is one of our most widely used forms of energy. We use electricity virtually every minute of every day for example in lighting, heating, refrigeration,
More informationChapter 17 Electric Current and Resistance Pearson Education, Inc.c
Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson
More informationElectricity Final Unit Final Assessment
Electricity Final Unit Final Assessment Name k = 1/ (4pe 0 ) = 9.0 10 9 N m 2 C 2 mass of an electron = 9.11 1031 kg mass of a proton = 1.67 1027 kg G = 6.67 1011 N m 2 kg 2 C = 3 x10 8 m/s Show all
More informationChapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q
More informationThis week. 3/23/2017 Physics 214 Summer
This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?
More informationThis week. 6/2/2015 Physics 214 Summer
This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?
More informationChapter 21 Electric Current and Circuits
Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4
More informationElectrical equations calculations
Task Use the following equations to answer the questions. You may need to rearrange the equations and convert the units. An example has been done for you. P = I x V V = I x R P = I 2 x R E = P x t E =
More informationCLASS X ELECTRICITY
Conductor Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X ELECTRICITY als through which electric current can pass
More informationChapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 251 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.
More informationPHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).
PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (020 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that
More informationCoulomb s constant k = 9x10 9 N m 2 /C 2
1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy
More informationChapter 33  Electric Fields and Potential. Chapter 34  Electric Current
Chapter 33  Electric Fields and Potential Chapter 34  Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges
More informationELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?
ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,
More informationEXPERIMENT 12 OHM S LAW
EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete
More information670 Intro Physics Notes: Electric Current and Circuits
Name: Electric Current Date: / / 670 Intro Physics Notes: Electric Current and Circuits 1. Previously, we learned about static electricity. Static electricity deals with charges that are at rest. 2. Now
More informationEquivalent resistance in Series Combination
Combination of Resistances There are two methods of joining the resistors together. SERIES CONNECTION An electric circuit in which three resistors having resistances R1, R2 and R3, respectively, are joined
More information8. Electric circuit: The closed path along which electric current flows is called an electric circuit.
GIST OF THE LESSON 1. Positive and negative charges: The charge acquired by a glass rod when rubbed with silk is called positive charge and the charge acquired by an ebonite rod when rubbed with wool is
More informationChapter 19. Electric Current, Resistance, and DC Circuit Analysis
Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:
More information(b) State the relation between work, charge and potential difference for an electric circuit.
Question Bank on ChElectricity 1. (a) Define the S.I unit of potential difference. (b) State the relation between work, charge and potential difference for an electric circuit. Calculate the potential
More informationELECTRIC CIRCUITS. Checklist. Exam Questions
ELECTRIC CIRCUITS Checklist Make sure you can. State Ohm's law in words. Determine relationship between current, potential difference and resistance at constant temperature using a simple circuit Draw,
More informationRead Chapter 7; pages:
Forces Read Chapter 7; pages: 191221 Objectives:  Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors
More informationSTUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE
Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 254 Resistivity Example 255: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper
More informationPhysics 214 Spring
Lecture 23 March 4 2016 The elation between Voltage Differences V and Voltages V? Current Flow, Voltage Drop on esistors and Equivalent esistance Case 1: Series esistor Combination and esulting Currents
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationNotes: Ohm s Law and Electric Power
Name: Date: / / 644 Intro Physics Notes: Ohm s Law and Electric Power Ohm s Law: Important Terms Term Symbol Units Definition 1. current I amps flow of electric charges through a conductor 2. voltage V
More informationElectric current is a flow of electrons in a conductor. The SI unit of electric current is ampere.
C h a p t e r at G l a n c e 4. Electric Current : Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere. Current = Charge time i.e, I = Q t The SI unit of charge
More informationSection 1: Electric Charge and Force
Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines
More informationDownloaded from
CHAPTER 12 ELECTRICITY Electricity is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such
More informationQ2 How many coulombs of charge leave the power supply during each second?
Part I  Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationphysics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION
Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles
More informationElectrodynamics. Review 8
Unit 8 eview: Electrodynamics eview 8 Electrodynamics 1. A 9.0 V battery is connected to a lightbulb which has a current of 0.5 A flowing through it. a. How much power is delivered to the b. How much energy
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More informationExercise 2: The DC Ohmmeter
Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring
More informationWhich of these particles has an electrical charge?
Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All
More informationCHAPTER 20 ELECTRIC CIRCUITS
CHAPTER 20 ELECTRIC CIRCUITS PROBLEMS. SSM REASONING Since current is defined as charge per unit time, the current used by the portable compact disc player is equal to the charge provided by the battery
More informationELECTRICITY UNIT REVIEW
ELECTRICITY UNIT REVIEW S1304: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges
More informationElectricity CHAPTER ELECTRIC CURRENT AND CIRCUIT
CHAPTER 12 Electricity Electricity has an important place in modern society. It is a controllable and convenient form of energy for a variety of uses in homes, schools, hospitals, industries and so on.
More information1. Which of the following appliances makes use of the heating effect of electricity?
Name: ( ) Class: Date: ASSIGNMENT Chapter 15: Practical Electricity 25 MultipleChoice Questions (10 marks) 1. Which of the following appliances makes use of the heating effect of electricity? A Electric
More informationName: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.
Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in
More informationOhms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)
Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium
More informationClass 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRLL to view as a slide show. Class 8. Physics 106.
and Circuits and Winter 2018 Press CTRLL to view as a slide show. Last time we learned about Capacitance Problems ParallelPlate Capacitors Capacitors in Circuits Current Ohm s Law and Today we will learn
More informationElectricity Test Review
Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil
More informationRECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel
Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity
More informationGreek Letter Omega Ω = Ohm (Volts per Ampere)
) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What
More informationUse these circuit diagrams to answer question 1. A B C
II Circuit Basics Use these circuit diagrams to answer question 1. B C 1a. One of the four voltmeters will read 0. Put a checkmark beside it. b. One of the ammeters is improperly connected. Put a checkmark
More informationmeas (1) calc calc I meas 100% (2) Diff I meas
Lab Experiment No. Ohm s Law I. Introduction In this lab exercise, you will learn how to connect the to network elements, how to generate a VI plot, the verification of Ohm s law, and the calculation of
More information15  THERMAL AND CHEMICAL EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions )
5  THERMAL AND CHEMICAL EFFECTS OF CURRENTS Page A heater coil is cut into two equal parts and only one part is now used in the heater. The heat generated will now be four times doubled halved ( d onefourth
More informationELEC 103. Objectives
ELEC 103 Voltage, Current, and Resistance Objectives Define voltage and discuss its characteristics Define current and discuss its characteristics Define resistance and discuss its characteristics Identify
More informationScience Olympiad Circuit Lab
Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household
More informationI ve got the. power! Power and Percent Efficiency. Wednesday April 16, Wednesday, April 16, 14
I ve got the power! Power and Percent Efficiency Wednesday April 16, 2014. Power? WATT s that? Power is defined as energy per unit of time Electrical power describes the amount of electrical energy that
More informationPhysics Module Form 5 Chapter 2 Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT
2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage
More informationQuestion Bank. Electric Energy, Power and Household Circuits
Electric Energy, Power and Household Circuits 1. (a) What do you understand by the term electric work? (b) State the SI unit of electric work and define it. (c) Name two bigger units of electric work.
More informationRESISTANCE AND NETWORKS
PURPOSE The purpose of this laboratory is to learn to construct simple circuits; and, to become familiar with the use of power supplies and the digital multimeter. to experimentally find the equivalent
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More informationPhysics 102: Lecture 05 Circuits and Ohm s Law
Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy
More informationand the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.
Name: Physics Chapter 17 Study Guide  Useful Information: e = 1.6"10 #19 C k = 9 "10 9 Nm 2 C 2 $ 0
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (active elements) and energytakers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The
More informationProperties of Electric Charge
1 Goals 2 Properties of Electric Charge 2 Atomic Structure: Composed of three main particles: 1. Proton 2. Neutron 3. Electron Things to Remember: 3 Everything is made of atoms. Electrons can move from
More informationDC Circuits. Circuits and Capacitance Worksheet. 10 Ω resistance. second? on the sodium is the same as on an electron, but positive.
Circuits and Capacitance Worksheet DC Circuits 1. A current of 1.30 A flows in a wire. How many electrons are flowing past any point in the wire per second? 2. What is the current in amperes if 1200 Na
More informationConceptual Physical Science 6 th Edition
Conceptual Physical Science 6 th Edition Chapter 8: STATIC AND CURRENT ELECTRICITY 1 Chapter 8: STATIC AND CURRENT ELECTRICITY Chapter 8: Read: All Homework: Four problems from the following set: 4, 6,
More information!E = (60.0 W)( s) = 6.48 " 10 5 Wi s!e = 6.48 " 10 5 J (one extra digit carried)
Chapter Review, pages 40 4 Knowledge. (b). (b) 3. (c) 4. (d). (b) 6. (c) 7. (a) 8. (d) 9. (c) 0. True. False. Carbon capture and storage is a technology that captures carbon dioxide leaving the smokestack,
More informationProtons = Charge Electrons = Charge Neutrons = Charge. When Protons = Electrons, atoms are said to be ELECTRICALLY NEUTRAL (no net charge)
QUICK WRITE: For 2 minutes, write the three parts of an atom and what their charges are. Explain what creates an electric charge (positive or negative) on something. Rules  You MUST write for the entire
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationElectromagnetism Checklist
Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge
More informationElectric Circuits. June 12, 2013
Electric Circuits June 12, 2013 Definitions Coulomb is the SI unit for an electric charge. The symbol is "C". Electric Current ( I ) is the flow of electrons per unit time. It is measured in coulombs per
More informationPhysics Module Form 5 Chapter 2 Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT
2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that... and... at high voltage on its dome. dome 2. You
More informationChapter 18 Electric Currents
Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple
More informationElectricity Review completed.notebook. June 13, 2013
Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a
More informationEE301 RESISTANCE AND OHM S LAW
Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short
More informationECE 2100 Circuit Analysis
ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D. http://homepages.wmich.edu/~dlitynsk/ esistance ESISTANCE = Physical property
More informationUS ARMY INTELLIGENCE CENTER CIRCUITS
SUBCOURSE IT 0334 EDITION C US ARMY INTELLIGENCE CENTER CIRCUITS CIRCUITS Subcourse Number IT0334 EDITION C US ARMY INTELLIGENCE CENTER FORT HUACHUCA, AZ 856136000 4 Credit Hours Edition Date: December
More informationElectricity Worksheet (p.1) All questions should be answered on your own paper.
Electricity Worksheet (p.1) 1. In terms of attraction and repulsion, how do negative particles affect negative particles? How do negatives affect positives? 2. What happens to electrons in any charging
More informationCharge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter
Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.
More informationLecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II
Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee ١ The glow of the thin wire filament of a light bulb is caused by the electric current passing through it. Electric energy is transformed
More information1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.
1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the
More informationBasic Electricity. Unit 2 Basic Instrumentation
Basic Electricity Unit 2 Basic Instrumentation Outlines Terms related to basic electricitydefinitions of EMF, Current, Potential Difference, Power, Energy and Efficiency Definition: Resistance, resistivity
More information