Phys 4390: General Relativity

Size: px
Start display at page:

Download "Phys 4390: General Relativity"

Transcription

1 Phys 4390: General Relativity Dr. David McNutt, 1 (call me Dave) 1 Department of Physics Saint Mary s University January 9, / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

2 My Background I am a mathematician with an interest in differential geometry, dynamical systems and their applications in physics and engineering. My PhD focused on the classification of space-times in General Relativity (GR), in particular my focus was on certain "toy-models" of gravitational radiation: the pp-wave and Kundt wave solutions. At the moment my work in GR has been limited, however I do have considerable experience with the theory. Figure: A purely electromagnetic plane-wave spacetime causing a null cone from event Q to be focused at a second vertex R 2 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

3 Outline 1 Course Goals Course Texts Academic Policies 2 Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity 3 When is Gr Important Some Context Special Relativity From SR to GR 3 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

4 Course Goals Course Goals Course Texts Academic Policies At completion of this course, students will be able to: Employ tensor analysis to approach problems in general relativity. Understand and explain the underlying physical principles of general relativity (GR) Have a quantitative understanding of the application of GR in modern astrophyics. 4 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

5 Course Goals Course Texts Academic Policies Introduction. Review of Special Relativity (SR), and use of tensor notation. Tensor algebra and Calculus: metrics, curvature, covariant differentiation. Fundamental concepts in GR: Principle of Equivalence, Mach s Principle, Principle of Covariance, Principle of Minimal Coupling. Energy momentum tensor and Einstein s equations. Scwarzchild solutions and black holes. Applications of GR in astrophysics: compact objects, gravitational waves, lensing cosmology. This outline, especially the last point, is subject to change depending on student s interest and time constraints 5 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

6 Course Texts Course Goals Course Texts Academic Policies I will primarily use the textbook "Introducing Einstein s Relativity" by Ray D Inverno, as this is a good introduction to GR with some advanced topics covered. That said, I may also take material from: Robert M. Wald s "General Relativity", John Stewart s "Advanced General Relativity", James Hartle s "Gravity: An Introduction to Einstein s General Relativity". 6 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

7 Approach to Teaching Course Goals Course Texts Academic Policies After this class I will not be using slides. Instead I will work on the board and follow class notes. As I am left handed and calligraphy was never a strong point, I will provide typed class notes. These notes may follow after the class is done, but it is my sincere hope to prepare them prior to class. These notes will be posted on my personal website, and blackboard. 7 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

8 Academic Integrity Course Goals Course Texts Academic Policies I encourage students to discuss work with each other in order to mutually understand the topics taught. Similarly, I see no harm with people working together on assignment questions. I object to solutions being copied word-for-word without any attempt to rehash to reflect the student s understanding. 8 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

9 Marking Scheme Course Goals Course Texts Academic Policies The current marking scheme is: Assignments 60% Final Exam 40% There will be a total of 5 assignments, with one every two weeks. 9 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

10 A Big List Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity 1 Precision gravity in the solar system 2 Relativistic stars 3 Black holes 4 Cosmological Models 5 Gravitational lensing 6 Gravitational waves 7 Quantum gravity 10 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

11 Precision Gravity Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity To measure the gravity field of the earth, NASA and the German Aerospace Center launched GRACE:Gravity Recovery and Climate Experiment. This has become an important tool for studying the ocean, geology and climate of the earth. Combining the data from GRACE with that of LAGEOS:LAser GEOdynamics Satellites, it is hoped that the relativistic effect of frame-dragging could be measured. These satellites are intended to provide an orbiting laser ranging benchmark for geodynamical studies of the Earth. Figure: Gravity Anomaly map from GRACE; taken from Wikipedia Figure: LAGEOS-1 satellite; taken from Wikipedia 11 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

12 Relativistic Stars Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity White dwarfs and neutron stars employ non-thermal pressure sources, i.e., electron and neutron degeneracy respectively, to resist contraction. At low masses white dwarves may be analyzed without relativity, however at higher masses these models are inaccurate. Neutron stars are relativistic. Recent computational models on the ignition of supernovae are considering general relativistic effects. Figure: Chandrasekhar Limit Graph; taken from wikiepdia 12 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

13 "Global" Cosmology Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity In order to describe curved spacetimes we must use GR This requires working on scales much larger than galactic clusters; often dust or perfect fluid models are considered for the spacetimes. In the weak field approximation it can be shown that the Newtonian description is sufficient, with great accuracy. The Friedmann equations dictate cosmic expansion and allow for one to study a number of possible scenarios for curvature of the universe. The cosmological constant, which originally frustrated Einstein s vision of a static universe has been shown to be a necessary part of cosmology. Figure: Two dimensional examples of surfaces with negative, vanishing, and positive curvature respectively; taken from Cosmology tutorial 13 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

14 Gravitational Lensing Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity While originally discussed by Chwolson (1924) and Klin (1936), Einstein published a canonical article on the subject in Three classes of gravitational lensing: strong lensing, weak lensing, and microlensing. Figure: Artist conception of gravitational lensing from a galaxy cluster; taken from NASA Figure: Einstein s Cross: An example of strong gravitational lensing, where four images of the same distant quasar appear around a foreground galaxy. 14 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

15 Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity Gravitational Waves GR predicts that ripples in spacetime can propagate at the speed of light, these ripples are called gravitational waves. Mergers of compact objects should produce immense amounts of gravitational radiation All mass produces gravitational waves, in this sense if one could detect gravitational waves, the universe would be very "bright". Unfortunately these are incredibly difficult to detect due to weak coupling F of matter Fgrav Figure: Artist conception of LISA (Laser Interferometer Space Antenna) spacecraft; taken from NASA elec 15 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

16 Planck Scale and Quantum Gravity Precision Gravity In the Solar System Relativistic Stars: white dwarfs, neutron stars, and supernovae (oh my!) Cosmological Modeling Gravitational... Quantum Gravity Using the fundamental constants of nature, it is possible to derive units associated with an era when quantum gravity is relevant on the "Planck" Scale. Taking, G and c, we can produce Planck length, mass and time. l p = G c = m c m p = G = kg t p = lp c = G c 5 = s 16 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

17 Hand-waving argument When is Gr Important Some Context Special Relativity From SR to GR As a simple argument consider the following: In the Newtonian approximation of a test particle in a closed orbit with speed v, radius R around a mass M GM R 2 = v 2 R v 2 = GM R Dividing v 2 by c 2 yields a dimensionless ratio v 2 c 2 = GM Rc 2 17 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

18 Comparison of Gm/Rc 2 values When is Gr Important Some Context Special Relativity From SR to GR Blackholes 1 Neutron stars 10 1 Sun 10 6 Earth 10 9 Figure: Taken from Fig 1.1 of Hartle provides a 18 / 27 Dr. David McNutt, (call me Dave) Phys comparison 4390: General of Relativity masses and distances.

19 When is Gr Important Some Context Special Relativity From SR to GR Successes and Failures of Newtonian Picture Replaced the Aristotelian picture that: Objects move when acted upon by a force, and tend to a stationary state when force is removed. Could not explain the force of gravity, which is a constant force but objects were accelerated. Newton s First Law gave us the first clue about relativity. If the force is such that F = 0 then v = C where C is a constant vector This allows for the concept of inertial frames of reference. Any frame for which v = C is defined to be an inertial frame of reference Newton s Laws cannot impose the constancy of the speed of light, which led to an erroneous believe in absolute simultaneity instead of a relative one. 19 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

20 When is Gr Important Some Context Special Relativity From SR to GR Newtonian Transformations between Inertial Frames of Reference Making the transformation: x n = x vt, y n = y, z n = z, t n = t it is easily shown that the second derivative of x w.r.t. t satisfies d2 x dt 2 = d2 x n dt 2 n and F = F n 20 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

21 The Light Cone in Special Relativity When is Gr Important Some Context Special Relativity From SR to GR Speed of light is the same in all inertial frames Normal matter is restricted to speeds less than c New concept of simultaneity, namely Relative Simultaneity 21 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

22 When is Gr Important Some Context Special Relativity From SR to GR Coordinate Transformations in Special Relativity Consider the Lorentz transformation, x n = x vt, yn = y, zn = z, tn = t vx/c2 1 (v/c) 2 1 (v/c) 2 As before, the frame will be boosted by speed v along x axis relative to the original frame at O 22 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

23 When is Gr Important Some Context Special Relativity From SR to GR Space-time Diagram Under Lorentz Boost 23 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

24 When is Gr Important Some Context Special Relativity From SR to GR Correspondence of electric and (Newtonian) Gravitational Force Newtonian Gravity Electrostatics Forces Between Sources Fg = GMm r 2 ē Mm Fe = qq 4πɛ 0 r 2 ēqq Force Derived From Potential Fg = m Φ g( x m) Fe = q Φ e( x q) Potential Outside a Spherical Source Φ g = GM r Φ e = Q 4πɛ 0 r Field Equation 2 Φ g = 4πGρ m 2 Φ e = ρ e/ɛ 0 Note: if ḡ( x = Φ g( x) then g( x) = 4πρ m( x), which is similar to Ē = ρe( x)/ɛ / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

25 When is Gr Important Some Context Special Relativity From SR to GR Moving Charges: Maxwell s Equations and Lorentz Force The Lorentz force describes how a collection of moving charges are affected by a velocity dependent force from magnetic fields. F e = q(ē + v B) The velocity dependent term is missing in Newtonian Gravity. For any frame chosen, acceleration depends on mass alone in Newtonian gravity, this implies it is not relativistic. It is possible to add B g term, however this becomes very complicated. 25 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

26 Measuring Ē and B Fields When is Gr Important Some Context Special Relativity From SR to GR Using neutral charges one can construct an inertial frame. Any particle at rest can be used to measure Ē, since F e = qē Once in motion one can measure B through the expression F e = q(ē + v B) Sadly this approach cannot be used to measure gravity, since there is no form of matter that is "neutral" to gravity. 26 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

27 Steppin Stone: SR to GR When is Gr Important Some Context Special Relativity From SR to GR In the presence of gravity, freely falling frames are locally inertial, we call this the Principle of Equivalence. These particles will follow geodesics, which can be seen as the path of least resistance. Returning to the point of no "neutral" charges. Any particle is a source of gravitational field, so as they move through spacetime they also bend it. We can approach GR by formulating SR in this new frame and taking our physical laws and applying the Principle of Covariance (Physical Laws are preserved under changes of coordinates.) Some people believe we need additional principles. 27 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum Announcements 2402 Lab will be started next week Lab manual will be posted on the course web today Lab Scheduling is almost done!! HW: Chapter.2 70, 75, 76, 87, 92, 97*, 99, 104, 111 1 st Quiz: 9/18 (Ch.2)

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Pedagogical Strategy

Pedagogical Strategy Integre Technical Publishing Co., Inc. Hartle November 18, 2002 1:42 p.m. hartlemain19-end page 557 Pedagogical Strategy APPENDIX D...as simple as possible, but not simpler. attributed to A. Einstein The

More information

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Special Relativity: The laws of physics must be the same in all inertial reference frames. Special Relativity: The laws of physics must be the same in all inertial reference frames. Inertial Reference Frame: One in which an object is observed to have zero acceleration when no forces act on it

More information

Measuring the Whirling of Spacetime

Measuring the Whirling of Spacetime Measuring the Whirling of Spacetime Lecture series on Experimental Gravity (revised version) Kostas Glampedakis Prologue: does spin gravitate? M 1 M 2 System I: F = GM 1M 2 r 2 J 1 J 2 System II: M 1?

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Fundamental Theories of Physics in Flat and Curved Space-Time

Fundamental Theories of Physics in Flat and Curved Space-Time Fundamental Theories of Physics in Flat and Curved Space-Time Zdzislaw Musielak and John Fry Department of Physics The University of Texas at Arlington OUTLINE General Relativity Our Main Goals Basic Principles

More information

Inertial Frame frame-dragging

Inertial Frame frame-dragging Frame Dragging Frame Dragging An Inertial Frame is a frame that is not accelerating (in the sense of proper acceleration that would be detected by an accelerometer). In Einstein s theory of General Relativity

More information

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 General Relativity Einstein s Theory of Gravitation Robert H. Gowdy Virginia Commonwealth University March 2007 R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 What is General Relativity? General Relativity

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 6 Oct. 28, 2015 Today Wrap up of Einstein s General Relativity Curved Spacetime Gravitational Waves Black Holes Relativistic

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU A Superfluid Universe Lecture 1 General relativity and cosmology Kerson Huang MIT & IAS, NTU Lecture 1. General relativity and cosmology Mathematics and physics Big bang Dark energy Dark matter Robertson-Walker

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light General Relativity and Gravity Special Relativity deals with inertial reference frames, frames moving with a constant relative velocity. It has some rather unusual predictions Time dilation Length contraction

More information

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract Gravitation Adrian Ferent This is a new quantum gravity theory which breaks the wall of Planck scale. My Nobel Prize Idea Abstract The Photon Graviton pair (coupled) has the same speed and frequency, and

More information

Special theory of relativity

Special theory of relativity Announcements l CAPA #9 due Tuesday April 1 l Mastering Physics Chapter 35 due April 1 l Average on exam #2 is 26/40 l For the sum of the first two exams (80 points); l >=67 4.0 l 61-66 3.5 l 50-60 3.0

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

Two Lectures on Physics

Two Lectures on Physics Two Lectures on Physics Cogne 2003 1. The Large Scale Structure of the World 2. The Small Scale Structure of the World The Large Scale Structure of the World The goal of physics is to understand the universe

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

A brain teaser: The anthropic principle! Last lecture I said Is cosmology a science given that we only have one Universe? Weak anthropic principle: "T

A brain teaser: The anthropic principle! Last lecture I said Is cosmology a science given that we only have one Universe? Weak anthropic principle: T Observational cosmology: The Friedman equations 1 Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 A brain teaser: The anthropic principle! Last

More information

Relativity and Black Holes

Relativity and Black Holes Relativity and Black Holes Post-MS Evolution of Very High Mass (>15 M Θ ) Stars similar to high mass except more rapid lives end in Type II supernova explosions main difference: mass of iron core at end

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

SPECIAL RELATIVITY! (Einstein 1905)!

SPECIAL RELATIVITY! (Einstein 1905)! SPECIAL RELATIVITY! (Einstein 1905)! Motivations:! Explaining the results of the Michelson-Morley! experiment without invoking a force exerted! on bodies moving through the aether.! Make the equations

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

8. The Expanding Universe, Revisited

8. The Expanding Universe, Revisited 8. The Expanding Universe, Revisited A1143: History of the Universe, Autumn 2012 Now that we have learned something about Einstein s theory of gravity, we are ready to revisit what we have learned about

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

PHYM432 Relativity and Cosmology fall Introduction. Dr. David K. Sing

PHYM432 Relativity and Cosmology fall Introduction. Dr. David K. Sing PHYM432 Relativity and Cosmology fall 2012 1. Introduction Dr. David K. Sing 1 PHYM432 General Relativity and Cosmology Fall 2012-2013 Instructor: Dr. David K Sing Office: Physics building room 514 Email

More information

Tutorial I General Relativity

Tutorial I General Relativity Tutorial I General Relativity 1 Exercise I: The Metric Tensor To describe distances in a given space for a particular coordinate system, we need a distance recepy. The metric tensor is the translation

More information

Basic Physics. Remaining Topics. Gravitational Potential Energy. PHYS 1403 Introduction to Astronomy. Can We Create Artificial Gravity?

Basic Physics. Remaining Topics. Gravitational Potential Energy. PHYS 1403 Introduction to Astronomy. Can We Create Artificial Gravity? PHYS 1403 Introduction to Astronomy Basic Physics Chapter 5 Remaining Topics Gravitational Potential Energy Escape Velocity Artificial Gravity Gravity Assist An Alternate Theory of Gravity Gravitational

More information

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France)

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) An introduction to gravitational waves Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) Outline of lectures (1/2) The world's shortest introduction to General Relativity The linearized

More information

Black Holes. Robert M. Wald

Black Holes. Robert M. Wald Black Holes Robert M. Wald Black Holes Black Holes: A black hole is a region of spacetime where gravity is so strong that nothing not even light that enters that region can ever escape from it. Michell

More information

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course Relativistic Astrophysics Neutron Stars, Black Holes & Grav. Waves... A brief description of the course May 2, 2009 Structure of the Course Introduction to General Theory of Relativity (2-3 weeks) Gravitational

More information

Basic Physics. What We Covered Last Class. Remaining Topics. Center of Gravity and Mass. Sun Earth System. PHYS 1411 Introduction to Astronomy

Basic Physics. What We Covered Last Class. Remaining Topics. Center of Gravity and Mass. Sun Earth System. PHYS 1411 Introduction to Astronomy PHYS 1411 Introduction to Astronomy Basic Physics Chapter 5 What We Covered Last Class Recap of Newton s Laws Mass and Weight Work, Energy and Conservation of Energy Rotation, Angular velocity and acceleration

More information

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016 ENTER RELATIVITY RVBAUTISTA THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION The laws of mechanics must be the same in all inertial

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/42442 holds various files of this Leiden University dissertation. Author: Saravanan, S. Title: Spin dynamics in general relativity Issue Date: 2016-07-07

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Overview What is gravity? Newton and Einstein What does gravity do? Extreme gravity The true power of gravity Getting things moving

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC General Relativity: Einstein s Theory of Gravitation Presented By Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC The Motivations of General Relativity General Relativity, or GR, was created

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Exploring Black Holes General Relativity and Astrophysics Spring 2003

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Exploring Black Holes General Relativity and Astrophysics Spring 2003 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics 8.224 Exploring Black Holes General Relativity and Astrophysics Spring 2003 ASSIGNMENT WEEK 5 NOTE: Exercises 6 through 8 are to be carried out using the GRorbits

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

ASTR 200 : Lecture 21. Stellar mass Black Holes

ASTR 200 : Lecture 21. Stellar mass Black Holes 1 ASTR 200 : Lecture 21 Stellar mass Black Holes High-mass core collapse Just as there is an upper limit to the mass of a white dwarf (the Chandrasekhar limit), there is an upper limit to the mass of a

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Black Holes Goals: Understand Special Relativity General Relativity How do we observe black holes. Black Holes A consequence of gravity Massive neutron (>3M ) cannot be supported by degenerate neutron

More information

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 35 Curved spacetime black holes Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks on General Relativity

More information

The Theory of Relativity

The Theory of Relativity The Theory of Relativity Lee Chul Hoon chulhoon@hanyang.ac.kr Copyright 2001 by Lee Chul Hoon Table of Contents 1. Introduction 2. The Special Theory of Relativity The Galilean Transformation and the Newtonian

More information

Lecture 18 : Black holes. Astronomy 111

Lecture 18 : Black holes. Astronomy 111 Lecture 18 : Black holes Astronomy 111 Gravity's final victory A star more massive than about 18 M sun would leave behind a post-supernova core this is larger than 2-3 M sun :Neutron degeneracy pressure

More information

Understanding and Testing Relativity

Understanding and Testing Relativity Understanding and Testing Relativity From Einstein s formulations to the tests of today www. library.thinkquest.org www.csep10.phys.utk.edu www.arcive.ncsa.uiuc.edu Boston University - April 25, 2006 1

More information

PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric

PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric Cosmology applies physics to the universe as a whole, describing it s origin, nature evolution and ultimate fate. While these questions

More information

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland Cracking the Mysteries of the Universe Dr Janie K. Hoormann University of Queensland Timeline of Cosmological Discoveries 16c BCE: flat earth 5-11c CE: Sun at the centre 1837: Bessel et al. measure distance

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

The Science Missions of Columbia

The Science Missions of Columbia The Science Missions of Columbia Tools for Viewing The Universe Tools for Viewing The Universe & Columbia Shuttle Added Corrective Optics to the Hubble Space Telescope Hubble Discovers a New View of The

More information

Do You Need to Understand General Relativity to Understand Gravitation?

Do You Need to Understand General Relativity to Understand Gravitation? Do You Need to Understand General Relativity to Understand? Institute of Mathematical Sciences, Chennai IIAP-Bangalore 13 June 2006 Newton s Three Laws Figure: Newton s Laws. Newton The fundamental law

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Limitations of Newtonian Physics

Limitations of Newtonian Physics Limitations of Newtonian Physics 18 th and 19 th Centuries Newtonian Physics was accepted as an ultimate truth Science is never absolute Hundreds of experiments can t prove my theory right but only one

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves

Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves Scott E Pollack for the LISA team UW General Relativity Labs AAPT Workshop GSFC - JPL 5 January 2007 Outline LISA Overview

More information

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils Announcements Review for test on Monday, Nov 7 at 3:25pm Neutron Star - Black Hole merger Review for Test #3 Nov 8 Topics: Stars

More information

Name Final Exam December 7, 2015

Name Final Exam December 7, 2015 Name Final Exam December 7, 015 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Part I: Multiple Choice (mixed new and review questions)

More information

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Outline General Relativity Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Black Holes as a consequence of GR Waste Disposal It is decided that Earth will get rid of

More information

Outer space: A matter of gravity

Outer space: A matter of gravity 1997 2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non commercial use. For other uses, including electronic redistribution,

More information

Dark Energy vs. Dark Matter: Towards a unifying scalar field?

Dark Energy vs. Dark Matter: Towards a unifying scalar field? Dark Energy vs. Dark Matter: Towards a unifying scalar field? Alexandre ARBEY Centre de Recherche Astrophysique de Lyon Institut de Physique Nucléaire de Lyon, March 2nd, 2007. Introduction The Dark Stuff

More information

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom The structure of spacetime Eli Hawkins Walter D. van Suijlekom Einstein's happiest thought After Einstein formulated Special Relativity, there were two problems: Relativity of accelerated motion The monstrous

More information

A Theory of Gravitation in Flat Space-Time. Walter Petry

A Theory of Gravitation in Flat Space-Time. Walter Petry A Theory of Gravitation in Flat Space-Time Walter Petry Science Publishing Group 548 Fashion Avenue New York, NY 10018 Published by Science Publishing Group 2014 Copyright Walter Petry 2014 All rights

More information

ASTR 1040 Recitation: Relativity

ASTR 1040 Recitation: Relativity ASTR 1040 Recitation: Relativity Ryan Orvedahl Department of Astrophysical and Planetary Sciences February 17 & 19, 2014 This Week Fiske Planetarium: Thurs Feb 20 (9:30 am) Observing Session: Thurs Feb

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

GRAVITATIONAL COLLAPSE

GRAVITATIONAL COLLAPSE GRAVITATIONAL COLLAPSE Landau and Chandrasekhar first realised the importance of General Relativity for Stars (1930). If we increase their mass and/or density, the effects of gravitation become increasingly

More information

Scott Hughes 12 May Massachusetts Institute of Technology Department of Physics Spring 2005

Scott Hughes 12 May Massachusetts Institute of Technology Department of Physics Spring 2005 Scott Hughes 12 May 2005 24.1 Gravity? Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005 Lecture 24: A (very) brief introduction to general relativity. The Coulomb interaction

More information

Syllabus: Physics 241 Introduction to Modern Physics Professor Marshall Onellion (office)

Syllabus: Physics 241 Introduction to Modern Physics Professor Marshall Onellion (office) 1 Syllabus: Physics 241 Introduction to Modern Physics Professor Marshall Onellion (office) 263-6829 Office hours: onellion@wisc.edu MW: 10am- 1pm, F: 10am- noon, or by appointment Text: Kenneth Krane,

More information

General relativity and the Einstein equations

General relativity and the Einstein equations April 23, 2013 Special relativity 1905 Let S and S be two observers moving with velocity v relative to each other along the x-axis and let (t, x) and (t, x ) be the coordinate systems used by these observers.

More information

Physics 435 and 535 Fall 2016 Gravitational Physics

Physics 435 and 535 Fall 2016 Gravitational Physics Physics 435 and 535 Fall 2016 Gravitational Physics Instructor: Prof. Leopoldo A. Pando Zayas Office: Randall 3421, 764-5236, lpandoz@umich.edu Lectures:10:00 11:30 TTh in 335 WH Office Hours: Monday and

More information

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E FURTHER COSMOLOGY Book page 675-683 T H E M A K E U P O F T H E U N I V E R S E COSMOLOGICAL PRINCIPLE Is the Universe isotropic or homogeneous? There is no place in the Universe that would be considered

More information

Transformation of velocities

Transformation of velocities Announcements l Help room hours (1248 BPS) Ian La Valley(TA) Mon 4-6 PM Tues 12-3 PM Wed 6-9 PM Fri 10 AM-noon l LON-CAPA #9 due on Thurs Nov 15 l Third hour exam Thursday Dec 6 l Final Exam Tuesday Dec

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 7 Oct. 30, 2015 Today Relativistic Cosmology Dark Side of the Universe I: Dark Matter Assignments This week: read Hawley and

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. A material called spacetime

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. A material called spacetime Title A material called spacetime Author(s)Greve, Ralf Issue Date 2017-08-21 Doc URL http://hdl.handle.net/2115/67121 Type lecture Note Colloquium of Mechanics, Study Center Mechanics, Dar File Information

More information

Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab

Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab Lahore-Pakistan Hot Topics in Modern Cosmology, XIIth

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Ta-Pei Cheng PCNY 9/16/2011

Ta-Pei Cheng PCNY 9/16/2011 PCNY 9/16/2011 Ta-Pei Cheng For a more quantitative discussion, see Relativity, Gravitation & Cosmology: A Basic Introduction (Oxford Univ Press) 2 nd ed. (2010) dark matter & dark energy Astronomical

More information

Massachusetts Institute of Technology Physics Black Holes and Astrophysics Spring 2003 MIDTERM EXAMINATION

Massachusetts Institute of Technology Physics Black Holes and Astrophysics Spring 2003 MIDTERM EXAMINATION Massachusetts Institute of Technology Physics 8.224. Black Holes and Astrophysics Spring 2003 MIDTERM EXAMINATION This exam is CLOSED BOOK; no printed materials are allowed. You may consult ONE 8.5 by

More information

Index. Cambridge University Press A First Course in General Relativity: Second Edition Bernard F. Schutz. Index.

Index. Cambridge University Press A First Course in General Relativity: Second Edition Bernard F. Schutz. Index. accelerated particle, 41 acceleration, 46 48 absolute, 2 of the universe, 351 353 accretion disk, 317 active gravitational mass, 197, 202, 355 adiabatic, 103 affine parameter, 161, 166, 175 angular diameter

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

ASTR Astrophysics 1 - Stellar and Interstellar. Phil Armitage. office: JILA tower A909

ASTR Astrophysics 1 - Stellar and Interstellar. Phil Armitage. office: JILA tower A909 ASTR 3730 Astrophysics 1 - Stellar and Interstellar Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Part one of a year-long introduction to astrophysics: Aim - develop physical understanding

More information

Experimental Tests and Alternative Theories of Gravity

Experimental Tests and Alternative Theories of Gravity Experimental Tests and Alternative Theories of Gravity Gonzalo J. Olmo Alba gonzalo.olmo@uv.es University of Valencia (Spain) & UW-Milwaukee Experimental Tests and Alternative Theories of Gravity p. 1/2

More information

Gravity. Newtonian gravity: F = G M1 M2/r 2

Gravity. Newtonian gravity: F = G M1 M2/r 2 Gravity Einstein s General theory of relativity : Gravity is a manifestation of curvature of 4- dimensional (3 space + 1 time) space-time produced by matter (metric equation? g μν = η μν ) If the curvature

More information

Advanced Higher Physics

Advanced Higher Physics Wallace Hall Academy Physics Department Advanced Higher Physics Astrophysics Problems Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration g 9.8 m s -2 Radius of Earth R E 6.4

More information

Special & General Relativity

Special & General Relativity Special & General Relativity ASTR/PHYS 4080: Intro to Cosmology Week 2 1 Special Relativity: no ether Presumes absolute space and time, light is a vibration of some medium: the ether 2 Equivalence Principle(s)

More information

Syllabus for online Relativity and Cosmology (Instructor: Ta-Pei Cheng)

Syllabus for online Relativity and Cosmology (Instructor: Ta-Pei Cheng) Syllabus for online Relativity and Cosmology (Instructor: Ta-Pei Cheng) Welcome to this online course on Relativity and Cosmology. The two pillars of modern physics are quantum theory and relativity. Students

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

Lecture IX: Field equations, cosmological constant, and tides

Lecture IX: Field equations, cosmological constant, and tides Lecture IX: Field equations, cosmological constant, and tides Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: October 28, 2011) I. OVERVIEW We are now ready to construct Einstein

More information

5/7/2018. Black Holes. Type II.

5/7/2018. Black Holes. Type II. Black Holes Type II https://www.youtube.com/watch?v=ctnkk7tnkq8 1 Scientific American 22, 82 (2013) Scientific American 22, 82 (2013) 2 First detection of gravitational waves Recommended reading Physics

More information

UNIVERSITY OF NORTHERN COLORADO

UNIVERSITY OF NORTHERN COLORADO UNIVERSITY OF NORTHERN COLORADO Course Title: Prefix: SCI109 CRN+Section: The Cosmos The Cosmos - 40842 - SCI 109-943 Prerequisites: No Credit: 3 Term: Summer 2012 (Online) Instructors Physics Professor:

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information