Gauge Theories for Baryon Number.

Size: px
Start display at page:

Download "Gauge Theories for Baryon Number."

Transcription

1 Gauge Theories for Baryon Number. Michael Duerr International Workshop on Baryon and Lepton Number Violation 2017 (BLV 2017) Case Western Reserve University, 18 May 2017

2 Thanks to my collaborators. This talk is based on arxiv: [hep-ph], arxiv: [hep-ph], arxiv: [hep-ph], arxiv: [hep-ph], arxiv: [hep-ph], arxiv: [hep-ph], arxiv: [hep-ph] together with Pavel Fileviez Pérez (CWRU), Manfred Lindner (MPIK), Juri Smirnov (INFN and University Firenze), Mark B. Wise (Caltech) Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 2

3 The Standard Model of particle physics. > Standard Model gauge group: G SM = SU(3) C SU(2) L U(1) Y Field SU(3) C SU(2) L U(1) Y U(1) B U(1) L Q L 3 2 1/6 1/3 0 R 3 1 2/3 1/3 0 d R 3 1 1/3 1/3 0 l L 1 2 1/2 0 1 e R H 1 2 1/ Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 3

4 Baryon number. > Standard Model: > accidental global symmetry of the renormalizable couplings (broken by non-perturbative quantum effects) > stable p and no n n oscillations in the renormalizable SM > Generic GUT: > proton decay due to new gauge interactions > if quarks and leptons in the same multiplet one cannot define baryon number > What do we know about violation of B? [Figure: Viren, arxiv:hep-ex/ ] > Baryon asymmetry of the Universe: γ (n B n B )/n γ > Proton decay (ΔB = 1, ΔL = odd): γ π 0 P + e τ p years Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 4

5 Side remark: lepton number. > Lepton number L conserved at the renormalizable level in the Standard Model as well > What do we know about violation of L? > ν oscillation experiments: ΔL e = 0, ΔL μ = 0, ΔL τ = 0 > ΔL = 2: Majorana neutrino masses (test with 0νββ) [Figure: Mohapatra et al., arxiv:hep-ph/ ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 5

6 The desert of particle physics. c6 Λ2B QQQL [Weinberg, PRL 43 (1979) 1566] High scale e.g. GUT scale (Λ 1015 GeV) Low scale Electroweak scale (ΛEW 102 GeV) [Figure: Wikipedia] Energy Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 6

7 The desert of particle physics. c6 Λ2B QQQL [Weinberg, PRL 43 (1979) 1566] High scale e.g. GUT scale (Λ 1015 GeV) Low scale Electroweak scale (ΛEW 102 GeV) [Figure: Wikipedia] Energy Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 6

8 The desert of particle physics. c5 ΛL LLHH c6 Λ2B QQQL [Weinberg, PRL 43 (1979) 1566] High scale e.g. GUT scale (Λ 1015 GeV) Low scale Electroweak scale (ΛEW 102 GeV) [Figure: Wikipedia] Energy Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 6

9 The desert of particle physics. c5 ΛL LLHH c6 Λ2B QQQL [Weinberg, PRL 43 (1979) 1566] High scale e.g. GUT scale (Λ 1015 GeV) Low scale Electroweak scale (ΛEW 102 GeV) [Figure: Wikipedia] Energy Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 6

10 The desert of particle physics. c5 ΛL LLHH c6 Λ2B QQQL [Weinberg, PRL 43 (1979) 1566] High scale e.g. GUT scale (Λ 1015 GeV) Low scale Electroweak scale (ΛEW 102 GeV) [Figure: Wikipedia] Energy Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 6

11 The Standard Model of particle physics. > Standard Model gauge group: G SM = SU(3) C SU(2) L U(1) Y Field SU(3) C SU(2) L U(1) Y U(1) B U(1) L Q L 3 2 1/6 1/3 0 R 3 1 2/3 1/3 0 d R 3 1 1/3 1/3 0 l L 1 2 1/2 0 1 e R H 1 2 1/ Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 7

12 The Standard Model of particle physics. > Extension of the SM gauge group: SU(3) C SU(2) L U(1) Y U(1) B U(1) L Field SU(3) C SU(2) L U(1) Y U(1) B U(1) L Q L 3 2 1/6 1/3 0 R 3 1 2/3 1/3 0 d R 3 1 1/3 1/3 0 l L 1 2 1/2 0 1 e R H 1 2 1/ Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 7

13 The Standard Model of particle physics. > Extension of the SM gauge group: SU(3) C SU(2) L U(1) Y U(1) B U(1) L Field SU(3) C SU(2) L U(1) Y U(1) B U(1) L Gauge theories for B (and L) Q L 3 2 1/6 1/3 0 How to define a realistic theory R 3 1 2/3 1/3 0 where B (and L) are local gauge d R 3 1 1/3 1/3 0 symmetries that can be broken at l L 1 the low 2 (TeV) 1/2 scale? 0 1 e R H 1 2 1/ Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 7

14 Some history. Phys. Rev. 98, 1501 (1955) > heavy particle (= neutrons and protons) gauge transformation: ψ N e α ψ N, ψ P e α ψ P > massless vector boson: gauge coupling must be tiny (α B ) Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 8

15 Some history. Phys. Rev. D 8, 1844 (1973) > Use the Higgs mechanism to break B! Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 9

16 Some history. > Early discussions of gauging B (and L): anomaly cancellation, introduction of new fermions, properties of the gauge boson... > S. Rajpoot, Int. J. Theor. Phys. 27, 689 (1988) > R. Foot, G. C. Joshi, H. Lew, PRD 40, 2487 (1989) > C. D. Carone, H. Murayama, PRD 52, 484 (1995) > H. Georgi, S. L. Glashow, PLB 387, 341 (1996) > First realistic model (sequential/mirror family with B = ±1) > P. Fileviez Pérez, M. B. Wise, PRD 82, (2010) Ruled out: new chiral quarks get mass from SM Higgs change gluon fusion Higgs production + Landau poles > This talk will focus on the following models: > P. Fileviez Pérez, M. B. Wise, JHEP 08 (2011) 068 > MD, P. Fileviez Pérez, M. B. Wise, PRL 110 (2013) > P. Fileviez Pérez, S. Ohmer, H. H. Patel, Phys. Rev. D 90 (2014) Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 10

17 Features of these models. > Framework for the spontaneous breaking of local baryon number at the low scale in agreement with experiments. > Proton is stable (or long-lived) think about the possibility of low-scale unification. > Vector-like fermions F with baryon number to cancel anomalies (with or without color). > Cold dark matter candidate χ: lightest neutral field in the new sector. > Leptophobic gauge boson coupling to SM quarks and new fermions: Z B qq, χχ, FF > New Higgs Boson h B qq, Z B Z B, FF > Connection between the DM and baryon asymmetries. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 11

18 Outline. > Local baryon number > Baryonic dark matter > Baryon asymmetry > Collider signatures > Towards low-scale unification > Summary Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 12

19 Anomaly cancellation. > New gauge group: Field SU(3) SU(2) U(1)Y U(1)B U(1)L SU(3) SU(2) U(1) Y U(1) B > Baryonic anomalies: A 1 SU(3) 2 U(1) B, A 2 SU(2) 2 U(1) B, A 3 U(1) 2 Y U(1) B, A 4 U(1) Y U(1) 2 B, A 5 (U(1) B ), A 6 U(1) 3 B. 1 3 QL R dr νr er H U(1) B Standard Model SU(2) L SU(2) L A 2 = A 3 = 3 2 > New fermions needed to cancel non-trivial anomalies > A 1 = 0 simplest solution: colorless fields Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 13

20 How many new fermion multiplets?. > Two fermion multiplets Ψ L (1, N, Y 1, B 1 ) and Ψ R (1, M, Y 2, B 2 ) > A 5 (U(1) B ) = 0 requires B 1 = MB 2 /N > Then A 6 U(1) 3 = 0 requires M = N and B B 1 = B 2 > A 2 SU(2) 2 U(1) B cannot be canceled > No solution with two new fermion multiplets [Fileviez Pérez, Ohmer, Patel, arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 14

21 How many new fermion multiplets?. > Three fermion multiplets L (1, N, Y, B 1 ), R (1, N, Y, B 2 ), and χ L (1, M, 0, B 3 ) > Anomaly cancellation requires M = 2N, Y 2 = N 2 /4, B 1 = B 2 = B 3 = 3/N 3 > χ L : fermions with fractional electric charge that cannot decay to SM particles > more general assignments lead to same conclusion > consistent with anomaly cancellation but in conflict with cosmology [Fileviez Pérez, Ohmer, Patel, arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 14

22 How many new fermion multiplets?. > Three fermion multiplets L (1, N, Y, B 1 ), R (1, N, Y, B 2 ), and χ L (1, M, 0, B 3 ) > Anomaly cancellation requires M = 2N, Y 2 = N 2 /4, B 1 = B 2 = B 3 = 3/N 3 > χ L : fermions with fractional electric charge that cannot decay to SM particles > more general assignments lead to same conclusion > consistent with anomaly cancellation but in conflict with cosmology [Fileviez Pérez, Ohmer, Patel, arxiv: ] Anomaly cancellation = phenomenologically viable model Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 14

23 Solution with four fermion multiplets. Ψ L 1, 2, 1 2, 3, Ψ R 1, 2, 1 2 2, 3 2 L 1, 3, 0, 3, χ L 1, 1, 0, [Fileviez Pérez, Ohmer, Patel, arxiv: ] [Ohmer, Patel, arxiv: ] > No fractional charges in the particle spectrum > particle content allows for vector-like masses > Majorana dark matter candidate Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 15

24 A very general solution. All anomalies can be cancelled with the following setup: Field SU(3) SU(2) U(1) Y U(1) B Ψ L N 2 Y 1 B 1 Ψ R N 2 Y 1 B 2 η R N 1 Y 2 B 1 η L N 1 Y 2 B 2 χ R N 1 Y 3 B 1 χ L N 1 Y 3 B 2 Anomaly cancellation demands: B 1 B 2 = 3/(Nn F ), Y 2 = Y 1 1/2 and Y 3 = Y 1 ± 1/2 [Fileviez Pérez, Wise, arxiv: [hep-ph]] [MD, Fileviez Pérez, Wise, arxiv: [hep-ph]] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 16

25 Possible scenarios. Guidelines: > new fields should have direct coupling to SM fields, or > the lightest new particle is neutral and stable. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 17

26 Possible scenarios. Guidelines: > new fields should have direct coupling to SM fields, or > the lightest new particle is neutral and stable. > N = 1: Use Y 1 = ±1/2, Y 2 = ±1, Y 3 = 0 lightest new fermion can be neutral and a DM candidate Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 17

27 Possible scenarios. Guidelines: > new fields should have direct coupling to SM fields, or > the lightest new particle is neutral and stable. > N = 1: Use Y 1 = ±1/2, Y 2 = ±1, Y 3 = 0 lightest new fermion can be neutral and a DM candidate > N = 3: use at least one hypercharge as for the SM quarks > Scenario I: Y 1 = 1/6, Y 2 = 2/3, Y 3 = 1/3 > Scenario II: Y 1 = 5/6, Y 2 = 4/3, Y 3 = 1/3 > Scenario III: Y 1 = 7/6, Y 2 = 5/3, Y 3 = 2/3 n F = 3: dimension-9 operator for proton decay suppressed, even if cutoff of the theory not very large Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 17

28 Possible scenarios. Guidelines: > new fields should have direct coupling to SM fields, or > the lightest new particle is neutral and stable. > N = 1: Use Y 1 = ±1/2, Y 2 = ±1, Y 3 = 0 lightest new fermion can be neutral and a DM candidate > N = 3: use at least one hypercharge as for the SM quarks > Scenario I: Y 1 = 1/6, Y 2 = 2/3, Y 3 = 1/3 > Scenario II: Y 1 = 5/6, Y 2 = 4/3, Y 3 = 1/3 > Scenario III: Y 1 = 7/6, Y 2 = 5/3, Y 3 = 2/3 n F = 3: dimension-9 operator for proton decay suppressed, even if cutoff of the theory not very large > N = 8: interesting but non-minimal Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 17

29 Simplest scenario. Consider only uncolored fields: Field SU(3) SU(2) U(1) Y U(1) B Ψ L 1 2 ± 1 2 B 1 Ψ R 1 2 ± 1 2 B 2 η R 1 1 ±1 B 1 η L 1 1 ±1 B 2 χ R B 1 χ L B 2 Anomaly cancellation demands: B 1 B 2 = 3 [MD, Fileviez Pérez, Wise, arxiv: ] [MD, Fileviez Pérez, arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 18

30 What about lepton number. > New gauge group: SU(3) SU(2) U(1) Y U(1) B U(1) L > Purely baryonic anomalies: A 1 SU(3) 2 U(1) B, A 2 SU(2) 2 U(1) B, A 3 U(1) 2 Y U(1) B, A 4 U(1) Y U(1) 2 B, A 5 (U(1) B ), A 6 U(1) 3 B > Purely leptonic anomalies: A 7 SU(3) 2 U(1) L, A 8 SU(2) 2 U(1) L, A 9 U(1) 2 Y U(1) L, A 10 U(1) Y U(1) 2 L > Mixed anomalies:., A 11 (U(1) L ), A 12 U(1) 3 L. A 13 U(1) 2 B U(1) L, A 14 U(1) 2 L U(1) B, A 15 (U(1) Y U(1) L U(1) B ). Field SU(3) SU(2) U(1)Y U(1)B U(1)L QL 3 2 R 3 1 dr ll νr er H 1 2 SM + righthanded ν s A 2 = A 3 = 3 2, A 8 = A 9 = 3 2 Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 19

31 Simplest scenario: lepto-baryons. Assign lepton number to the same fields that cancel the baryonic anomalies Field SU(3) SU(2) U(1) Y U(1) B U(1) L Ψ L 1 2 ± 1 2 B 1 L 1 Ψ R 1 2 ± 1 2 B 2 L 2 η R 1 1 ±1 B 1 L 1 η L 1 1 ±1 B 2 L 2 χ R B 1 L 1 χ L B 2 L 2 Anomaly cancellation demands: B 1 B 2 = 3, L 1 L 2 = 3 [MD, Fileviez Pérez, Wise, arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 20

32 Simplest scenario: lepto-baryons. Assign lepton number to the same fields that cancel the baryonic anomalies Field SU(3) SU(2) U(1) Y U(1) B U(1) L Ψ L 1 2 ± 1 2 B 1 L 1 Ψ R 1 2 ± 1 2 B 2 L 2 η R 1 1 ±1 B 1 L 1 η L 1 1 ±1 B 2 L 2 χ R B 1 L 1 χ L B 2 L 2 Anomaly cancellation demands: B 1 B 2 = 3, L 1 L 2 = 3 [MD, Fileviez Pérez, Wise, arxiv: ] [MD, Fileviez Pérez, arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 20

33 Spontaneous symmetry breaking. > Relevant interactions of the new fields (for B 1 = B 2 ): L h 1 Ψ L Hη R + h 2 Ψ L Hχ R + h 3 Ψ R Hη L + h 4 Ψ R Hχ L + λ 1 Ψ L Ψ R S B + λ 2 η R η L S B + λ 3 χ R χ L S B + h.c. New Higgs: S B (1, 1, 0, B 1 B 2 ) > S B = 0 generates vector-like masses: L M Ψ Ψ L Ψ R + M η η R η L + M χ χ R χ L + h.c. S B (1, 1, 0, 3) ΔB = 3 no proton decay no desert > Remnant Z 2 stabilizes lightest new fermion. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 21

34 Baryonic dark matter. > Dirac DM, SM singlet-like: χ = χ R + χ L > Coupling to the new gauge boson: thermal freeze-out (early Univ.) indirect detection (now) DM SM L g B χγ μ Z μ B (B 2P L + B 1 P R )χ DM annihilation and direct detection direct detection > Model has only six free parameters: M χ, M ZB, g B, B B 1 + B 2 and M h2, θ B DM production at colliders SM χ q χ χ Z B Z B χ q N N [MD, Fileviez Pérez, arxiv: , arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 22

35 Dark matter relic density B = χ q ΩDMh χ Z B q Planck M ZB = 1.5 TeV, g B = 0.5 M ZB = 1.0 TeV, g B = M χ [GeV] > Planck: Ω DM h 2 = ± Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 23

36 Dark matter relic density B = χ q ΩDMh χ Z B q Planck M ZB = 1.5 TeV, g B = 0.5 M ZB = 1.0 TeV, g B = M χ [GeV] > Planck: Ω DM h 2 = ± Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 23

37 Dark matter direct detection. Ω DM h 2 = ± χ χ ZB N N σ SI χn [cm2 ] LUX > Planck: Ω DM h 2 = ± XENON1T B = 1/2 B = M χ [GeV] M ZB [0.5, 5.0] TeV g B [0.1, 0.5] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 24

38 Scalar dark matter. > Scalar DM can arise in these models as well. > If vector-like colored fermions (Q,, d ) cancel the anomalies, they should decay. > Introduce new scalar field X with baryon number B X = 1/3 B Q R : L λ 1 XQ L Q R + λ 2X R L + λ 3Xd R d L + h.c. > Possible annihilation channels: XX Z B qq or XX H SM SM > viable DM candidate in part of the parameter space Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 25

39 Baryon asymmetry and dark matter. > Symmetries of the model: > (B L) SM > Accidental η symmetry in the new sector: Ψ L,R e η Ψ L,R, η L,R e η η L,R, χ L,R e η χ L,R. > Relevant interactions: DM stability L h 1 Ψ L Hη R + h 2 Ψ L Hχ R + h 3 Ψ R Hη L + h 4 Ψ R Hχ L + λ 1 Ψ L Ψ R S B + λ 2 η R η L S B + λ 3 χ R χ L S B + h.c. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 26

40 Baryon and dark matter asymmetries. > For μ T: Δn s = n + n = 15g μ s 2π 2 g ξ T, > B L asymmetry in the SM sector g: internal degrees of freedom, s: entropy density, g : total number of relativistic degrees of freedom, 2 for fermions, ξ = 1 for bosons. 45 Δ(B L) SM = 4π 2 g T (μ L + μ R + μ dl + μ dr μ νl μ el μ er ), > η charge density 15 Δη = 4π 2 2μΨL + 2μ ΨR + μ χl + μ χr + μ ηl + μ ηr. g T > Baryon asymmetry B SM ƒ = n q n q s 15 = 4π 2 g T 3 μ L + μ R + μ dl + μ dr. P. Fileviez Pérez, H. H. Patel, arxiv: [hep-ph] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 27

41 Baryon and dark matter asymmetries. B SM ƒ Initial Asymmetry = Δ(B L) SM + (15 14B 2) Δη, 198 Baryon Asymmetry Sphalerons (QQQL) 3 ψr ψ L Asymmetric Dark Matter Consistent picture for baryogenesis! 3(3μ L + μ el ) + μ ΨL μ ΨR = 0. P. Fileviez Pérez, H. H. Patel, arxiv: [hep-ph] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 28

42 Dijet searches. > Since the leptophobic gauge boson ZB is produced from quarks, it can decay back to quarks dijet searches q q ZB q q mq = 1 TeV, B1 = 1, B2 = 4/3 BR(ZB ) jj t t P 1000 ATLAS highest-mass dijet event (Event , Run ) Q Q MZB [GeV] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 29

43 Limits on mass vs. gauge coupling. 2 LHC dijet searches 1 gb [MD, Fileviez Pérez, Smirnov, arxiv: ] 0.2 Combination from CMS 27 fb 1 & 36 fb 1 (13 TeV) ATLAS 37.0 fb 1 (13 TeV) ATLAS 3.4 fb 1 (13 TeV); Trigger-object Level Analysis M ZB [GeV] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 30

44 Low-mass region. > New CMS search with ISR jet (CMS-PAS-EXO ) [See talk by A. de Roeck] q coupling, g CMS Preliminary 35.9 fb (13 TeV) Observed Expected ± 1 std. deviation ± 2 std. deviation UA2 CDF Run 1 CDF Run ATLAS13, 15.5 fb, ISR γ -1 ATLAS13, 15.5 fb, ISR jet -1 CMS8, 18.8 fb, Scouting Z Width (indirect) Z' mass (GeV) L g q Z μ qγ μq g B = 3g q Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 31

45 Baryonic Higgs at the LHC. P. Fileviez Pérez, M. B. Wise, arxiv: [hep-ph] MD, P. Fileviez Pérez, J. Smirnov, arxiv: [hep-ph] Cancel the anomalies with vector-like quarks. > Use three copies (analogy to the SM families) B 1 B 2 = 1/3 Scenario III 1 > Scenario I: Y 1 = 1/6, Y 2 = 2/3, Y 3 = 1/3 > Scenario II: Y 1 = 5/6, Y 2 = 4/3, Y 3 = 1/3 > Scenario III: Y 1 = 7/6, Y 2 = 5/3, Y 3 = 2/3 BR(hB) for MhB = 1 TeV hb gg hb W W hb ZZ hb γγ hb Zγ hb t t hb h1h θb BR into photons large compared to SM Higgs, colored new fermions in the loop. [See parallel talk by J. Smirnov] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 32

46 Baryonic Higgs at the LHC. P. Fileviez Pérez, M. B. Wise, arxiv: [hep-ph] MD, P. Fileviez Pérez, J. Smirnov, arxiv: [hep-ph] Cancel the anomalies with vector-like quarks. > Use three copies (analogy to the SM families) B 1 B 2 = 1/3 Scenario III 1 > Scenario I: Y 1 = 1/6, Y 2 = 2/3, Y 3 = 1/3 > Scenario II: Y 1 = 5/6, Y 2 = 4/3, Y 3 = 1/3 > Scenario III: Y 1 = 7/6, Y 2 = 5/3, Y 3 = 2/3 BR(hB) hb gg hb W W hb ZZ hb γγ hb Zγ hb Q Q hb ZBZB [GeV] MhB BR into photons large compared to SM Higgs, colored new fermions in the loop. [See parallel talk by J. Smirnov] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 32

47 Baryonic Higgs at the LHC. MD, P. Fileviez Pérez, J. Smirnov, arxiv: [hep-ph] Di-photon channel can severely constrain the baryonic scale. σ(pp hb) BR(hB γγ) [fb] LHC γγ searches CMS 16.2 fb 1 (13 TeV) fb 1 (8 TeV) ATLAS 15.4 fb 1 (13 TeV) Scenario I: θb = 0 Scenario I: θb = 0.3 Scenario II: θb = 0 Scenario II: θb = 0.3 Scenario III: θb = 0 Scenario III: θb = 0.3 vb [GeV] Lower bound on vb from LHC γγ searches Scenario I: θb = 0, ATLAS Scenario I: θb = 0, CMS Scenario II: θb = 0, ATLAS Scenario II: θb = 0, CMS Scenario III: θb = 0, ATLAS Scenario III: θb = 0, CMS > MhB vb [GeV] MhB [GeV] MhB Dominant production via gluon fusion with colored new fermions in the loop. [See parallel talk by J. Smirnov] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 33

48 Left right symmetric model. G LR = SU(2) L SU(2) R U(1) B L SM fields > Connects neutrino masses and spontaneous parity violation. > Standard version uses hybrid version of type I and type II seesaw mechanism for neutrino masses. Q L (2, 1, 1/3) Q R (1, 2, 1/3) l L (2, 1, 1) l R (1, 2, 1) Pati, Salam, PRD 10 (1974) 275, Mohapatra, Pati, PRD 11 (1975) 2558, Senjanovic, Mohapatra, PRD 12 (1975) 1502 > Promote gauge group to SU(2) L SU(2) R U(1) B U(1) L He, Rajpoot, PRD 41 (1990) 1636 Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 34

49 Anomaly cancellation: type III seesaw. > Anomalies that need to be cancelled: A 1 SU(2) 2 L U(1) B = 3/2 A 2 SU(2) 2 L U(1) L = 3/2 A 3 SU(2) 2 R U(1) B = 3/2 A 4 SU(2) 2 R U(1) L = 3/2 H L S BL H L > Simplest solution: type III seesaw fields ρ L (3, 1, 3/4, 3/4), ρ R (1, 3, 3/4, 3/4) > Neutrino mass matrix: M 3+2 ν m 1 m 2 D D 0 m 1 0 m 3 m 4 D D = 0 0 m 2 m 5 m 6. D D m 1 m 3 m D D D m 2 m 4 m D D D ν L ν L ρ 0 L ρ 0 L > Two light sterile neutrinos. MD, P. Fileviez Pérez, M. Lindner, arxiv: [hep-ph] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 35

50 Towards low-scale unification. > Step 1: Unification of gauge interactions at the low scale P. Fileviez Pérez, S. Ohmer, arxiv: > Fields in minimal theory for B and L allow for unification at the low scale (proton is stable!) > Step 2: Find UV completion and embed baryon number into a non-abelian gauge symmetry P. Fileviez Pérez, S. Ohmer, arxiv: > If quarks and leptons live in the same multiplets, B and L cannot be defined > With extra matter one can have multiplets with definite baryon number, one of the generators can be identified with baryon number > Color and baryon number can be unified in SU(4) C similar to Pati, Salam, Phys. Rev. D 10 (1974) 275 Fileviez Pérez, Wise, arxiv: Fornal, Rajaraman, Tait, arxiv: [See parallel talk by S. Ohmer for details.] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 36

51 Gauge coupling unification. > Running of gauge couplings 1-loop): k α 1 (M) = α 1 (M Z ) B 2π log(m/m Z) B = b SM + Θ(M M F )n F b new log(m/m F ) log(m/m Z ) > k : normalization > M F : mass scale of the new fermions (here: 500 GeV) > n F : number of new fermion copies P. Fileviez Pérez, S. Ohmer, arxiv: [hep-ph] Αi Α SM 1 1 Α SM 2 1 Α SM 3 1 Α 2 1 Α 1 1 Α Log 10 MGeV > Model with SU(2) triplet: n F unification scale [TeV] k Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 37

52 Gauge coupling unification. > Running of gauge couplings 1-loop): k α 1 (M) = α 1 (M Z ) B 2π log(m/m Z) B = b SM + Θ(M M F )n F b new log(m/m F ) log(m/m Z ) > k : normalization > M F : mass scale of the new fermions (here: 500 GeV) > n F : number of new fermion copies P. Fileviez Pérez, S. Ohmer, arxiv: [hep-ph] Αi Α Α 2 1 Α 3 1 Α 1 SM 1 Α 2 SM 1 Α 3 SM Log 10 MGeV Αi Α L 1 Α 1 1 Α 3 1 ΑB 1 Α Log 10 MGeV Unification of gauge interactions possible with small α B (and α L ) at the low scale. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 37

53 Baryon number as the fourth color. > Embed SM U(1) B into SU(4) C SU(3) L SU(3) R P. Fileviez Pérez, S. Ohmer, arxiv: > SM fermions d r r D r d Q = b b D b d g g D (4, 3, 1) g Ψ d Ψ Ψ D d c r d c b d c η c Q c ḡ d = c b c η ḡ ( 4, 1, 3) D c r D c b D c η c ḡ D N 1 E + ν L = E N 2 e (1, 3, 3) ν c e + N 3 > extra fermions (anomalies) Ψ c (1, 3, 1) and η (1, 1, 3) > Possible embedding into SU(4) C SU(4) L SU(4) R (plus Z 3 symmetry) [See parallel talk by S. Ohmer for details.] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 38

54 Summary. > I presented simple theories for the spontaneous breaking of baryon number (and lepton number). > Features include: > No proton decay even though B can be broken at the low scale. > DM stability as an automatic consequence of the gauge symmetry. > Leptophobic Z B that can be searched for at colliders. > Unification could be realized at the low scale since the desert is not needed. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 39

55 Backup slides. Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 1

56 Baryonic dark matter. Condition from anomaly cancellation: B 1 B 2 = 3 two options: B 1 = B 2 B 1 = B 2 = 3/2: > Dirac DM, SM singlet-like: χ = χ R + χ L > Coupling to the Z B : L g B χγ μ Z μ B (B 2P L + B 1 P R )χ > six free parameters (plus extra fermion masses): > Majorana DM with axial coupling to the Z B : L 3 2 g B χγ μ γ 5 χz μ B > five free parameters (plus extra fermion masses): M χ, M ZB, g B, and M h2, θ B [MD, Fileviez Pérez, Smirnov, arxiv: ] M χ, M ZB, g B, B B 1 + B 2, M h2, θ B [MD, Fileviez Pérez, arxiv: , arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 2

57 What about the additional fermions?. > Majorana DM (B 1 = B 2 ): loop-mediated DM annihilation to photons ΩDMh 2 = ± , = MZB 1.2Mχ > Decays of S B : > For θ 0, the branching fractions of the fermion-loop-mediated decays of S B may provide clues about the fermion content of the model at the LHC > Model with SU(2) triplet: WW : ZZ : Zγ : γγ = 20 : 7 : 3 : H.E.S.S. σv χχ γγ [cm 3 s 1 ] FermiLAT Mη = Mχ, MΨ = 2Mχ Mη = 2Mχ, MΨ = 3Mχ Mχ [GeV] [MD, Fileviez Pérez, Smirnov, arxiv: ] > Vector-like model: [Ohmer, Patel, arxiv: ] WW : ZZ : Zγ : γγ = 2 : 1 : 10 3 : 1 Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 3

58 Even lower-mass region. gz m f 90GeV, N f 3 m f 90GeV Ψ M Z' GeV Zwidth m f 450GeV ' Z B model [Dobrescu, Frugiuele, arxiv: ] Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 4

59 Gauging B and L in SUSY setups. > Lepto-baryon fields: J. M. Arnold, P. Fileviez Pérez, B. Fornal, S. Spinner, arxiv: [hep-ph] > U(1) B and U(1) L breaking scale linked to SUSY breaking scale > R-parity must be spontaneously broken > Stable DM candidate > Vector-like family: P. Fileviez Pérez, M. B. Wise, arxiv: [hep-ph] > U(1) B and U(1) L breaking scale linked to SUSY breaking scale > Low B breaking renders the lightest neutralino unstable no DM candidate Michael Duerr Gauge Theories for Baryon Number 18 May 2017 page 5

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

Baryonic LHC

Baryonic LHC Baryonic Higgs @ LHC Juri Smirnov Florence division INFN Many thanks to: Michael Dürr and Pavel Fileviez Perez arxiv:1704.03811 Why is the Proton stable? SM accidental symmetry What about BSM? Can stability

More information

arxiv: v2 [hep-ph] 4 Sep 2017

arxiv: v2 [hep-ph] 4 Sep 2017 DESY 7-050 Baryonic Higgs at the LHC Michael Duerr, Pavel Fileviez Pérez, 2 Juri Smirnov 3 DESY, Notkestraße 85, D-22607 Hamburg, Germany 2 Physics Department, Center for Education and Research in Cosmology

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

arxiv: v2 [hep-ph] 24 Jan 2019

arxiv: v2 [hep-ph] 24 Jan 2019 Leptophobic Dark Matter and the Baryon Number Violation Scale Pavel Fileviez Pérez 1, Elliot Golias 1, Rui-Hao Li 1, Clara Murgui 1 Physics Department and Center for Education and Research in Cosmology

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

On behalf of the ATLAS and CMS Collaborations

On behalf of the ATLAS and CMS Collaborations On behalf of the ATLAS and CMS Collaborations Reza Goldouzian Université libre de Bruxelles 1 Ø There are several models of physics beyond the standard model require new particles that couple to quarks

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

Baryon Number Violation in Leptoquark and Diquark Models

Baryon Number Violation in Leptoquark and Diquark Models Baryon Number Violation in Leptoquark and Diquark Models Bartosz Fornal University of California, San Diego Workshop on Neutron-Antineutron Oscillations University of Washington October 23, 2017 In collaboration

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Probing Light Nonthermal Dark Matter @ LHC Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Outline Minimal extension to SM for baryogenesis & dark matter Current constraints

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Probing Dark Matter at the LHC

Probing Dark Matter at the LHC July 15, 2016 PPC2016 1 Probing Dark Matter at the LHC SM SM DM DM Search for production of DM particles from interacting SM particles Models tested at ATLAS assume DM WIMP Infer DM production through

More information

Directions for BSM physics from Asymptotic Safety

Directions for BSM physics from Asymptotic Safety Bad Honnef- 21.6.2018 Directions for BSM physics from Asymptotic Safety phenomenology connecting theory to data Gudrun Hiller, TU Dortmund q f e DFG FOR 1873 et 1 Asymptotic Safety pheno for cosmology

More information

Partnerium at the LHC

Partnerium at the LHC Peking University Quarkonium 2017 10 Nov 2017 Partnerium at the LHC Yevgeny Kats JHEP 1004, 016 (2010) [arxiv:0912.0526] w/schwartz JHEP 1109, 099 (2011) [arxiv:1103.3503] w/kahawala JHEP 1211, 097 (2012)

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING UC @ Santa Barbara Feb. 2nd, 2011 A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING Tao Liu UC @ Santa Barbara Higgs Boson And Particle Physics The Standard Model (SM) is a successful theory of describing the

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

New Physics at the TeV Scale and Beyond Summary

New Physics at the TeV Scale and Beyond Summary New Physics at the TeV Scale and Beyond Summary Machine and Detector Issues 1. Correlated Beamstrahlung David Strom New Theoretical Ideas: 1. Signatures for Brane Kinetic Terms at the LC Tom Rizzo 2. Implementing

More information

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles Technicolor Dark Matter Chris Kouvaris Université Libre de Bruxelles Dynamical Symmetry breaking: The motivation for Technicolor Long time before QCD BCS showed that the Fermi surfaces are unstable to

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL THE 4TH KIAS WORKSHOP ON PARTICLE PHYSICS AND COSMOLOGY ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL ZHAOFENG KANG, KIAS, SEOUL, 10/31/2014 BASED ON AN UNBORN PAPER, WITH P. KO, Y. ORIKAS

More information

Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach

Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach Kai Wang Institute for the Physics and Mathematics of the Universe the University of Tokyo Madison, 09/21/2009 J. Shu,T.

More information

J. C. Vasquez CCTVal & USM

J. C. Vasquez CCTVal & USM Maorana Higgses at Colliders arxiv:1612.06840 J. C. Vasquez CCTVal & USM ( Work in collaboration with F. esti and M. emevsek) University of Massachusetts, October 2017 Outline The minimal LR model Decay

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory Exotic Exotic scalars scalars and and the the Higgs Higgs to to gamma gamma -- gamma gamma rate rate Stefania Gori The University of Chicago & Argonne National Laboratory Second MCTP Spring Symposium on

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

Debasish Borah. (Based on with A. Dasgupta)

Debasish Borah. (Based on with A. Dasgupta) & Observable LNV with Predominantly Dirac Nature of Active Neutrinos Debasish Borah IIT Guwahati (Based on 1609.04236 with A. Dasgupta) 1 / 44 Outline 1 2 3 4 2 / 44 Evidence of Dark Matter In 1932, Oort

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

A realistic model for DM interactions in the neutrino portal paradigm

A realistic model for DM interactions in the neutrino portal paradigm A realistic model for DM interactions in the neutrino portal paradigm José I Illana + Vannia González Macías, José Wudka (UC Riverside) 1 Model 2 Constraints 3 Conclusions JHEP 05 (2016) 171 [160105051]

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO() Grand Unified Models Natsumi Nagata Univ. of Minnesota/Kavli IPMU PANCK 2015 May 25-29, 2015 Ioannina, Greece Based on Y. Mambrini, N. Nagata,

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Lepton Flavor Violation in Left-Right theory

Lepton Flavor Violation in Left-Right theory Lepton Flavor Violation in Left-Right theory Clara Murgui IFIC, Universitat de Valencia-CSIC References This talk is based on: P. Fileviez Perez, C. Murgui and S. Ohmer, Phys. Rev. D 94 (2016) no.5, 051701

More information

Seaches fo log-lived paticles with displaced signatues at the LHC. Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations

Seaches fo log-lived paticles with displaced signatues at the LHC. Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations Seaches fo log-lived paticles with displaced signatues at the LHC Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations Outline A review of the most recent results from ATLAS &

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration ATLAS Run II Exotics Results V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration What is the dark matter? Is the Higgs boson solely responsible for electroweak symmetry breaking

More information

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs IAS Program on the Future of High Energy Physics Jan 21, 2015 based on arxiv:1311.5928, Hsin-Chia Cheng, Bogdan A. Dobrescu, JG JHEP 1408

More information

Probing SUSY Dark Matter at the LHC

Probing SUSY Dark Matter at the LHC Probing SUSY Dark Matter at the LHC Kechen Wang Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Preliminary Examination, Feb, 24 OUTLINE Supersymmetry dark matter (DM) Relic

More information

Asymmetric Sneutrino Dark Matter

Asymmetric Sneutrino Dark Matter Asymmetric Sneutrino Dark Matter Stephen West Oxford University Asymmetric Sneutrino Dark Matter and the Ω b /Ω dm Puzzle; hep-ph/0410114, PLB, Dan Hooper, John March- Russell, and SW from earlier work,

More information

Dark matter and collider signatures from extra dimensions

Dark matter and collider signatures from extra dimensions KAIST TF, A. Menon, Z. Sullivan, PRD 86 (2012) 093006 L. Edelhäuser, TF, M. Krämer, JHEP 1308 (2013) 091 TF, KC Kong, SC Park, JHEP 1305 (2013) 111, arxiv:1309.xxxx COSMO 2013, Cambridge Outline Universal

More information

Chern-Simons portal Dark Matter

Chern-Simons portal Dark Matter Chern-Simons portal Dark Matter III Saha Theory Workshop: Aspects of Early Universe Cosmology Mathias Pierre Laboratoire de Physique Théorique d Orsay In collaboration with G. Arcadi, G.Bhattacharyya,

More information

Low Scale Flavor Gauge Symmetries

Low Scale Flavor Gauge Symmetries Low Scale Flavor Gauge Symmetries Michele Redi CERN in collaboration with Benjamin Grinstein and Giovanni Villadoro arxiv:1009.2049[hep-ph] Padova, 20 October Outline Flavor Problem Gauging the Flavor

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

Mono-X, Associate Production, and Dijet searches at the LHC

Mono-X, Associate Production, and Dijet searches at the LHC Mono-X, Associate Production, and Dijet searches at the LHC Emily (Millie) McDonald, The University of Melbourne CAASTRO-CoEPP Joint Workshop Melbourne, Australia Jan. 30 - Feb. 1 2017 M. McDonald, University

More information

Low Energy Precision Tests of Supersymmetry

Low Energy Precision Tests of Supersymmetry Low Energy Precision Tests of Supersymmetry M.J. Ramsey-Musolf Caltech Wisconsin-Madison M.R-M & S. Su, hep-ph/0612057 J. Erler & M.R-M, PPNP 54, 351 (2005) Outline I. Motivation: Why New Symmetries? Why

More information

h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model

h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model Abdesslam Arhrib Université AbdelMalek Essaadi, Faculté des sciences et techniques, B.P 416 Tangier, Morocco In this talk we discuss

More information

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland) Exotic Dark Matter as Spin-off of Proton Stability Kaustubh Agashe (University of Maryland) Outline and Summary Warped extra dimensions address Planckweak and flavor hierarchies: new (KK) particles at

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

Collider Searches for Dark Matter

Collider Searches for Dark Matter Collider Searches for Dark Matter AMELIA BRENNAN COEPP-CAASTRO WORKSHOP 1 ST MARCH 2013 Introduction Enough introductions to dark matter (see yesterday) Even though we don t know if DM interacts with SM,

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information