Designing Information Devices and Systems I Spring 2018 Homework 7

Size: px
Start display at page:

Download "Designing Information Devices and Systems I Spring 2018 Homework 7"

Transcription

1 EECS 6A Designing Information Devices and Systems I Spring 08 Homework 7 This homework is due March, 08, at 3:59. Self-grades are due March 5, 08, at 3:59. Submission Format Your homework submission should consist of one file. hw7.pdf: A single PDF file that contains all of your answers (any handwritten answers should be scanned). Submit the file to the appropriate assignment on Gradescope.. (PRACTICE) Circuit Analysis Solve the circuit given below for currents and voltages. 0Ω A 0Ω 50Ω 3A Method : Nodal Analysis Applying KCL at Node, we get which gives implying Applying KCL at Node, we get V 0 V V = 0 V 0 0 V V = 0 0 V V V 0 = 0 3V V = 0 () V V V 0 3 = 0 EECS 6A, Spring 08, Homework 7, Last Updated: :30

2 which gives implying V V V = 0 5V 5V V 300 = 0 5V 7V = 300 () Writing equations and in matrix form, we get [ ][ V V ] [ ] 0 = 300 Solving the system of equations, we will get V = 0V and V = 50V. Method : Superposition We define i and i 3 as follows: 0Ω A 0Ω 50Ω 3A i i 3 First, consider the effect of only the left A current source on. Using current divider rule, we have i = A and Therefore, and i = 70 A = 0.875A 0 70 i 3 = A 0.875A = 0.5A V a = i 0Ω = 0.875A 0Ω = 8.75V V a = i 3 50Ω = 0.5A 50Ω = 6.5V Second, consider the effect of only the right 3A current source on. Using current divider rule, we have i = 3A i = 50 3A =.875A EECS 6A, Spring 08, Homework 7, Last Updated: :30

3 and Therefore, and i 3 = 3A.875A =.5A V b = i 0Ω =.875A 0Ω = 8.75V V b = i 3 50Ω =.5A 50Ω = 56.5V Since the circuit is linear (i.e. we have linear elements and sources), we can use the principle of superposition to get V = V a V b and V = V a V b. Therefore, we get V = 8.75V 8.75V and V = 6.5V 56.5V. Finally, V = 0V and V = 50V. This solution agrees with the solution we obtained using nodal analysis.. (PRACTICE) Superposition Solve the circuits shown below using superposition. 3Ω i.5ω 5V A 3Ω.5Ω i = 3 A Consider the circuits obtained by: (a) Turning off the A current source: 3Ω i.5ω 5V 3Ω.5Ω EECS 6A, Spring 08, Homework 7, Last Updated: :30 3

4 In the above circuit, no current is going to flow through the middle branch, as it is an open circuit. Thus this is just a 5V voltage source connected to two 3Ω resistors in series so (b) Turning off the 5V voltage source: i = 5 6 A 3Ω i O.5Ω A.5Ω 3Ω i In the above circuit, notice that the 3Ω resistors are in parallel and therefore form a current divider. Since the values of the resistances are equal, the current flowing through them will also be equal, that is i = i. Applying KCL to node O, we get which gives us i i = 0 i = A Now, applying the principle of superposition, we have i = i i = 5 6 A A = 3 A. 3. Fruity Fred Fruity Fred just got back from Berkeley Bowl with a bunch of mangoes, pineapples, and coconuts. He wants to sort his mangoes in order of weight, so he decides to use his knowledge from EE6A to build a scale. He finds two identical bars of material (M and M ) of length L (meters) and cross-sectional area A c (meters ), which are made of a material with resistivity ρ. He knows that the length of these bars decreases by k meters per Newton of force applied, while the cross-sectional area remains constant. He builds his scale as shown below, where the top of the bars are connected with an ideal electrical wire. The left side of the diagram shows the scale at rest (with no object placed on it), and the right side shows it when the applied force is F (Newtons), causing the length to decrease by kf meters. Fred s mangoes are not very heavy, so L kf. F L A M M M M B A B L-kF EECS 6A, Spring 08, Homework 7, Last Updated: :30 4

5 (a) Let R AB be the resistance between nodes A and B. Write an expression for R AB as a function of A c, L, ρ, F, and k. The length of each spring as a function of F is L kf. The combination of and has a resistance R AB = = ρ(lkf) A c. (b) Fred s scale design is such that the resistance R AB changes depending on how much weight is placed on it. However, he really wants to measure a voltage rather than a resistance. Design a circuit for Fred that outputs a voltage that is some function of the weight. Your circuit should include R AB, and you may use any number of voltage sources and resistors in your design. Be sure to label where the voltage should be measured in your circuit. Also provide an expression relating the output voltage of your circuit to the force applied on the scale. One possible solution: use a voltage divider. R fixed V in R AB V out V out = V out = R AB R fixed R AB V in ρ(lkf) A c ρ(l kf) R fixed ρ(lkf) V in = R fixed A c ρ(l kf) V in A c 4. Resistive Voltage Regulator In this problem, we will design a circuit that provides an approximately constant voltage divider across a range of loads. We will use a resistive voltage divider circuit. The goal is to design a circuit that, from a source voltage of, would yield an output voltage within 5% of 4V for loads in the range of kω to 00kΩ. (a) First, consider the resistive voltage divider in the following circuit. What resistance R would achieve a voltage V out of 4V? 0kΩ a R V out b EECS 6A, Spring 08, Homework 7, Last Updated: :30 5

6 The current in the circuit is I = R0kΩ which means that the output voltage can be calculated as R V out = I R = R0kΩ. By constraining V out = 4V, we get 4V 4V = R R 0kΩ (R 0kΩ) = R ( 4V 0kΩ = 4V ) 4V ( 4V ) 0kΩ = R 4V 4V 0kΩ = R 0.00kΩ = R (b) Now using the same resistor R as calculated in part (a), consider loading the circuit with a resistor of kω as depicted in the following circuit. What is the voltage V out now? 0kΩ a R V out kω b The value from part (a) is R = 0.00kΩ. This means that the effective resistance is (0.00kΩ kω) = = 0.95kΩ. The current is therefore I = 0kΩ0.95kΩ, which yields: 0.95kΩ V out = 0kΩ 0.95kΩ V out = 0.5V (c) Now using the same resistor R as calculated in part (a), consider loading the circuit with a resistor of 00kΩ, instead, as depicted in the following circuit. What is the voltage V out now? 0kΩ a R V out 00kΩ b EECS 6A, Spring 08, Homework 7, Last Updated: :30 6

7 The value from part (a) is R = 0.00kΩ. This means that the effective resistance is (0.00kΩ 00kΩ) = = 6.67kΩ. The current is therefore I = 0kΩ6.67kΩ, which yields: 6.67kΩ V out = 0kΩ 6.67kΩ V out = 3.75V (d) Now we would like to design a divider that would keep the voltage V out regulated for loads for a range of loads R l. By that, we would like the voltage to remain within a 5% window of 4V. That is, we would like to design the following circuit such that 3.80V V out 4.0V for a range of loads R l. As a first step, what is the Norton equivalent of the circuit on the left? Write and G e f f in terms of conductance values G = and G =. = G a a = G R e f f = G e f f b b In open circuit, the current through the resistors is I =. This means that the open circuit voltage R is V T h = I =. We now calculate the short circuit current. In short circuit, the current is simply I =. Therefore, the effective resistance is R e f f = V T h From this, we can write = G and G e f f = G G. = = = ( ). (e) For the second step, using the Norton equivalent circuit you found in part (d), what is the range of G e f f that achieves 3.80V V out 4.0V in terms of and G l? a R e f f = G e f f V out R l = G l b From Ohm s law, V out (G e f f G l ) =. This means that V out = G e f f G l. From the bound 3.80V V out 4.0V, we have 3.80V G e f f G l 4.0V. This yields the following two inequalities: 3.80V G e f f G l 4.0V, G e f f G l EECS 6A, Spring 08, Homework 7, Last Updated: :30 7

8 which is equivalent to which is equivalent to G e f f G l 3.80V 4.0V G e f f G l, or concisely G e f f 3.80V G l 4.0V G l G e f f, 4.0V G l G e f f 3.80V G l. (f) Translate the range of G e f f in terms of and G l (that you found in part (e)) into a range on G in terms of G and G l. By plugging in the values of G e f f and into 4.0V G l G e f f 3.80V G l, we get or equivalently which is equivalent to G 4.0V G l G G G 3.80V G l, G 4.0V G l G G G 3.80V G l G, ( ) ( ) G 4.0V G l G G 3.80V G l. (g) Say we want to support loads in the range kω R l 00kΩ with approximately constant voltage as described above (that is, 3.80V V out 4.0V). What is the range of G in terms of G now? Translate the range of G in terms of G into a range of in terms of. Note: The unit of conductance is Siemens and is denoted by S. We plug R l = kω (equivalently G l = ms) into the bound found above and get G ( 4.0V ) ms G G ( 3.80V ) ms. Similarly, we plug R l = 00kΩ (equivalently G l = 00mS) into the bound found above and get ( ) G 4.0V 00 ms G G ( ) 3.80V 00 ms. The intersection of the above two sets of inequalities is ( ) G 4.0V ( ) 00 ms G G 3.80V ms EECS 6A, Spring 08, Homework 7, Last Updated: :30 8

9 In terms of that range is (by taking the reciprocal of all sides and using G = R ) ( 4.0V ) 00kΩ ( 3.80V ) kω (h) Note that conductance is always non-negative. From the bounds on G you found in the previous part, derive a bound on G that ensures that G is always non-negative and non-empty (that is, the whole range of possible G values is non-negative and is not empty). Translate this range into a range of possible values. Hint: In addition to the conductance being non-negative, also make sure that the range for G is nonempty. Since conductance has to be positive, we need the range above to consist of positive values (that is, the lower bound has to be positive and the upper bound is larger than the lower bound) which yields: and which is equivalent to and which is equivalent to and The intersection of both ranges yields 0 G ( 4.0V ) 00 ms ( ) G 4.0V ( ) 00 ms G 3.80V ms, ( ) 00 ms G 4.0V ms ( 00 ms G 3.80V ), 4.0V 0.033mS = mS = 4.0V 00 ms G ms 00 ms 3.80V 4.0V mS G, G.. which in terms of is equivalent to 0.589kΩ (i) Pick the values of and that achieve 3.80V V out 4.0V for kω R l 00kΩ while minimizing the power consumed by the voltage divider circuit in open circuit (when there is no load attached to the output). What are these values and? How much power is consumed in this case? Calculate and report this power consumption using both the original circuit and the Norton equivalent circuit. Are the power you calculated using the original circuit and the power you calculated using the Norton equivalent circuit equal? EECS 6A, Spring 08, Homework 7, Last Updated: :30 9

10 V The power in the original circuit (no load) can be calculated as. In order to minimize the power, we should pick the largest possible. This can be achieved by choosing = 0.589kΩ (the highest possible) and = = kΩ (the upper bound). The power in 0.589kΩ( ) 4.0V 00kΩ () this case is P = 0.589kΩ kΩ = mW. If we use the Norton equivalent circuit, we have R e f f = 0.064kΩ which yields the power consumption P = INo R e f f = mW. The powers are not equal since Thévenin and Norton equivalents don t preserve power consumption of the circuit (think about the Thévenin equivalent in open circuit: the power consumption is always 0W). (j) Now using the same values and from the previous part, load the circuit with a load of 5kΩ. How much power is consumed by each of the three resistors,, and R l (use the original circuit to compute the power)? The effective resistance in the output is ( R l ) which is equal to 0.353kΩ. This means that the current from the source is I = ( R l ) =.8789mA. Therefore, the power consumed by is P R = I =.4330mW. The output voltage is V out = I ( R l ) = 4.957V, which means the power consumed by is P R = V out = mW and the power consumed by R l is P Rl = V out R l = 0.345mW for a total power of P = 7.735mW. Note: Try doing the whole problem using resistance directly without going through conductances. You will see that the math will not be as pretty" as the one presented here (using conductances). Sometimes using conductance yields easier derivation than the derivation using resistance. 5. Multitouch Resistive Touchscreen In this problem, we will look at a simplified version of the multitouch resistive touchscreen. In particular, rather than measuring the position of two potential touch points in both dimensions (i.e. a pair of coordinates (x, y ) and (x, y ) corresponding to two touch positions), let s think about a version where we are interested in measuring only the vertical position of the two touch points (i.e. y and y ). Therefore, unlike the touchscreens we looked at in class, both of the resistive plates (i.e. both the top and the bottom plate) would have conductive strips placed along their top and bottom edges, as shown below. Top View E 4 Side View (no touch) E E E E H E 3 T H E 4 E 3 W (a) Assuming that both of the plates are made out of a material with ρ = Ωm and that the dimensions of the plates are W = 3cm, H = cm, and T = mm, with no touches at all, what is the resistance EECS 6A, Spring 08, Homework 7, Last Updated: :30 0

11 between terminals E and E (which would be the same as the resistance between terminals E 3 and E 4 )? R = ρ L ( ) H A = R EE = ρ W T ( 0 ) m R EE = Ωm m R EE = 4kΩ (b) Now let s look at what happens when we have two touch points. Let s assume that at wherever height the touch occurs, a perfect contact is made between the top plate and the bottom plate along the entire width of the plates (i.e. you don t have to worry about any lateral resistors), but that otherwise none of the electrical characteristics of the plates change. Defining the bottom of the plate as being y = 0 cm (i.e. a touch at E would be at y = 0cm), let s assume that the two touches happen at y = 3cm and y = 7cm and that your answer to part (a) was 8kΩ (which may or may not be the right answer). Draw a model with 6 resistors that captures the electrical connections between E, E, E 3, and E 4 and calculate their resistances. Note that for clarity, the system has been redrawn below to depict this scenario. Top View E 4 Side View ( touches) E E E H H y T E y E 3 y y E 4 E 3 W = 3cm cm R EE = kω 7cm 3cm = cm R EE =.667kΩ cm 7cm = R EE = 3.334kΩ cm EECS 6A, Spring 08, Homework 7, Last Updated: :30

12 E E 4 ma E E 3 (c) Using the same assumptions as part (b), if you drove terminals E 3 and E 4 with a ma current source (as shown below) but left terminals E and E open-circuited, what is the voltage you would measure across E 4 E 3 (i.e. V E4E3 )? E 4 ma V E4E3 E 3 The equivalent resistance between E 4 E 3 is R E4E3 = = R = 6.667kΩ V E4E3 = ma R E4E3 = V E4E3 = 6.667V (d) Now let s try to generalize the situation by assuming that the two touches can happen at any two arbitrary points y and y, but with y defined to always be less than y (i.e. y is always the bottom touch point). Leaving the setup the same as in part (c) except for the arbitrary y and y, by measuring only the voltage between E 4 and E 3, what information can you extract about the two touch positions? Please be sure to provide an equation relating V E4E3 to y and y as a part of your answer, and note that you may want to redraw the model from part (b) to help you with this. EECS 6A, Spring 08, Homework 7, Last Updated: :30

13 E E 4 E E 3 For general = y cm 8kΩ = y y cm 8kΩ = cm y cm 8kΩ So R E4E3 = R ( = cm y y y = ( cm y y ) 8kΩ cm y ) 8kΩ cm V E4E3 = ma cm y y cm 8kΩ = cm y y cm This means that by measuring V E4E3, we can only measure the distance between the two touch points (y y ). (e) One of your colleagues claims that by measuring the appropriate voltages, not only can they extract what both y and y are in this system, but they can even do so by formulating a system of three independent voltage equations related to y and y. As we will see later, this will allow us to gain some robustness to noise in the voltage measurements. In order to facilitate this, write equations relating V E4E and V EE3 to y and y. (The third voltage we ll use is V E4E3, which you should have already derived an equation for in the previous part of the problem.) 8V EECS 6A, Spring 08, Homework 7, Last Updated: :30 3

14 E E 4 ma ma ma E E 3 V E4E = I = cm y cm 8V V EE3 = I = y cm 8V 6. Homework Process and Study Group Who else did you work with on this homework? List names and student ID s. (In case of homework party, you can also just describe the group.) How did you work on this homework? I worked on this homework with... I first worked by myself for hours, but got stuck on problem 5, so I went to office hours on... Then I went to homework party for a few hours, where I finished the homework. EECS 6A, Spring 08, Homework 7, Last Updated: :30 4

Designing Information Devices and Systems I Spring 2019 Homework 7

Designing Information Devices and Systems I Spring 2019 Homework 7 Last Updated: 2019-03-16 22:56 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Homework 7 This homework is due March 15, 2019 at 23:59. Self-grades are due March 19, 2019, at 23:59.

More information

Designing Information Devices and Systems I Fall 2018 Homework 7

Designing Information Devices and Systems I Fall 2018 Homework 7 Last Updated: 2018-10-05 20:54 1 EECS 16A Designing Information Devices and Systems I Fall 2018 omework 7 This homework is due October 12, 2018, at 23:59. Self-grades are due October 16, 2018, at 23:59.

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

EECS 16A: SPRING 2015 MIDTERM 2

EECS 16A: SPRING 2015 MIDTERM 2 University of California College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon, G. Ranade, B. Ayazifar, Thurs., Apr. 9, 2015 C. Tomlin, V. Subramanian 2:00-3:30pm EECS

More information

Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2. Exam location: 145 Dwinelle, last SID# 2

Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2. Exam location: 145 Dwinelle, last SID# 2 EECS 16A Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2 Exam location: 145 Dwinelle, last SID# 2 PRINT your student ID: PRINT AND SIGN your name:, (last) (first)

More information

Designing Information Devices and Systems I Spring 2018 Homework 11

Designing Information Devices and Systems I Spring 2018 Homework 11 EECS 6A Designing Information Devices and Systems I Spring 28 Homework This homework is due April 8, 28, at 23:59. Self-grades are due April 2, 28, at 23:59. Submission Format Your homework submission

More information

Designing Information Devices and Systems I Spring 2019 Homework 11

Designing Information Devices and Systems I Spring 2019 Homework 11 Last Updated: 2019-04-12 23:38 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Homework 11 This homework is due April 19, 2019, at 23:59. Self-grades are due April 23, 2019, at 23:59.

More information

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Midterm 2. Exam location: 145 Dwinelle, last SID# 2

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Midterm 2. Exam location: 145 Dwinelle, last SID# 2 EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Midterm 2 Exam location: 145 Dwinelle, last SID# 2 PRINT your student ID: PRINT AND SIGN your name:,

More information

Designing Information Devices and Systems I Spring 2018 Homework 10

Designing Information Devices and Systems I Spring 2018 Homework 10 EECS 16A Designing Information Devices and Systems I Spring 2018 Homework 10 This homework is due April 9, 2018, at 23:59. Self-grades are due April 12, 2018, at 23:59. Submission Format Your homework

More information

Designing Information Devices and Systems I Spring 2019 Homework 5

Designing Information Devices and Systems I Spring 2019 Homework 5 Last Updated: 209-03-02 0:38 EECS 6A Designing Information Devices Systems I Spring 209 Homework 5 This homework is due March, 209, at 23:59. Self-grades are due March 5, 209, at 23:59. Submission Format

More information

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 6

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 6 EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 6 This homework is due March 6, 2017, at 23:59. Self-grades are due March 9, 2017, at 23:59.

More information

Designing Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ

Designing Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ EECS 16A Designing Information Devices and Systems I Fall 2017 Midterm 2 Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ PINT your student ID: PINT AND SIGN your name:, (last name) (first name) (signature)

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 13 13.1 Resistive Touchscreen - expanding the model Recall the physical structure of the simple resistive touchscreen given

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10. This homework is due November 9, 2015, at Noon.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10. This homework is due November 9, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10 This homework is due November 9, 2015, at Noon. 1. Homework process and study group Who else did you

More information

Designing Information Devices and Systems I Spring 2015 Note 11

Designing Information Devices and Systems I Spring 2015 Note 11 EECS 16A Designing Information Devices and Systems I Spring 2015 Note 11 Lecture notes by Edward Wang (02/26/2015). Resistors Review Ohm s law: V = IR Water pipe circuit analogy: Figure 1: Water analogy

More information

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon.

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon. EECS 16B Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0 This homework is due August 29th, 2016, at Noon. 1. Homework process and study group (a) Who else

More information

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5 EECS 16A Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5 This homework is due on Sunday, July 23, 2017, at 23:59. Self-grades are due on Monday, July

More information

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 2

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 2 EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 2 This homework is due February 6, 2017, at 23:59. Self-grades are due February 9, 2017, at

More information

Designing Information Devices and Systems I Fall 2018 Homework 5

Designing Information Devices and Systems I Fall 2018 Homework 5 Last Updated: 08-09-9 0:6 EECS 6A Designing Information Devices and Systems I Fall 08 Homework 5 This homework is due September 8, 08, at 3:59. Self-grades are due October, 08, at 3:59. Submission Format

More information

Designing Information Devices and Systems I Spring 2018 Homework 13

Designing Information Devices and Systems I Spring 2018 Homework 13 EECS 16A Designing Information Devices and Systems I Spring 2018 Homework 13 This homework is due April 30, 2018, at 23:59. Self-grades are due May 3, 2018, at 23:59. Submission Format Your homework submission

More information

Homework 2. Due Friday (5pm), Feb. 8, 2013

Homework 2. Due Friday (5pm), Feb. 8, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 2 Due Friday (5pm), Feb. 8, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled EE

More information

UNIVERSITY F P RTLAND Sch l f Engineering

UNIVERSITY F P RTLAND Sch l f Engineering UNIVERSITY F P RTLAND Sch l f Engineering EE271-Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems - p. 1 of 5 - Electrical

More information

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Midterm 2. Exam Location: 100 Genetics & Plant Bio

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Midterm 2. Exam Location: 100 Genetics & Plant Bio EECS 16A Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Midterm 2 Exam Location: 100 Genetics & Plant Bio PINT your student ID: PINT AND SIGN your name:, (last

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 4

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 4 EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework This homework is due February 22, 2017, at 2:59. Self-grades are due February 27, 2017, at

More information

Midterm II Sample Problems

Midterm II Sample Problems EECS 16A Spring 2015 Designing Information Devices and Systems I Midterm II Sample Problems 1. Bio-Molecule Detector One application for electronics that has gained a lot of attention over the past several

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Final Exam. Exam location: RSF Fieldhouse, Back Left, last SID 6, 8, 9

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Final Exam. Exam location: RSF Fieldhouse, Back Left, last SID 6, 8, 9 EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Final Exam Exam location: RSF Fieldhouse, Back Left, last SID 6, 8, 9 PRINT your student ID: PRINT AND SIGN your

More information

P1: Basics - Things you now know that you didn t know you knew (25 pts)

P1: Basics - Things you now know that you didn t know you knew (25 pts) P1: Basics - Things you now know that you didn t know you knew (25 pts) a) Birds routinely land and relax on power lines which carry tens of thousands of volts of electricity. Explain why these birds do

More information

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Experiment #6. Thevenin Equivalent Circuits and Power Transfer Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The prescribed method quite well, but there is one situation

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

More information

Designing Information Devices and Systems I Fall 2017 Homework 3

Designing Information Devices and Systems I Fall 2017 Homework 3 EECS 6A Designing Information Devices and Systems I Fall 07 Homework 3 This homework is due September 8, 07, at 3:9. Self-grades are due September, 07, at 3:9. Submission Format Your homework submission

More information

THERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS

THERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS THERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS Kristine McCarthy Josh Pratti Alexis Rodriguez-Carlson November 20, 2006 Table

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but

More information

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 4 NODAL ANALYSIS OBJECTIVES 1) To develop Nodal Analysis of Circuits without Voltage Sources 2) To develop Nodal Analysis of Circuits with Voltage

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

What to Add Next time you update?

What to Add Next time you update? What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review

More information

Designing Information Devices and Systems I Fall 2017 Official Lecture Notes Note 13

Designing Information Devices and Systems I Fall 2017 Official Lecture Notes Note 13 EECS 16A Designing Information Devices and Systems I Fall 2017 Official Lecture Notes Note 13 13.1 Analysis Review: Voltage Divider In order to review the analysis procedure described in the previous note,

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Final Exam. Exam location: You re Done!!

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Final Exam. Exam location: You re Done!! EECS 6A Designing Information Devices and Systems I Fall 205 Anant Sahai, Ali Niknejad Final Exam Exam location: You re Done!! PRINT your student ID: PRINT AND SIGN your name:, (last) (first) (signature)

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Capacitive Touchscreen

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Capacitive Touchscreen EES 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 16 16.1 Introduction to apacitive Touchscreen We ve seen how a resistive touchscreen works by using the concept of voltage

More information

Designing Information Devices and Systems I Fall 2018 Homework 3

Designing Information Devices and Systems I Fall 2018 Homework 3 Last Updated: 28-9-5 :8 EECS 6A Designing Information Devices and Systems I Fall 28 Homework 3 This homework is due September 4, 28, at 23:59. Self-grades are due September 8, 28, at 23:59. Submission

More information

Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Homework 6. This homework is due October 11, 2016, at Noon.

Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Homework 6. This homework is due October 11, 2016, at Noon. EECS 16A Designing Informtion Devices nd Systems I Fll 2016 Bk Ayzifr, Vldimir Stojnovic Homework 6 This homework is due Octoer 11, 2016, t Noon. 1. Homework process nd study group Who else did you work

More information

Voltage Dividers, Nodal, and Mesh Analysis

Voltage Dividers, Nodal, and Mesh Analysis Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify

More information

Capacitors. Chapter How capacitors work Inside a capacitor

Capacitors. Chapter How capacitors work Inside a capacitor Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.

More information

Problem Set 5 Solutions

Problem Set 5 Solutions University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS OBJECTIVES 1) To introduce the Source Transformation 2) To consider the concepts of Linearity and Superposition

More information

Problem Set 1 Solutions (Rev B, 2/5/2012)

Problem Set 1 Solutions (Rev B, 2/5/2012) University of California, Berkeley Spring 2012 EE 42/100 Prof. A. Niknejad Problem Set 1 Solutions (Rev B, 2/5/2012) Please note that these are merely suggested solutions. Many of these problems can be

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet - Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save

More information

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5 ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

MAE140 - Linear Circuits - Fall 14 Midterm, November 6 MAE140 - Linear Circuits - Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 2. This homework is due September 14, 2015, at Noon.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 2. This homework is due September 14, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 2 This homework is due September 14, 2015, at Noon. Submission Format Your homework submission should consist

More information

Designing Information Devices and Systems I Babak Ayazifar, Vladimir Stojanovic. This homework is due October 25, 2016, at 1PM.

Designing Information Devices and Systems I Babak Ayazifar, Vladimir Stojanovic. This homework is due October 25, 2016, at 1PM. EECS 16A Fall 2016 Designing Information Devices and Systems I Babak Ayazifar, Vladimir Stojanovic Homework 8 This homework is due October 25, 2016, at 1PM. 1. Homework process and study group Who else

More information

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1 Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS

More information

Chapter 6: Series-Parallel Circuits

Chapter 6: Series-Parallel Circuits Chapter 6: Series-Parallel Circuits Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Identifying series-parallel relationships Most practical

More information

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 13, 2015, at Noon.

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 13, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 6 This homework is due October 13, 2015, at Noon. 1. Circuits with resistors (a) Find the voltages across

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

Problem Set 4 Solutions

Problem Set 4 Solutions University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different

More information

Designing Information Devices and Systems I Spring 2019 Midterm 2. Exam Location: Cory 521 (DSP)

Designing Information Devices and Systems I Spring 2019 Midterm 2. Exam Location: Cory 521 (DSP) 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Midterm 2 Exam Location: Cory 521 (DSP) PRINT AND SIGN your name:, (last name) (first name) (signature) PRINT time of your Monday section

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8 This homework is due October 26, 2015, at Noon. 1. Nodal Analysis Or Superposition? (a) Solve for the

More information

Grade 6 Math Circles. Circuits

Grade 6 Math Circles. Circuits Faculty of Mathematics Waterloo, Ontario NL 3G Electricity Grade 6 Math Circles March 8/9, 04 Circuits Centre for Education in Mathematics and Computing Electricity is a type of energy that deals with

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

D C Circuit Analysis and Network Theorems:

D C Circuit Analysis and Network Theorems: UNIT-1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,

More information

Lecture Notes on DC Network Theory

Lecture Notes on DC Network Theory Federal University, Ndufu-Alike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

University of Alabama Department of Physics and Astronomy. Problem Set 4

University of Alabama Department of Physics and Astronomy. Problem Set 4 University of Alabama Department of Physics and Astronomy PH 26 LeClair Fall 20 Problem Set 4. A battery has an ideal voltage V and an internal resistance r. A variable load resistance R is connected to

More information

Phy301- Circuit Theory

Phy301- Circuit Theory Phy301- Circuit Theory Solved Mid Term MCQS and Subjective with References. Question No: 1 ( Marks: 1 ) - Please choose one If we connect 3 capacitors in series, the combined effect of all these capacitors

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work, Preamble Circuit Analysis II Physics, 8 th Edition Custom Edition Cutnell & Johnson When circuits get really complex methods learned so far will still work, but they can take a long time to do. A particularly

More information

Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION

More information

Designing Information Devices and Systems I Spring 2019 Midterm 2

Designing Information Devices and Systems I Spring 2019 Midterm 2 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Midterm 2 1. How is your semester so far? (1 point) 2. Do you have any summer plans? (1 point) Do not turn this page until the proctor

More information

ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits. Chapter 2: Basic laws ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Homework 2

Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Homework 2 EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Homework 2 This homework is due September 13th, 2016, at Noon. Optional Problems: We do not grade these

More information

Basic Electrical Circuits Analysis ECE 221

Basic Electrical Circuits Analysis ECE 221 Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobs-university.de k.saaifan@jacobs-university.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and

More information

Chapter 4: Techniques of Circuit Analysis

Chapter 4: Techniques of Circuit Analysis Chapter 4: Techniques of Circuit Analysis This chapter gies us many useful tools for soling and simplifying circuits. We saw a few simple tools in the last chapter (reduction of circuits ia series and

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

Ohm's Law and Resistance

Ohm's Law and Resistance Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Study Notes on Network Theorems for GATE 2017

Study Notes on Network Theorems for GATE 2017 Study Notes on Network Theorems for GATE 2017 Network Theorems is a highly important and scoring topic in GATE. This topic carries a substantial weight age in GATE. Although the Theorems might appear to

More information

CHAPTER FOUR CIRCUIT THEOREMS

CHAPTER FOUR CIRCUIT THEOREMS 4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over

More information

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory

More information

Simple Resistive Circuits

Simple Resistive Circuits German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in

More information

Kirchhoff Laws against Node-Voltage nalysis and Millman's Theorem Marcela Niculae and C. M. Niculae 2 on arbu theoretical high school, ucharest 2 University of ucharest, Faculty of physics, tomistilor

More information