Page # Early inflation, Hot Big Bang, Decelerating Expansion, Late inflation by Dark Energy. Lecture 14. Early Inflation

Size: px
Start display at page:

Download "Page # Early inflation, Hot Big Bang, Decelerating Expansion, Late inflation by Dark Energy. Lecture 14. Early Inflation"

Transcription

1 Early inflaion, Ho Big Bang, Deeleraing Expansion, Lae inflaion by Dark Energy Leure 14 Early Inflaion A possible soluion for: Why a ho Big Bang? Horizon problem Flaness problem Monopole problem Origin of primordial sruure 198: Inflaion Alan Guh) Early Inflaion: he firs 1- seonds Universe born from nohing? A quanum fluuaion produes a iny bubble of False auum. High vauum energy drives exponenial expansion, also known as inflaion. Universe expands by huge faor in iny fraion of seond, as false vauum reurns o rue vauum. Expansion so fas ha virual parile-aniparile pairs ge separaed o beome real pariles and anipariles. Srehes ou all sruures, giving a fla geomery and uniform T and ρ, wih iny ripples. Inflaion launhes he Ho Big Bang! Plank Unis Plank Lengh: E M h λ λ 1/ λ RS ) h M RS G M h/ G 1/ ~ LP ~ 1 5 m Plank Time h/ G 1/ L P P 5 ~ 1 4 s Plank Mass MP Quanum auum Heisenberg Unerainy priniple: de Broglie wavelengh ~ Shwarzshild radius ΔE Δ ~ h/ Can violae energy onservaion: Borrow energy from he vauum, bu only for a shor ime. To reae a parile-aniparile pair, need ΔE > m. These virual pairs live only briefly, Δ ~ h / ΔE. 1/ Plank Energy h/ LP h/ ~ 1 5 m p ~ 119 Ge/ G LP G h/ 5 1/ 19 EP MP ~ 1 Ge G Limis of Quanum Mehanis and General Relaiviy. Need Quanum Graviy heory as ye unknown) o desribe physis a hese sales. γ γ e+ _ q e- q auum is no empy. Filled wih all ypes of virual pairs.

2 Like waves on he sea. Quanum auum Quanum fields osillae in many possible wave modes x, ) ψ i x, ) A x, ),. Eah wave mode is a Harmoni Osillaor, Poenial energy:, ψ i, A, ) m + m ψ ψ + Ladder of disree Energy Saes: Zero-poin energy: En) n + 1 h / ω E) 1 h / ω h λ n n 1 n Quanum vauum all wave modes in ground sae. E n number of pariles n 1.. ε va auum Energy Densiy dn k) E k) d x d k d k h / k g π ) 4π k dk k dk g h / 16π g h / 4π Waves in a Box: L n λ k π λ π n Δk π L L dn d x d k g g L x L y L z Δk x Δk y Δk z π k 4 4 max k min ) Shor waves dominae. Densiy of saes in 6-D phase spae: Eah mode is a simple harmoni osillaor. ) 1 E k ) Phoons have g polarisaions. Elerons have g spin saes. Zero-poin energy per mode: h h / k λ Cosmologial Consan Problem Range of wavelenghs in he Cosmologial box: λ > L p ~ h / G 1/ ~ 1 5 m k max ~ π λ < ~ 4 Mp ~ 1 6 m k min ~ π H /H ε va g h / k 4 4 π max k min ) g h / 4 π π g h / 16π 4 ~ E P Ω va ρ va ~ π g h / ρ 4 ri L 8π G ~ 8π g /H p H L ~ 1 1 p Cosmologial Consan problem: Observe Ω Λ ~.7 Predi Ω Λ ~ 1 1 Why is Ω Λ so small, ye no exaly zero? Why does quanum vauum energy no graviae? Flaness Problem Why was he iniial geomery fla? If exaly fla, hen always so. To be roughly fla oday, mus iniially be inredibly lose o fla: 8π Gρ Ωx) H x 4 + Ω M x + Ω Λ x 4 + Ω M x + Ω Λ + 1 Ω ) x Ωx ) 1 ε x ~ ε ~ 1 5 x ~ /H ~ 1 61 Ω 1+ ε x Flaness problem: Why was Ω iniially so lose o 1? How did he Universe know preisely how fas o expand? Horizon Problem Why is he universe almos perfely isoropi? Disan regions were never in ausal ona. Ye we see: Same CMB emperaure o 1 par in 1 5. Similar galaxy disribuions. Thousands of galaxies, jus a few sars. HDF Norh The Hubble Deep Fields Similar galaxy disribuions, supporing he Cosmologial Priniple. HDF Souh

3 WMAP all-sky T.7 K dt / T ~ 1-5 The Horizon: How far an we see? Dipole and foreground galaxy removed suppose R) R ) α 1 ) 1 if α < 1 d α d 1 α χ H η ln if α 1 ) 1 R 1 α R α 1 1 R) 1 ) 1 if α > 1 α 1 1 α η As 1 >, Finie for α < 1, Infinie for α 1, >1. maer - dominaed : α / radiaion - dominaed : α 1/ χh Snapsho a z11 of quanum fluuaions srehed by inflaion. χh Dark maer poenial wells ha seed laer galaxy formaion. L H R ) R R ) d R) 1+ z ) dx Hx) 1+z x z 1+ z ) H ΩM x ) H z ) H z dx We don see any. 1/ kp h ΩM H Why is he universe devoid of magnei monopoles? Expands by faor 1 + z 11 o ~ Mp oday. Phase Transiions among Fores Quanum Graviy η elero-weak E EW ~ 5Ge χh srong weak eleromagnei E GUT ~ 115 Ge χh GUT E P ~ 119 Ge How did hese, ausally disonneed regions know wha emperaure o be, o 1 par in 15? The GUT Grand Unified Theory) phase ransiion should produe opologial defes ha look like magnei monopoles. x 4 ΩR + x ΩM Ω Ω x M 5 M. ΩR Magnei Monopole Problem Parile Horizon a z 11 R graviy Today: k T ~ 1.6 e Inflaion launhes he Big Bang During inflaion: Parile horizon expands R ) d H 1 ) R e L H ) e R) H 1 Dramai ooling 1 1 x 1+ z e H T T 1+ z) e H R R Geomery flaens R eh H R 1/? expand by faor f e H in ime ln f H Wha ame before? Early inflaion replaes he Big Bang singulariy. Launhes he Ho Big Bang. 8π G ρ va 1/ H ~ Horizon problem: Expands a ausally-onneed region. Flaness problem: Flaens he geomery. Monopole problem: Moves primordial monopoles beyond horizon. Seeding sruures: Srehes ou small quanum fluuaions. 8π Gρ ΩR x 4 + ΩM x + ΩΛ H ΩR x 4 + ΩM x + ΩΛ + 1 Ω ) x ΩΛ 1 Ω ) 1 x ΩΛ + 1 Ω ) x ΩΛ Ωx)

4 How muh inflaion needed? Presen horizon: R H ~ / H ~ 4 Mp ~ 1 6 m Plank ime : P ~ 1 4 s pos - inflaion redshif : z P ~ k T CMB f z P ~ f 1 m horizon ~ P ~ ~ 1 5 m E P ~ 119 Ge 1.6 e ~ 1 GUT phase ransiion : E GUT ~ 1 15 Ge E ~ kt ~ R -1 ~ -1/ GUT ~ E P E GUT P ~1 8 P ~ 1 5 s redshif ~ z GUT ~ E GUT ~ 115 Ge k T CMB 1.6 e ~ 18 L GUT L GUT f z GUT ~ f 1 9 m Need inflaion faor f ~1 9 ~ e 67 horizon ~ GUT ~ 1 8 ~ 1 7 m Inflaion faor f ~1 17 ~ e 4 Time ~ ln f ) / H ~ 4 GUT ~ 1 - s Requiremens for Inflaion: Friedmann momenum equaion: R R 4π G ε + p) H w Ω w x 1+w) 1+ w Aeleraion requires a suffiienly negaive pressure: p < - ε / w < -1 / Inflaion requires he dominan omponen o have w < -1 /. Dark Energy is driving inflaion now: w Λ 1 p Λ ε Λ R R + 8π G ε H Λ Ω Λ R exp H Λ ) H Λ H Ω Λ Λ Bu oday s Dark Energy is negligible a early imes. Wha auses Early Inflaion? An evolving Salar Field? Harmoni poenial Higgs poenial During inflaion: Salar Field Dynamis Jus afer inflaion: Today: Klein-Gordon equaion wave equaion for a massive salar field. E p + m 4 E i h / p i h / For a spaially-uniform field: d d m massive field : M P P ) m 4 m h / M P P ) Higgs field : a + b 4 auum energy sars large, delines o a lae imes. Kinei energy of he osillaions is damped. Re-heas he Universe, reaing all ypes of parileaniparile pairs, launhing he Ho Big Bang. Sponaneous Symmery Breaking Why sar in he false vauum, no near ~? Before GUT phase ransiion: Afer GUT phase ransiion: false vauum rue vauum Tunnel o rue vauum? No. Laen hea released, onvers o parile-aniparile pairs, re-heaing he universe. Small exess 1-9 ) of pariles. Salar Field Equaion of Sae Equaion of Sae: w p ϕ h / p / ε ) ) ε ϕ h / +1 w -1/ -1 << h ) + ) >> h Uniform field: ) << Inflaion makes spaial gradiens small. ) Required for inflaion: w p ε h / + h / < 1 ε + p h / < h / <1 The poenial energy mus dominae he kinei energy.

5 Salar Field Dynamis Equaion of Sae: p w p / ε h / ) ε h / + ) Evoluion of energy densiy: ε x 1+w) d dx /x H) ε dε dx dx d 1+ w) ε x H) H ε + p) x Evoluion of uniform salar field: ε h / + Hε + p) H h / + H h / Salar Field Dynamis Hubble Drag: Aeleraion damped by expansion: + H h / Inflaion makes spaial gradiens small. ) Slow-Roll Approximaion: H h / Friedmann equaion: H 8π G ε 8π G Terminal veloiy: h / H Required for Inflaion: h / h / 9H h / 5 4π G Like a snowflake falling / <<1 Inflaion requires a very fla poenial. Long Slow Roll Inflaion Ending in a Ho Big Bang. Long slow roll aross he plaeau poenial dominaed) gives > 6 e-foldings of inflaion ooling,flaening). Laen hea released during kinei energy dominaed) rapid roll and damped osillaions a he end fills he universe wih phoons and parile-aniparile pairs, launhing he Ho Big Bang. Iniial quanum vauum fluuaions mean differen regions finish a slighly differen imes, giving he small 1-5 ) emperaure/densiy ripples we see on he CMB. A Muli-verse? Chaoi Inflaion? auum wih quanum fluuaions. Many bubbles of false vauum inflae, wih: Differen physial onsans. Differen spaial dimensions. ANTHROPIC PRINCIPLE: Mos bubbles quikly re-ollapse or expand oo fas o form sars or are oherwise unsuiable as habias for Life. Is our visible universe par of a big bubble lasing long enough, and wih suiable physial laws, o allow beings like us o evolve?

Cosmology AS7009, 2009 Lecture 9

Cosmology AS7009, 2009 Lecture 9 Cosmology AS79, 29 Lecure 9 Scale facor Inflaion Time Ouline Gran Unifie Theories an phase ransiions Problems wih a non-inflaionary Big Bang Inflaion Inflaon fiel Slow-roll Reheaing Sees for srucure formaion

More information

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure data

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure data Modern cosmology : The Growh of Srucure Growh of srucure in an expanding universe The Jeans lengh Dark maer Large scale srucure simulaions effec of cosmological parameers Large scale srucure daa galaxy

More information

(Radiation Dominated) Last Update: 21 June 2006

(Radiation Dominated) Last Update: 21 June 2006 Chaper Rik s Cosmology uorial: he ime-emperaure Relaionship in he Early Universe Chaper he ime-emperaure Relaionship in he Early Universe (Radiaion Dominaed) Las Updae: 1 June 006 1. Inroduion n In Chaper

More information

( ) is the stretch factor, and x the

( ) is the stretch factor, and x the (Lecures 7-8) Liddle, Chaper 5 Simple cosmological models (i) Hubble s Law revisied Self-similar srech of he universe All universe models have his characerisic v r ; v = Hr since only his conserves homogeneiy

More information

Lecture 7. Galaxy Formation After decoupling, overdense regions collapse IF. Caveats. The Dark Ages ( 1100 < z < 20 ) Redshift of Galaxy Formation

Lecture 7. Galaxy Formation After decoupling, overdense regions collapse IF. Caveats. The Dark Ages ( 1100 < z < 20 ) Redshift of Galaxy Formation Lecure 7. Galaxy Formaion Afer decoupling, overdense regions collapse IF # k T L > L J ~ % ( $ G m ρ' / 2 ~ 50 pc Collapse ime G ~ ( G ρ) / 2 ~ 0 7 yr for all sizes. More small ripples han large waves.

More information

Lecture 7. Galaxy Formation

Lecture 7. Galaxy Formation Lecure 7. Galaxy Formaion Afer decoupling, overdense regions collapse IF k T L > L J ~ G m ρ Collapse ime 1/ 2 ~ 50 pc G ~ ( G ρ) 1/ 2 ~ 10 7 yr for all sizes. More small ripples han large waves. --> Universe

More information

PHYS-3301 Lecture 5. Chapter 2. Announcement. Sep. 12, Special Relativity. What about y and z coordinates? (x - direction of motion)

PHYS-3301 Lecture 5. Chapter 2. Announcement. Sep. 12, Special Relativity. What about y and z coordinates? (x - direction of motion) Announemen Course webpage hp://www.phys.u.edu/~slee/33/ Tebook PHYS-33 Leure 5 HW (due 9/4) Chaper, 6, 36, 4, 45, 5, 5, 55, 58 Sep., 7 Chaper Speial Relaiiy. Basi Ideas. Consequenes of Einsein s Posulaes

More information

Relativistic Jets from Black Holes: A Unified Picture

Relativistic Jets from Black Holes: A Unified Picture Relaivisi Jes from lak Holes: A Unified Piure C Sivaram and Kenah Arun Indian Insiue of Asrophysis, angalore Absra: The urren undersanding of he formaion of powerful bi-direional jes in sysems suh as radio

More information

Generalized The General Relativity Using Generalized Lorentz Transformation

Generalized The General Relativity Using Generalized Lorentz Transformation P P P P IJISET - Inernaional Journal of Innoaie Siene, Engineering & Tehnology, Vol. 3 Issue 4, April 6. www.ijise.om ISSN 348 7968 Generalized The General Relaiiy Using Generalized Lorenz Transformaion

More information

Cosmic String Loop Distribution with a Gravitational Wave Cutoff

Cosmic String Loop Distribution with a Gravitational Wave Cutoff Ouline Inroducion Towards he Cosmological Aracor Cosmic Sring Loop Disribuion wih a Graviaional Wave Cuoff Larissa Lorenz Insiue of Mahemaics and Physics Cenre for Cosmology, Paricle Physics and Phenomenology

More information

Lecture 7. Galaxy Formation After decoupling, overdense regions collapse IF. Caveats. The Dark Ages ( 1100 < z < 20 ) Redshift of Galaxy Formation

Lecture 7. Galaxy Formation After decoupling, overdense regions collapse IF. Caveats. The Dark Ages ( 1100 < z < 20 ) Redshift of Galaxy Formation Lecure 7 Galaxy Formaion Afer decoupling, overdense regions collapse IF # k T L > L J ~ % ( $ G m "' / 2 ~ 50 pc Collapse ime G ~ ( G " #/ 2 ~ 0 7 yr for all sizes More small ripples han large waves -->

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

Sound waves before recombination 25 Feb 2010

Sound waves before recombination 25 Feb 2010 Sound waves before recombinaion 25 Feb 2010 ü Physical condiions a recombinaion ü A recombinaion, which has he greaer mass densiy, pressureless maer or radiaion? W m0 = 0.26 pressureless maer, mosly dark

More information

A New Formulation of Electrodynamics

A New Formulation of Electrodynamics . Eleromagnei Analysis & Appliaions 1 457-461 doi:1.436/jemaa.1.86 Published Online Augus 1 hp://www.sirp.org/journal/jemaa A New Formulaion of Elerodynamis Arbab I. Arbab 1 Faisal A. Yassein 1 Deparmen

More information

Sound waves before recombination

Sound waves before recombination 9 Feb 2012 16 Feb 2012 21 Feb 2012 23 Feb 2012 28 Feb 2012 Sound waves before recombinaion è Ouline è Is sound carried by radiaion or by maer? è Sound speed è Calculaion of he angular scale for a universe

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Number of modes per unit volume of the cavity per unit frequency interval is given by: Mode Density, N

Number of modes per unit volume of the cavity per unit frequency interval is given by: Mode Density, N SMES404 - LASER PHYSCS (LECTURE 5 on /07/07) Number of modes per uni volume of he aviy per uni frequeny inerval is given by: 8 Mode Densiy, N (.) Therefore, energy densiy (per uni freq. inerval); U 8h

More information

A New Formulation of Quantum Mechanics

A New Formulation of Quantum Mechanics Journal of Modern Physis 3 63-69 hp://dxdoiorg/436/jmp3 Published Online February (hp://wwwsirporg/journal/jmp) A New Formulaion of Quanum Mehanis A I Arbab Faisal A Yassein Deparmen of Physis Fauly of

More information

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie e Quanum eory of Aoms and Molecules: e Scrodinger equaion Hilary erm 008 Dr Gran Ricie An equaion for maer waves? De Broglie posulaed a every paricles as an associaed wave of waveleng: / p Wave naure of

More information

BIANCHI TYPE I DUST FILLED UNIVERSE WITH DECAYING VACUUM ENERGY ( ) IN C-FIELD COSMOLOGY

BIANCHI TYPE I DUST FILLED UNIVERSE WITH DECAYING VACUUM ENERGY ( ) IN C-FIELD COSMOLOGY IJRRS 3 (3) December 0 www.arpapress.com/volumes/vol3issue3/ijrrs_3_3_7.pdf INHI TYPE I DUST FILLED UNIVERSE WITH DEYING VUUM ENERGY () IN -FIELD OSMOLOGY Ra ali & Seema Saraf Deparmen of Mahemaics, Universiy

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Energy Momentum Tensor for Photonic System

Energy Momentum Tensor for Photonic System 018 IJSST Volume 4 Issue 10 Prin ISSN : 395-6011 Online ISSN : 395-60X Themed Seion: Siene and Tehnology Energy Momenum Tensor for Phooni Sysem ampada Misra Ex-Gues-Teaher, Deparmens of Eleronis, Vidyasagar

More information

Doppler Effect. PHYS-2402 Lecture 6. Chapter 2. Announcement. Feb. 3, Special Relativity. Quiz 1: Thursday 30 min; Chap.2

Doppler Effect. PHYS-2402 Lecture 6. Chapter 2. Announcement. Feb. 3, Special Relativity. Quiz 1: Thursday 30 min; Chap.2 Announemen Course webpage hp://highenergy.phys.u.edu/~slee/40/ Tebook PHYS-40 Leure 6 Quiz : Thursday 30 min; Chap. Feb. 3, 05 HW (due /0) 0, 6, 36, 4, 46, 5, 55, 70, 76, 87, 9, Doppler Effe Chaper Speial

More information

Generalized electromagnetic energy-momentum tensor and scalar curvature of space at the location of charged particle

Generalized electromagnetic energy-momentum tensor and scalar curvature of space at the location of charged particle Generalized eleromagnei energy-momenum ensor and salar urvaure of spae a he loaion of harged parile A.L. Kholmeskii 1, O.V. Missevih and T. Yarman 3 1 Belarus Sae Universiy, Nezavisimosi Avenue, 0030 Minsk,

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Unsteady Mass- Transfer Models

Unsteady Mass- Transfer Models See T&K Chaper 9 Unseady Mass- Transfer Models ChEn 6603 Wednesday, April 4, Ouline Conex for he discussion Soluion for ransien binary diffusion wih consan c, N. Soluion for mulicomponen diffusion wih

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 5, 2013 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Tuesday, December 10, 2013, at 5:00 pm.

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

1. Define the following: molecular cloud, molecular core, protostar. Include typical properties when necessary.

1. Define the following: molecular cloud, molecular core, protostar. Include typical properties when necessary. 1 Soluions o PH6820 Miderm 1. Define he following: molecular cloud, molecular core, proosar. Include ypical properies when necessary. A molecular cloud is a disinc, self-graviaing cloud comprised primarily

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

2.3 The Lorentz Transformation Eq.

2.3 The Lorentz Transformation Eq. Announemen Course webage h://highenergy.hys.u.edu/~slee/4/ Tebook PHYS-4 Leure 4 HW (due 9/3 Chaer, 6, 36, 4, 45, 5, 5, 55, 58 Se. 8, 6.3 The Lorenz Transformaion q. We an use γ o wrie our ransformaions.

More information

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents Announemens HW # Due oday a 6pm. HW # posed online oday and due nex Tuesday a 6pm. Due o sheduling onflis wih some sudens, lasses will resume normally his week and nex. Miderm enaively 7/. EE4 Summer 5:

More information

ψ ( t) = c n ( t ) n

ψ ( t) = c n ( t ) n p. 31 PERTURBATION THEORY Given a Hamilonian H ( ) = H + V( ) where we know he eigenkes for H H n = En n we ofen wan o calculae changes in he ampliudes of n induced by V( ) : where ψ ( ) = c n ( ) n n

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Idealize Bioreactor CSTR vs. PFR... 3 Analysis of a simple continuous stirred tank bioreactor... 4 Residence time distribution... 4 F curve:...

Idealize Bioreactor CSTR vs. PFR... 3 Analysis of a simple continuous stirred tank bioreactor... 4 Residence time distribution... 4 F curve:... Idealize Bioreaor CSTR vs. PFR... 3 Analysis of a simple oninuous sirred ank bioreaor... 4 Residene ime disribuion... 4 F urve:... 4 C urve:... 4 Residene ime disribuion or age disribuion... 4 Residene

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

A Note of Widening on the Redshift Mechanism. June 23, 2010.

A Note of Widening on the Redshift Mechanism. June 23, 2010. A Noe of Widening on he Redshif Mechanism June 3, 1. José Francisco García Juliá / Dr. Marco Merenciano, 65, 5. 465 Valencia (Spain) -mail: jose.garcia@dival.es Absrac A single ired ligh mechanism has

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Seminar 4: Hotelling 2

Seminar 4: Hotelling 2 Seminar 4: Hoelling 2 November 3, 211 1 Exercise Par 1 Iso-elasic demand A non renewable resource of a known sock S can be exraced a zero cos. Demand for he resource is of he form: D(p ) = p ε ε > A a

More information

Lecture #11: Wavepacket Dynamics for Harmonic Oscillator

Lecture #11: Wavepacket Dynamics for Harmonic Oscillator Lecure #11: Wavepacke Dynamics for Harmonic Oscillaor and PIB Las ime: Time Dependen Schrödinger Equaion Ψ HHΨ = iħ Express Ψ in complee basis se of eigenfuncions of ime independen H H {ψ n (x), E n }

More information

The History and Philosophy of Astronomy

The History and Philosophy of Astronomy Astronomy 350L (Spring 2005) The History and Philosophy of Astronomy (Lecture 27: Modern Developments II: Inflation) Instructor: Volker Bromm TA: Amanda Bauer The University of Texas at Austin Big Bang

More information

A Model for the Expansion of the Universe

A Model for the Expansion of the Universe Issue 2 April PROGRESS IN PHYSICS Volume 0 204 A Model for he Expansion of he Universe Nilon Penha Silva Deparmeno de Física Reired Professor, Universidade Federal de Minas Gerais, Belo Horizone, MG, Brazil

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Deember 2, 203 Prof. Alan Guth QUIZ 3 SOLUTIONS Quiz Date: Deember 5, 203 PROBLEM : DID YOU DO THE READING? (35

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for

More information

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 XIII. The Very Early Universe and Inflation ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 Problems with the Big Bang The Flatness Problem The Horizon Problem The Monopole (Relic Particle)

More information

EW preheating & primordial magnetic fields

EW preheating & primordial magnetic fields EW preheaing & primordial magneic fields CFT&S, Cambridge UK 3-6h July 006 Juan García-Bellido Física Teórica UAM 6h July 006 Kofman, Linde, Sarobinsy PRL73, 395 994 PRD56, 358 997 Khlebniov, Tachev PRL77,

More information

8.022 (E&M) Lecture 9

8.022 (E&M) Lecture 9 8.0 (E&M) Lecure 9 Topics: circuis Thevenin s heorem Las ime Elecromoive force: How does a baery work and is inernal resisance How o solve simple circuis: Kirchhoff s firs rule: a any node, sum of he currens

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

Basic definitions and relations

Basic definitions and relations Basic definiions and relaions Lecurer: Dmiri A. Molchanov E-mail: molchan@cs.u.fi hp://www.cs.u.fi/kurssi/tlt-2716/ Kendall s noaion for queuing sysems: Arrival processes; Service ime disribuions; Examples.

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Mass Transfer Coefficients (MTC) and Correlations I

Mass Transfer Coefficients (MTC) and Correlations I Mass Transfer Mass Transfer Coeffiiens (MTC) and Correlaions I 7- Mass Transfer Coeffiiens and Correlaions I Diffusion an be desribed in wo ways:. Deailed physial desripion based on Fik s laws and he diffusion

More information

Chapter 15 Lasers, Laser Spectroscopy, and Photochemistry

Chapter 15 Lasers, Laser Spectroscopy, and Photochemistry Chaper 15 Lasers, Laser Specroscopy, and Phoochemisry ackground: In his chaper we will alk abou ligh amplificaion by simulaed emission of radiaion (LASER), heir impac on specroscopy and ligh-iniiaed reacions

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

A Special Hour with Relativity

A Special Hour with Relativity A Special Hour wih Relaiviy Kenneh Chu The Graduae Colloquium Deparmen of Mahemaics Universiy of Uah Oc 29, 2002 Absrac Wha promped Einsen: Incompaibiliies beween Newonian Mechanics and Maxwell s Elecromagneism.

More information

Hubble volume, Cosmic variable proton mass and the CMB radiation energy density

Hubble volume, Cosmic variable proton mass and the CMB radiation energy density Hubble volume, osmi variable proon mass and he MB radiaion energy densiy U. V. S. Seshavaharam Honorary fauly, I-SERVE, Alakapuri, Hyderabad-5, AP, India. E-mail: seshavaharam.uvs@gmail.om Prof. S. Lakshminarayana

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

The Special Theory of Relativity Chapter II

The Special Theory of Relativity Chapter II The Speial Theory of Relaiiy Chaper II 1. Relaiisi Kinemais. Time dilaion and spae rael 3. Lengh onraion 4. Lorenz ransformaions 5. Paradoes? Simulaneiy/Relaiiy If one obserer sees he eens as simulaneous,

More information

Galileo Galilei Institute Florence, Juan García-Bellido Física Teórica UAM 6th September 2006

Galileo Galilei Institute Florence, Juan García-Bellido Física Teórica UAM 6th September 2006 Galileo Galilei Insiue Florence, 6 Juan García-Bellido Física Teórica UAM 6h Sepember 6 Ouline Reheaing: Sandard perurbaive decay Oscillaing inflaon field Perurbaive decay raes Reheaing emperaure Preheaing:

More information

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts? AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

More information

Unstable Axion Quintessence Revisited

Unstable Axion Quintessence Revisited Unsable Axion Quinessence Revisied Carl L. Gardner gardner@mah.asu.edu School of Mahemaical & Saisical Sciences Arizona Sae Universiy Tempe AZ 85287-184 Absrac In axion quinessence, he cosmological era

More information

Chapter 1 Relativity

Chapter 1 Relativity Chaper Relaii - Posulaes of Speial Relaii and Loren Transformaion The s posulae: The laws of phsis ma be epressed in equaions haing he same form in all frames of referene moing a onsan eloi wih respe o

More information

Assignment 6. Tyler Shendruk December 6, 2010

Assignment 6. Tyler Shendruk December 6, 2010 Assignmen 6 Tyler Shendruk December 6, 1 1 Harden Problem 1 Le K be he coupling and h he exernal field in a 1D Ising model. From he lecures hese can be ransformed ino effecive coupling and fields K and

More information

FYS2160 Oblig 8. Lars Kristian Henriksen Universitetet i Oslo November 13, 2015

FYS2160 Oblig 8. Lars Kristian Henriksen Universitetet i Oslo November 13, 2015 FYS216 Oblig 8 Lars Krisian Henriksen Universiee i Oslo November 13, 215 FERMIGASSER 2 a) Oppgave 1 In he n-vecor space, he densiy of saes D(n x, n y, n z ) equals 2 as every possible sae can be occupied

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Toy model of Evolving Spherical Cosmology with Flatness, Angular Velocity, Temperature and Redshift

Toy model of Evolving Spherical Cosmology with Flatness, Angular Velocity, Temperature and Redshift Froniers of Asronomy, Asrophysis and Cosmology, 15, Vol. 1, No., 9-97 Available online a hp://pubs.siepub.om/faa/1// Siene and Eduaion Publishing DOI:1.1691/faa-1-- oy model of Evolving Spherial Cosmology

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Chapter 13 Homework Answers

Chapter 13 Homework Answers Chaper 3 Homework Answers 3.. The answer is c, doubling he [C] o while keeping he [A] o and [B] o consan. 3.2. a. Since he graph is no linear, here is no way o deermine he reacion order by inspecion. A

More information

TRANSMISSION LINES AND WAVEGUIDES. Uniformity along the Direction of Propagation

TRANSMISSION LINES AND WAVEGUIDES. Uniformity along the Direction of Propagation TRANSMISSION LINES AND WAVEGUIDES Uniformi along he Direion of Propagaion Definiion: Transmission Line TL is he erm o desribe ransmission ssems wih wo or more mealli onduors eleriall insulaed from eah

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

LIGHT and SPECIAL RELATIVITY

LIGHT and SPECIAL RELATIVITY VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY LENGTH CONTRACTION RELATIVISTIC ADDITION OF VELOCITIES Time is a relaie quaniy: differen obserers an measuremen differen ime

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

Chapter 5C Cosmic Geometry: Part 2 Last Update: 12 August 2007

Chapter 5C Cosmic Geometry: Part 2 Last Update: 12 August 2007 Chaper 5C - Cosmic Geomery: Par Chaper 5C Cosmic Geomery: Par Las Updae: ugus 7. Inroducion We coninue here our ouline of he basic geomerical properies of cosmological spaceimes which we began in Chaper

More information

Relativistic Dynamics

Relativistic Dynamics Announemen Course webage h://highenergy.hys.u.edu/~slee/4/ Tebook PHYS-4 Leure Se., 5 Leure Noes, HW Assignmens, Physis Colloquium, e.. Relaiisi Dynamis Chaer Seial Relaiiy. Basi Ideas. Consequenes of

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3 Mahemaial Foundaions -- Choie over Time Choie over ime A. The model B. Analysis of period and period 3 C. Analysis of period and period + 6 D. The wealh equaion 0 E. The soluion for large T 5 F. Fuure

More information

Today in Physics 218: radiation reaction

Today in Physics 218: radiation reaction Today in Physics 18: radiaion reacion Radiaion reacion The Abraham-Lorenz formula; radiaion reacion force The pah of he elecron in oday s firs example (radial decay grealy exaggeraed) 6 March 004 Physics

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information