An introduction to the algorithmic of p-adic numbers

Size: px
Start display at page:

Download "An introduction to the algorithmic of p-adic numbers"

Transcription

1 An introduction to the algorithmic of p-adic numbers David Lubicz 1 1 Universté de Rennes 1, Campus de Beaulieu, Rennes Cedex, France

2 Outline Introduction 1 Introduction

3 When do we need p-adic numbers? In elliptic curve cryptography, most of time, the important objects to manipulate are finite fields F q. Sometimes, we would like to use formulas coming from the classical theory of elliptic curves over C but they have no meaning in characteristic p because for instance they imply the evaluation of 1/p.

4 Cryptographic applications Main cryptographic applications of p-adic numbers : point counting algorithms; CM-methods; isogeny computations.

5 What are the p-adic numbers? A dictionary : Function fields C[X] C(X) a monomial (X α) finite extension of C(X) Laurent series about α Number theory Z Q p prime finite extension of Q p-adic numbers

6 Construction of p-adic numbers I Let p be a prime, let A n = Z/p n Z. We have a natural morphism φ : A n A n 1 provided by the reduction modulo p n 1. The sequence... A n A n 1... A 2 A 1 is an inverse system. Definition The ring of p-adic numbers is by definition Z p = lim(a n, φ n ).

7 Construction of p-adic numbers II An element of a = Z p can be represented as a sequence of elements a = (a 1, a 2,..., a n,...) with a i Z/p i Z and a i mod p i 1 = a i 1. The ring structure is the one inherited from that of Z/p i Z. The neutral element is (1,..., 1,...). There exists natural projections p i : Z p Z/p i Z, a a i = a mod p i.

8 I Proposition Let x Z p, x is invertible if and only if x mod p is invertible. Let x Z p, there exists a unique (u, n) where u is an invertible element of Z p and n a positive integer such that x = p n u. The integer n is called the valuation of x and denoted by v(x).

9 II Z p is a characteristic 0 ring; Z p is integral; Z p has a unique maximal ideal O p = {x Z p v(x) > 0}; There is a canonical isomorphism Z p /O p F p.

10 The field of p-adics Definition The field of p-adic numbers noted Q p is by definition the field of fractions of Z p. The valuation of Z p extend immediately to Q p by letting v(x/y) = v(x) v(y) for x, y Z p ; Q p comes with a norm called the p-adic norm given by x Qp = p v(x).

11 Representation as a series I Definition An element π Z p is called a uniformizing element if v(π) = 1. Let p 1 be the canonical projection from Z p to F p. A map ω : F p Z p is a system of representatives of F p if for all x F p we have p 1 ( ω(x) ) = x. Definition An element x Z p is called a lift of an element x 0 F p if p 1 (x) = x 0. Consequently, for all x F p, ω(x) is a lift of x.

12 Representation as a series II Let π be a uniformizing element of Z p, ω a system of representatives of F p in Z p and x Z p. Let n = v(x), then x/π n is an invertible element of Z p and there exists a unique x n F p such that v ( x π n ω(x n ) ) = n + 1. Iterating this process, we obtain that Proposition There exists a unique sequence (x i ) i 0 of elements of F p such that x = ω(x i )π i. i=0

13 I Let K be a finite extension of Q p defined by an irreducible polynomial m Q p [X]. There exists a unique norm K on K extending the p-adic norm on Q p. R = {x K x K 1} is the valuation ring of K. M = {x R x K < 1} is be the unique maximal ideal of R.

14 Field extension II Definition Keeping the notation from above : The field F q = R/M is an algebraic extension of F p, the degree of which is called the inertia degree of K and is denoted by f. The absolute ramification index of K is the integer e = v K ( ψ(p) ), where ψ : Z K is the canonical embedding of Z into K.

15 Unramified extensions I We have the Theorem Let d be the degree of K /Q p, then d = ef. Definition Let K /Q p be a finite extension. Then K is called absolutely unramified if e = 1. An absolutely unramified extension of degree d is denoted by Q q with q = p d and its valuation ring by Z q.

16 Unramified extensions II Proposition Let K be a finite extension of Q p defined by an irreducible polynomial m Q p [X]. Denote by P 1 the reduction morphism R[X] F q [X] induced by p 1 and let m be the irreducible polynomial defined by P 1 (m). The extension K /Q p is absolutely unramified if and only if deg m = deg m. Let d = deg m and F q = F p d the finite field defined by m, then we have p 1 (R) = F q.

17 Unramified extensions III The classification of unramified extension is given by their degree. Proposition Let K 1 and K 2 be two unramified extensions of Q p defined respectively by m 1 and m 2 then K 1 K 2 if and only if deg m 1 = deg m 2.

18 Unramified extensions IV The Galois properties of unramified extensions of Q p is the same as that of finite fields. Proposition An unramified extension K of Q p is Galois and its Galois group is cyclic generated by an element Σ that reduces to the Frobenius morphism on the residue field. We call this automorphism the Frobenius substitution on K.

19 Lefschetz principle I The field Q p and its unramified extensions enjoy several important properties: Their Galois groups reflect the structure of finite field extensions; Their are big enough to be characteristic 0 fields......but small enough so that there exists an field morphism K C for any K finite extension of Q p. Warning : Q p /Q is NOT an algebraic extension.

20 Lefschetz principle II The so-called Lefschetz principle consists in lifting objects defined over finite fields over the p-adics, then embedding the p-adics into C where we can obtain algebraic relations using analytic methods, and then interpret these relations over finite fields by reduction modulo p.

21 I Introduction Proposition Let K be an unramified extension of Q p with valuation ring R and norm K. Let f R[X] and let x 0 R be such that then the sequence f (x 0 ) K < f (x 0 ) 2 K x n+1 = x n f (x n) f (x n ) (1) converges quadratically towards a zero of f in R.

22 II The quadratic convergence implies that the precision of the approximation nearly doubles at each iteration. More precisely, let k = v K ( f (x 0 ) ) and let x be the limit of the sequence (1). Suppose that x i is an approximation of x to precision n, i.e. v K (x x i ) n, then x i+1 = x i f (x i )/f (x i ) is an approximation of x to precision 2n k.

23 Hensel lift Introduction Lemma (Hensel) Let f, A k, B k, U, V be polynomials with coefficients in R such that f A k B k (mod M k ), U(X)A k (X) + V (X)B k (X) = 1, with A k monic and deg U(X) < deg B k (X) and deg V (X) < deg A k (X) then there exist polynomials A k+1 and B k+1 satisfying the same conditions as above with k replaced by k + 1 and A k+1 A k (mod M k ), B k+1 B k (mod M k ).

24 Representation of p adic integers In practice, one computes with p-adic integers up to some precision N. An element a Z p is approximated by p N (a) Z/p N Z. The arithmetic reduces to the arithmetic modulo p N. For a given precision N, each element takes O(N log p) space.

25 Polynomial representation I Let Q q be the unramified extension of Q p of degree d. By proposition 3, Q q is defined by any polynomial M[X] Z p [X] such that m = P 1 (M) F p [X] is an irreducible degree d polynomial. We can assume that M is monic. As a consequence every a Q q can be written as a = d 1 i=0 a ix i with a i Q p and every b Z q can be written as b = d 1 i=0 b ix i with b i Z p. In order to make the reduction modulo M very fast, we choose M sparse.

26 Polynomial representation II In general, we work with Z q up to precision N. This can be done by computing in (Z/NZ)[X]/(M N ) where M N is the reduction of M modulo p N. The size of an object is O(dN log(p)).

27 Polynomials representation III Two common choices to speed up arithmetic in Z q : sparse modulus representation : we deduce M by lifting in a trivial way the coefficients of m. The reduction modulo M of a polynomial of degree less than 2(d 1) takes d(w 1) multiplication of a Z/NZ element by a small integer and dw subtractions in Z p where w is the number of non zero coefficients in M. Teichmüller modulus representation : We define M as the unique polynomial over Z p such that M(X) X q X and M(X) mod p = m(x). In this representation we have Σ(X) = X p.

28 Multiplication I The arithmetic in Z p with precision N is the same thing as the arithmetic in Z/p N Z. The multiplication of two elements of Z p takes O(N µ ) where µ is the exponent in the multiplication estimate of two integers (µ = 1 + ɛ with FFT, µ = log 3 with Karatsuba, and µ = 2 with school book method);

29 Multiplication II The multiplications of two elements of Z q is equivalent to the multiplication of two polynomials in (Z/NZ)[X] which take O(d ν N µ ) time (here ν is the exponent of the complexity function for the multiplication of two polynomials). In all the complexity of the multiplication of two p-adics is O(d ν N µ ).

30 Computing inverse with In order to inverse a Z q can be done by computing an inverse of p 1 (a) F q ; taking any lift z 1 Z q of 1/p 1 (a) F q ; z 1 is an approximation to precision 1 of the root of the polynomial f (X) = 1 ax; lifting the root z 1 to a given precision with Newton.

31 Computing inverse with Inverse Input: A unit a Z q and a precision N Output: The inverse of a to precision N 1 If N = 1 Then 2 z 1/a mod p 3 Else 4 z Inverse(a, N 2 ) 5 z z + z(1 az) mod p N 6 Return z

32 Computing inverse with We go through the log(n) iterations; The dominant operation is a multiplication of elements of Z q with precision N : this can be done in O(d ν N µ ) time; The overall complexity is O(log(N)d ν N µ ).

33 Computing square root with In the same way it, one can compute the inverse square root of a Z q to precision N in time O(log(N)d ν N µ ); Principle: compute the square root mod p and then do a with the polynomial f (X) = 1 ax 2 ; For a reference ([CFA + 06] pp. 248).

34 The AGM algorithm I Elliptic curve AGM Input: An ordinary elliptic curve E : y 2 + xy = x 3 + c over F 2 d with j(e) 0. Output: The number of points on E(F 2 d ). 1 N d a 1 and b (1 + 8c) mod For i = 5 To N Do 4 (a, b) ( (a + b)/2, ab ) mod 2 i 5 a 0 a

35 The AGM algorithm II 1 For i = 0 To d 1 Do 2 (a, b) ( (a + b)/2, ab ) mod 2 N 3 t a 0 a mod 2N 1 4 If t 2 > 2 d+2 Then t t 2 N 1 5 Return 2 d + 1 t

36 Complexity of the AGM algorithm You know everything you need to see that the complexity is quasi-cubic.

37 The End Introduction Thank you for your attention. Any question?

38 Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and Frederik Vercauteren, editors. Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions, volume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, Alain M. Robert.

39 A course in p-adic analysis, volume 198 of Graduate Texts in Mathematics. Springer-Verlag, New York, J.-P. Serre. A course in arithmetic. Springer-Verlag, New York, Translated from the French, Graduate Texts in Mathematics, No. 7. Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York, Translated from the French by Marvin Jay Greenberg.

A linear resolvent for degree 14 polynomials

A linear resolvent for degree 14 polynomials A linear resolvent for degree 14 polynomials Chad Awtrey and Erin Strosnider Abstract We discuss the construction and factorization pattern of a linear resolvent polynomial that is useful for computing

More information

Algebraic Number Theory Notes: Local Fields

Algebraic Number Theory Notes: Local Fields Algebraic Number Theory Notes: Local Fields Sam Mundy These notes are meant to serve as quick introduction to local fields, in a way which does not pass through general global fields. Here all topological

More information

CONSTRUCTING SUPERSINGULAR ELLIPTIC CURVES. Reinier Bröker

CONSTRUCTING SUPERSINGULAR ELLIPTIC CURVES. Reinier Bröker CONSTRUCTING SUPERSINGULAR ELLIPTIC CURVES Reinier Bröker Abstract. We give an algorithm that constructs, on input of a prime power q and an integer t, a supersingular elliptic curve over F q with trace

More information

1 Absolute values and discrete valuations

1 Absolute values and discrete valuations 18.785 Number theory I Lecture #1 Fall 2015 09/10/2015 1 Absolute values and discrete valuations 1.1 Introduction At its core, number theory is the study of the ring Z and its fraction field Q. Many questions

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

A BRIEF INTRODUCTION TO LOCAL FIELDS

A BRIEF INTRODUCTION TO LOCAL FIELDS A BRIEF INTRODUCTION TO LOCAL FIELDS TOM WESTON The purpose of these notes is to give a survey of the basic Galois theory of local fields and number fields. We cover much of the same material as [2, Chapters

More information

Counting Points on Curves using Monsky-Washnitzer Cohomology

Counting Points on Curves using Monsky-Washnitzer Cohomology Counting Points on Curves using Monsky-Washnitzer Cohomology Frederik Vercauteren frederik@cs.bris.ac.uk Jan Denef jan.denef@wis.kuleuven.ac.be University of Leuven http://www.arehcc.com University of

More information

Absolute Values and Completions

Absolute Values and Completions Absolute Values and Completions B.Sury This article is in the nature of a survey of the theory of complete fields. It is not exhaustive but serves the purpose of familiarising the readers with the basic

More information

p-adic fields Chapter 7

p-adic fields Chapter 7 Chapter 7 p-adic fields In this chapter, we study completions of number fields, and their ramification (in particular in the Galois case). We then look at extensions of the p-adic numbers Q p and classify

More information

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions February 1, 2005 INTRODUCTION TO p-adic NUMBERS JASON PRESZLER 1. p-adic Expansions The study of p-adic numbers originated in the work of Kummer, but Hensel was the first to truly begin developing the

More information

Galois groups of 2-adic fields of degree 12 with automorphism group of order 6 and 12

Galois groups of 2-adic fields of degree 12 with automorphism group of order 6 and 12 Galois groups of 2-adic fields of degree 12 with automorphism group of order 6 and 12 Chad Awtrey and Christopher R. Shill Abstract Let p be a prime number and n a positive integer. In recent years, several

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013 18.78 Introduction to Arithmetic Geometry Fall 013 Lecture #4 1/03/013 4.1 Isogenies of elliptic curves Definition 4.1. Let E 1 /k and E /k be elliptic curves with distinguished rational points O 1 and

More information

Modular Multiplication in GF (p k ) using Lagrange Representation

Modular Multiplication in GF (p k ) using Lagrange Representation Modular Multiplication in GF (p k ) using Lagrange Representation Jean-Claude Bajard, Laurent Imbert, and Christophe Nègre Laboratoire d Informatique, de Robotique et de Microélectronique de Montpellier

More information

P -adic root separation for quadratic and cubic polynomials

P -adic root separation for quadratic and cubic polynomials P -adic root separation for quadratic and cubic polynomials Tomislav Pejković Abstract We study p-adic root separation for quadratic and cubic polynomials with integer coefficients. The quadratic and reducible

More information

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p EVAN TURNER Abstract. This paper will focus on the p-adic numbers and their properties. First, we will examine the p-adic norm and look at some of

More information

Counting points on curves: the general case

Counting points on curves: the general case Counting points on curves: the general case Jan Tuitman, KU Leuven October 14, 2015 Jan Tuitman, KU Leuven Counting points on curves: the general case October 14, 2015 1 / 26 Introduction Algebraic curves

More information

Curves, Cryptography, and Primes of the Form x 2 + y 2 D

Curves, Cryptography, and Primes of the Form x 2 + y 2 D Curves, Cryptography, and Primes of the Form x + y D Juliana V. Belding Abstract An ongoing challenge in cryptography is to find groups in which the discrete log problem hard, or computationally infeasible.

More information

KILLING WILD RAMIFICATION

KILLING WILD RAMIFICATION KILLING WILD RAMIFICATION MANISH KUMAR Abstract. We compute the inertia group of the compositum of wildly ramified Galois covers. It is used to show that even the p-part of the inertia group of a Galois

More information

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS Sairaiji, F. Osaka J. Math. 39 (00), 3 43 FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS FUMIO SAIRAIJI (Received March 4, 000) 1. Introduction Let be an elliptic curve over Q. We denote by ˆ

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

Polynomials. Chapter 4

Polynomials. Chapter 4 Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

Higher Ramification Groups

Higher Ramification Groups COLORADO STATE UNIVERSITY MATHEMATICS Higher Ramification Groups Dean Bisogno May 24, 2016 1 ABSTRACT Studying higher ramification groups immediately depends on some key ideas from valuation theory. With

More information

Dieudonné Modules and p-divisible Groups

Dieudonné Modules and p-divisible Groups Dieudonné Modules and p-divisible Groups Brian Lawrence September 26, 2014 The notion of l-adic Tate modules, for primes l away from the characteristic of the ground field, is incredibly useful. The analogous

More information

Mappings of elliptic curves

Mappings of elliptic curves Mappings of elliptic curves Benjamin Smith INRIA Saclay Île-de-France & Laboratoire d Informatique de l École polytechnique (LIX) Eindhoven, September 2008 Smith (INRIA & LIX) Isogenies of Elliptic Curves

More information

Part 1. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

Part 1. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form Commutative Algebra Homework 3 David Nichols Part 1 Exercise 2.6 For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form m 0 + m

More information

14 Ordinary and supersingular elliptic curves

14 Ordinary and supersingular elliptic curves 18.783 Elliptic Curves Spring 2015 Lecture #14 03/31/2015 14 Ordinary and supersingular elliptic curves Let E/k be an elliptic curve over a field of positive characteristic p. In Lecture 7 we proved that

More information

NUMBER FIELDS UNRAMIFIED AWAY FROM 2

NUMBER FIELDS UNRAMIFIED AWAY FROM 2 NUMBER FIELDS UNRAMIFIED AWAY FROM 2 JOHN W. JONES Abstract. Consider the set of number fields unramified away from 2, i.e., unramified outside {2, }. We show that there do not exist any such fields of

More information

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information MRQ 2017 School of Mathematics and Statistics MT5836 Galois Theory Handout 0: Course Information Lecturer: Martyn Quick, Room 326. Prerequisite: MT3505 (or MT4517) Rings & Fields Lectures: Tutorials: Mon

More information

8 Complete fields and valuation rings

8 Complete fields and valuation rings 18.785 Number theory I Fall 2017 Lecture #8 10/02/2017 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L/K of the fraction field K of a

More information

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a.

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a. Galois fields 1 Fields A field is an algebraic structure in which the operations of addition, subtraction, multiplication, and division (except by zero) can be performed, and satisfy the usual rules. More

More information

2-ADIC ARITHMETIC-GEOMETRIC MEAN AND ELLIPTIC CURVES

2-ADIC ARITHMETIC-GEOMETRIC MEAN AND ELLIPTIC CURVES -ADIC ARITHMETIC-GEOMETRIC MEAN AND ELLIPTIC CURVES KENSAKU KINJO, YUKEN MIYASAKA AND TAKAO YAMAZAKI 1. The arithmetic-geometric mean over R and elliptic curves We begin with a review of a relation between

More information

Galois groups with restricted ramification

Galois groups with restricted ramification Galois groups with restricted ramification Romyar Sharifi Harvard University 1 Unique factorization: Let K be a number field, a finite extension of the rational numbers Q. The ring of integers O K of K

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 2: Mathematical Concepts Divisibility Congruence Quadratic Residues

More information

Elliptic Curves Spring 2017 Lecture #5 02/22/2017

Elliptic Curves Spring 2017 Lecture #5 02/22/2017 18.783 Elliptic Curves Spring 017 Lecture #5 0//017 5 Isogenies In almost every branch of mathematics, when considering a category of mathematical objects with a particular structure, the maps between

More information

Counting points on elliptic curves: Hasse s theorem and recent developments

Counting points on elliptic curves: Hasse s theorem and recent developments Counting points on elliptic curves: Hasse s theorem and recent developments Igor Tolkov June 3, 009 Abstract We introduce the the elliptic curve and the problem of counting the number of points on the

More information

LECTURE 2. Hilbert Symbols

LECTURE 2. Hilbert Symbols LECTURE 2 Hilbert Symbols Let be a local field over Q p (though any local field suffices) with char() 2. Note that this includes fields over Q 2, since it is the characteristic of the field, and not the

More information

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments Chapter 9 Local Fields The definition of global field varies in the literature, but all definitions include our primary source of examples, number fields. The other fields that are of interest in algebraic

More information

Notes on p-divisible Groups

Notes on p-divisible Groups Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

More information

Lecture 7: Etale Fundamental Group - Examples

Lecture 7: Etale Fundamental Group - Examples Lecture 7: Etale Fundamental Group - Examples October 15, 2014 In this lecture our only goal is to give lots of examples of etale fundamental groups so that the reader gets some feel for them. Some of

More information

3 Extensions of local fields

3 Extensions of local fields 3 Extensions of local fields ocal field = field complete wrt an AV. (Sometimes people are more restrictive e.g. some people require the field to be locally compact.) We re going to study extensions of

More information

Number of points on a family of curves over a finite field

Number of points on a family of curves over a finite field arxiv:1610.02978v1 [math.nt] 10 Oct 2016 Number of points on a family of curves over a finite field Thiéyacine Top Abstract In this paper we study a family of curves obtained by fibre products of hyperelliptic

More information

arxiv: v2 [math.nt] 12 Dec 2018

arxiv: v2 [math.nt] 12 Dec 2018 LANGLANDS LAMBDA UNCTION OR QUADRATIC TAMELY RAMIIED EXTENSIONS SAZZAD ALI BISWAS Abstract. Let K/ be a quadratic tamely ramified extension of a non-archimedean local field of characteristic zero. In this

More information

Fast hashing to G2 on pairing friendly curves

Fast hashing to G2 on pairing friendly curves Fast hashing to G2 on pairing friendly curves Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and Ezekiel J. Kachisa School of Computing Dublin City University Ballymun, Dublin

More information

The Local Langlands Conjectures for n = 1, 2

The Local Langlands Conjectures for n = 1, 2 The Local Langlands Conjectures for n = 1, 2 Chris Nicholls December 12, 2014 1 Introduction These notes are based heavily on Kevin Buzzard s excellent notes on the Langlands Correspondence. The aim is

More information

CLASS FIELD THEORY WEEK Motivation

CLASS FIELD THEORY WEEK Motivation CLASS FIELD THEORY WEEK 1 JAVIER FRESÁN 1. Motivation In a 1640 letter to Mersenne, Fermat proved the following: Theorem 1.1 (Fermat). A prime number p distinct from 2 is a sum of two squares if and only

More information

Boston College, Department of Mathematics, Chestnut Hill, MA , May 25, 2004

Boston College, Department of Mathematics, Chestnut Hill, MA , May 25, 2004 NON-VANISHING OF ALTERNANTS by Avner Ash Boston College, Department of Mathematics, Chestnut Hill, MA 02467-3806, ashav@bcedu May 25, 2004 Abstract Let p be prime, K a field of characteristic 0 Let (x

More information

The Polynomial Composition Problem in (Z/nZ)[X]

The Polynomial Composition Problem in (Z/nZ)[X] The Polynomial Composition Problem in (Z/nZ)[X] Marc Joye 1, David Naccache 2, and Stéphanie Porte 1 1 Gemplus Card International Avenue du Jujubier, ZI Athélia IV, 13705 La Ciotat Cedex, France {marc.joye,

More information

Computing with polynomials: Hensel constructions

Computing with polynomials: Hensel constructions Course Polynomials: Their Power and How to Use Them, JASS 07 Computing with polynomials: Hensel constructions Lukas Bulwahn March 28, 2007 Abstract To solve GCD calculations and factorization of polynomials

More information

FIELD THEORY. Contents

FIELD THEORY. Contents FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions

More information

Graph structure of isogeny on elliptic curves

Graph structure of isogeny on elliptic curves Graph structure of isogeny on elliptic curves Université Versailles Saint Quentin en Yvelines October 23, 2014 1/ 42 Outline of the talk 1 Reminder about elliptic curves, 2 Endomorphism ring of elliptic

More information

GALOIS GROUPS OF DEGREE 12 2-ADIC FIELDS WITH TRIVIAL AUTOMORPHISM GROUP

GALOIS GROUPS OF DEGREE 12 2-ADIC FIELDS WITH TRIVIAL AUTOMORPHISM GROUP GALOIS GROUPS OF DEGREE 12 2-ADIC FIELDS WITH TRIVIAL AUTOMORPHISM GROUP CHAD AWTREY, NICOLE MILES, CHRISTOPER SHILL, AND ERIN STROSNIDER Abstract. We classify all degree 12 extensions of the 2-adic numbers

More information

Identifying supersingular elliptic curves

Identifying supersingular elliptic curves Identifying supersingular elliptic curves Andrew V. Sutherland Massachusetts Institute of Technology January 6, 2012 http://arxiv.org/abs/1107.1140 Andrew V. Sutherland (MIT) Identifying supersingular

More information

ABSOLUTE VALUES AND VALUATIONS

ABSOLUTE VALUES AND VALUATIONS ABSOLUTE VALUES AND VALUATIONS YIFAN WU, wuyifan@umich.edu Abstract. We introduce the basis notions, properties and results of absolute values, valuations, discrete valuation rings and higher unit groups.

More information

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998 CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic

More information

AN APPLICATION OF THE p-adic ANALYTIC CLASS NUMBER FORMULA

AN APPLICATION OF THE p-adic ANALYTIC CLASS NUMBER FORMULA AN APPLICATION OF THE p-adic ANALYTIC CLASS NUMBER FORMULA CLAUS FIEKER AND YINAN ZHANG Abstract. We propose an algorithm to compute the p-part of the class number for a number field K, provided K is totally

More information

1.6.1 What are Néron Models?

1.6.1 What are Néron Models? 18 1. Abelian Varieties: 10/20/03 notes by W. Stein 1.6.1 What are Néron Models? Suppose E is an elliptic curve over Q. If is the minimal discriminant of E, then E has good reduction at p for all p, in

More information

LECTURE 2 FRANZ LEMMERMEYER

LECTURE 2 FRANZ LEMMERMEYER LECTURE 2 FRANZ LEMMERMEYER Last time we have seen that the proof of Fermat s Last Theorem for the exponent 4 provides us with two elliptic curves (y 2 = x 3 + x and y 2 = x 3 4x) in the guise of the quartic

More information

An Approach to Hensel s Lemma

An Approach to Hensel s Lemma Irish Math. Soc. Bulletin 47 (2001), 15 21 15 An Approach to Hensel s Lemma gary mcguire Abstract. Hensel s Lemma is an important tool in many ways. One application is in factoring polynomials over Z.

More information

A Note on Cyclotomic Integers

A Note on Cyclotomic Integers To the memory of Alan Thorndike, former professor of physics at the University of Puget Sound and a dear friend, teacher and mentor. A Note on Cyclotomic Integers Nicholas Phat Nguyen 1 Abstract. In this

More information

CLASS FIELD THEORY AND COMPLEX MULTIPLICATION FOR ELLIPTIC CURVES

CLASS FIELD THEORY AND COMPLEX MULTIPLICATION FOR ELLIPTIC CURVES CLASS FIELD THEORY AND COMPLEX MULTIPLICATION FOR ELLIPTIC CURVES FRANK GOUNELAS 1. Class Field Theory We ll begin by motivating some of the constructions of the CM (complex multiplication) theory for

More information

Some algebraic number theory and the reciprocity map

Some algebraic number theory and the reciprocity map Some algebraic number theory and the reciprocity map Ervin Thiagalingam September 28, 2015 Motivation In Weinstein s paper, the main problem is to find a rule (reciprocity law) for when an irreducible

More information

On elliptic curves in characteristic 2 with wild additive reduction

On elliptic curves in characteristic 2 with wild additive reduction ACTA ARITHMETICA XCI.2 (1999) On elliptic curves in characteristic 2 with wild additive reduction by Andreas Schweizer (Montreal) Introduction. In [Ge1] Gekeler classified all elliptic curves over F 2

More information

1/30: Polynomials over Z/n.

1/30: Polynomials over Z/n. 1/30: Polynomials over Z/n. Last time to establish the existence of primitive roots we rely on the following key lemma: Lemma 6.1. Let s > 0 be an integer with s p 1, then we have #{α Z/pZ α s = 1} = s.

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

Local corrections of discriminant bounds and small degree extensions of quadratic base fields

Local corrections of discriminant bounds and small degree extensions of quadratic base fields January 29, 27 21:58 WSPC/INSTRUCTION FILE main International Journal of Number Theory c World Scientific Publishing Company Local corrections of discriminant bounds and small degree extensions of quadratic

More information

An Introduction to Supersingular Elliptic Curves and Supersingular Primes

An Introduction to Supersingular Elliptic Curves and Supersingular Primes An Introduction to Supersingular Elliptic Curves and Supersingular Primes Anh Huynh Abstract In this article, we introduce supersingular elliptic curves over a finite field and relevant concepts, such

More information

A survey of p-adic approaches to zeta functions (plus a new approach)

A survey of p-adic approaches to zeta functions (plus a new approach) A survey of p-adic approaches to zeta functions (plus a new approach) Kiran S. Kedlaya Department of Mathematics, University of California, San Diego kedlaya@ucsd.edu http://math.ucsd.edu/~kedlaya/slides/

More information

Contents Lecture 1 2 Norms 2 Completeness 4 p-adic expansions 5 Exercises to lecture 1 6 Lecture 2 7 Completions 7 p-adic integers 7 Extensions of Q

Contents Lecture 1 2 Norms 2 Completeness 4 p-adic expansions 5 Exercises to lecture 1 6 Lecture 2 7 Completions 7 p-adic integers 7 Extensions of Q p-adic ANALYSIS, p-adic ARITHMETIC Contents Lecture 1 2 Norms 2 Completeness 4 p-adic expansions 5 Exercises to lecture 1 6 Lecture 2 7 Completions 7 p-adic integers 7 Extensions of Q p 10 Exercises to

More information

CONSTRUCTING GALOIS 2-EXTENSIONS OF THE 2-ADIC NUMBERS

CONSTRUCTING GALOIS 2-EXTENSIONS OF THE 2-ADIC NUMBERS CONSTRUCTING GALOIS 2-EXTENSIONS OF THE 2-ADIC NUMBERS CHAD AWTREY, JIM BEUERLE, AND JADE SCHRADER Abstract. Let Q 2 denote the field of 2-adic numbers, and let G be a group of order 2 n for some positive

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

Application of Explicit Hilbert s Pairing to Constructive Class Field Theory and Cryptography

Application of Explicit Hilbert s Pairing to Constructive Class Field Theory and Cryptography Applied Mathematical Sciences, Vol. 10, 2016, no. 45, 2205-2213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.64149 Application of Explicit Hilbert s Pairing to Constructive Class Field

More information

Formulary for elliptic divisibility sequences and elliptic nets. Let E be the elliptic curve defined over the rationals with Weierstrass equation

Formulary for elliptic divisibility sequences and elliptic nets. Let E be the elliptic curve defined over the rationals with Weierstrass equation Formulary for elliptic divisibility sequences and elliptic nets KATHERINE E STANGE Abstract Just the formulas No warranty is expressed or implied May cause side effects Not to be taken internally Remove

More information

P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS. Tomislav Pejković

P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS. Tomislav Pejković RAD HAZU. MATEMATIČKE ZNANOSTI Vol. 20 = 528 2016): 9-18 P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS Tomislav Pejković Abstract. We study p-adic root separation for quadratic and cubic

More information

Hamburger Beiträge zur Mathematik

Hamburger Beiträge zur Mathematik Hamburger Beiträge zur Mathematik Nr. 712, November 2017 Remarks on the Polynomial Decomposition Law by Ernst Kleinert Remarks on the Polynomial Decomposition Law Abstract: we first discuss in some detail

More information

Counting points on genus 2 curves over finite

Counting points on genus 2 curves over finite Counting points on genus 2 curves over finite fields Chloe Martindale May 11, 2017 These notes are from a talk given in the Number Theory Seminar at the Fourier Institute, Grenoble, France, on 04/05/2017.

More information

Constructing genus 2 curves over finite fields

Constructing genus 2 curves over finite fields Constructing genus 2 curves over finite fields Kirsten Eisenträger The Pennsylvania State University Fq12, Saratoga Springs July 15, 2015 1 / 34 Curves and cryptography RSA: most widely used public key

More information

Galois Representations

Galois Representations 9 Galois Representations This book has explained the idea that all elliptic curves over Q arise from modular forms. Chapters 1 and introduced elliptic curves and modular curves as Riemann surfaces, and

More information

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26 MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26 1. Abelian Varieties of GL 2 -Type 1.1. Modularity Criteria. Here s what we ve shown so far: Fix a continuous residual representation : G Q GLV, where V is

More information

TC10 / 3. Finite fields S. Xambó

TC10 / 3. Finite fields S. Xambó TC10 / 3. Finite fields S. Xambó The ring Construction of finite fields The Frobenius automorphism Splitting field of a polynomial Structure of the multiplicative group of a finite field Structure of the

More information

MANIN-MUMFORD AND LATTÉS MAPS

MANIN-MUMFORD AND LATTÉS MAPS MANIN-MUMFORD AND LATTÉS MAPS JORGE PINEIRO Abstract. The present paper is an introduction to the dynamical Manin-Mumford conjecture and an application of a theorem of Ghioca and Tucker to obtain counterexamples

More information

Definability in fields Lecture 2: Defining valuations

Definability in fields Lecture 2: Defining valuations Definability in fields Lecture 2: Defining valuations 6 February 2007 Model Theory and Computable Model Theory Gainesville, Florida Defining Z in Q Theorem (J. Robinson) Th(Q) is undecidable. Defining

More information

Chapter 4 Finite Fields

Chapter 4 Finite Fields Chapter 4 Finite Fields Introduction will now introduce finite fields of increasing importance in cryptography AES, Elliptic Curve, IDEA, Public Key concern operations on numbers what constitutes a number

More information

Defining Valuation Rings

Defining Valuation Rings East Carolina University, Greenville, North Carolina, USA June 8, 2018 Outline 1 What? Valuations and Valuation Rings Definability Questions in Number Theory 2 Why? Some Questions and Answers Becoming

More information

Model theory of valued fields Lecture Notes

Model theory of valued fields Lecture Notes Model theory of valued fields Lecture Notes Lou van den Dries Fall Semester 2004 Contents 1 Introduction 2 2 Henselian local rings 5 2.2 Hensel s Lemma........................... 6 2.3 Completion..............................

More information

Class invariants by the CRT method

Class invariants by the CRT method Class invariants by the CRT method Andreas Enge Andrew V. Sutherland INRIA Bordeaux-Sud-Ouest Massachusetts Institute of Technology ANTS IX Andreas Enge and Andrew Sutherland Class invariants by the CRT

More information

0.1 Valuations on a number field

0.1 Valuations on a number field The Dictionary Between Nevanlinna Theory and Diophantine approximation 0. Valuations on a number field Definition Let F be a field. By an absolute value on F, we mean a real-valued function on F satisfying

More information

Modular forms and the Hilbert class field

Modular forms and the Hilbert class field Modular forms and the Hilbert class field Vladislav Vladilenov Petkov VIGRE 2009, Department of Mathematics University of Chicago Abstract The current article studies the relation between the j invariant

More information

DIVISION ALGEBRAS WITH AN ANTI-AUTOMORPHISM BUT WITH NO INVOLUTION

DIVISION ALGEBRAS WITH AN ANTI-AUTOMORPHISM BUT WITH NO INVOLUTION DIVISION ALGEBRAS WITH AN ANTI-AUTOMORPHISM BUT WITH NO INVOLUTION P.J. MORANDI, B.A. SETHURAMAN, AND J.-P. TIGNOL 1. Introduction In this note we give examples of division rings which posses an anti-automorphism

More information

Introduction to Elliptic Curves

Introduction to Elliptic Curves IAS/Park City Mathematics Series Volume XX, XXXX Introduction to Elliptic Curves Alice Silverberg Introduction Why study elliptic curves? Solving equations is a classical problem with a long history. Starting

More information

A Version of the Grothendieck Conjecture for p-adic Local Fields

A Version of the Grothendieck Conjecture for p-adic Local Fields A Version of the Grothendieck Conjecture for p-adic Local Fields by Shinichi MOCHIZUKI* Section 0: Introduction The purpose of this paper is to prove an absolute version of the Grothendieck Conjecture

More information

NOTES ON DIOPHANTINE APPROXIMATION

NOTES ON DIOPHANTINE APPROXIMATION NOTES ON DIOPHANTINE APPROXIMATION Jan-Hendrik Evertse January 29, 200 9 p-adic Numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics

More information

Constructing Abelian Varieties for Pairing-Based Cryptography

Constructing Abelian Varieties for Pairing-Based Cryptography for Pairing-Based CWI and Universiteit Leiden, Netherlands Workshop on Pairings in Arithmetic Geometry and 4 May 2009 s MNT MNT Type s What is pairing-based cryptography? Pairing-based cryptography refers

More information

Exact Arithmetic on a Computer

Exact Arithmetic on a Computer Exact Arithmetic on a Computer Symbolic Computation and Computer Algebra William J. Turner Department of Mathematics & Computer Science Wabash College Crawfordsville, IN 47933 Tuesday 21 September 2010

More information

ON p-adic REPRESENTATIONS OF Gal(Q p /Q p ) WITH OPEN IMAGE

ON p-adic REPRESENTATIONS OF Gal(Q p /Q p ) WITH OPEN IMAGE ON p-adic REPRESENTATIONS OF Gal(Q p /Q p ) WITH OPEN IMAGE KEENAN KIDWELL 1. Introduction Let p be a prime. Recently Greenberg has given a novel representation-theoretic criterion for an absolutely irreducible

More information

Computing the endomorphism ring of an ordinary elliptic curve

Computing the endomorphism ring of an ordinary elliptic curve Computing the endomorphism ring of an ordinary elliptic curve Massachusetts Institute of Technology April 3, 2009 joint work with Gaetan Bisson http://arxiv.org/abs/0902.4670 Elliptic curves An elliptic

More information

Introduction to Number Fields David P. Roberts University of Minnesota, Morris

Introduction to Number Fields David P. Roberts University of Minnesota, Morris Introduction to Number Fields David P. Roberts University of Minnesota, Morris 1. The factpat problem 2. Polynomial discriminants 3. Global factorizations 4. Generic factorization statistics 5. Resolvents

More information

The p-adic numbers. Given a prime p, we define a valuation on the rationals by

The p-adic numbers. Given a prime p, we define a valuation on the rationals by The p-adic numbers There are quite a few reasons to be interested in the p-adic numbers Q p. They are useful for solving diophantine equations, using tools like Hensel s lemma and the Hasse principle,

More information

Fast, twist-secure elliptic curve cryptography from Q-curves

Fast, twist-secure elliptic curve cryptography from Q-curves Fast, twist-secure elliptic curve cryptography from Q-curves Benjamin Smith Team GRACE INRIA Saclay Île-de-France Laboratoire d Informatique de l École polytechnique (LIX) ECC #17, Leuven September 16,

More information

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism 1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

More information