AP Physics B Notes: Ch 16: Electric Potential Name:

Size: px
Start display at page:

Download "AP Physics B Notes: Ch 16: Electric Potential Name:"

Transcription

1 AP Physics B Notes: Ch 16: Electric Potential Name: Excess Charges on Conductors Where does the excess charge reside on a charged conductor? What conditions would produce high positive electrical potential energy? How does this help lightening rods to work? What conditions would produce low negative electrical potential energy? How would you get zero electrical potential energy? Electric Field Inside a Conductor Why is the field on the inside of an isolated conductor necessarily zero? Electric Potential What do we commonly call electrical potential? Draw an isolated conductor in an electric field, and show how the charge is distributed so as to nullify the external field. Electrical Potential and Potential Energy Electric Potential Energy Definition: Electrical Potential and Potential Energy Positive charges like to their potential (ΔV 0) Negative charges like to their potential. (ΔV 0) AP Physics 1 Chapter 16: Electric Potential

2 A 3.0 μc charge is moved through a potential difference of 640 V. What is its potential energy change? How much work would be done BY THE ELECTRIC FIELD in moving a 2 mc charge from A to C? From A to B? from B to C?. How much work would be done my an external force in each case? y(m) C A B Electrical Potential in Uniform Electric Fields x(m) An electric field is parallel to the x-axis. What is its magnitude and direction if the potential difference between x = m and x = 2.5 m is found to be +900 V? Conservation of Energy You know what Conservation of Energy is. We just need to work some problems. If a proton is accelerated through a potential difference of 00 V, what is its change in potential energy? What is the voltmeter reading between A and B? Between A and C? Assume that the electric field has a magnitude of 400 N/m. y(m) C How fast will this proton be moving if it started at rest? A B x(m) AP Physics 2 Chapter 16: Electric Potential

3 A proton at rest is released in a uniform electric field. What potential difference must it move through in order to acquire a speed of 0.20 c? How much work was done in assembling the charge configuration shown below? -3 μc 2 μc 4 μc Electric Potential Energy of Spherical Charges Electric Potential (spherical) Formula: What is the potential energy of the configuration shown below? What is the electric potential at (2,2)? -3 μc 2 μc 4 μc 2 μc 4 μc Equipotential surfaces: parallel plate capacitor AP Physics 3 Chapter 16: Electric Potential

4 Equipotential surfaces: positive point charge Draw a negative point charge of -Q and its associated electric field. Draw 4 equipotential surfaces such that ΔV is the same between the surfaces, and draw them at the correct relative locations. What do you observe about the spacing between the equipotential surfaces? Equipotential surfaces: negative point charge Question What can you say about the intersection between field lines and equipotential surfaces? Fill in the following table for spherical charges Force Potential Energy Field Potential Draw field lines for the charge configuration below. The field is 600 V/m, and the plates are 2 m apart. Label each plate with its proper potential, and draw and label 3 equipotential surfaces between the plates. You may ignore edge effects AP Physics 4 Chapter 16: Electric Potential

5 Capacitance Define Capacitance in words Combining Capacitors How do Capacitors combine when in parallel? Write a general equation to describe this. Define Capacitance in an Equation in terms of other electric variables. How do capacitors combine in series? Define Capacitance physically for a parallel plate capacitor in an equation. Write a general equation to describe this. Two plates separated by 0.02 m need a charge on them of 9 x 10-5 C when a voltage of 15 V is applied. (a) What area plates should be used? Reduce the following to one Equivalent Capacitance. (b) How much energy would be stored in this setup? AP Physics 5 Chapter 16: Electric Potential

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

Ch. 16 and 17 Review Problems

Ch. 16 and 17 Review Problems Ch. 16 and 17 Review Problems NAME 1) Is it possible for two negative charges to attract each other? A) Yes, they always attract. B) Yes, they will attract if they are close enough. C) Yes, they will attract

More information

COLLEGE PHYSICS Chapter 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD

COLLEGE PHYSICS Chapter 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD COLLEGE PHYSICS Chapter 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD Electric Potential Energy and Electric Potential Difference It takes work to move a charge against an electric field. Just as with gravity,

More information

Question 20.1a Electric Potential Energy I

Question 20.1a Electric Potential Energy I Question 20.1a Electric Potential Energy I A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron

More information

Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

More information

Física Básica Experimental I Cuestiones Tema VII. Electrostática. Soluciones incluidas. 1.

Física Básica Experimental I Cuestiones Tema VII. Electrostática. Soluciones incluidas. 1. 1. A cubical surface with no charge enclosed and with sides 2.0 m long is oriented with right and left faces perpendicular to a uniform electric field E of (1.6 10 5 N/C) î. The net electric flux E through

More information

Physics (

Physics ( Exercises Question 2: Two charges 5 0 8 C and 3 0 8 C are located 6 cm apart At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero

More information

Electrostatics and Electric Potential - Outline

Electrostatics and Electric Potential - Outline Electrostatics and Electric Potential - Outline 1. Understand the basic properties of electric charge, including conservation of charge and that charges are quantized. 2. Differentiate between conductors

More information

Exam 1--PHYS 202--S12

Exam 1--PHYS 202--S12 ame: Exam 1--PHYS 202--S12 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Which of these statements is true about charging by induction? a it can only occur

More information

Exam 1 Multiple Choice Practice Problems Physics 1251 TA: Clark/Sullivan

Exam 1 Multiple Choice Practice Problems Physics 1251 TA: Clark/Sullivan Exam 1 Multiple Choice Practice Problems Physics 1251 TA: Clark/Sullivan Disclaimer: We have ZERO intel about what will be covered on the midterm. This is a collection of problems that will force you to

More information

Electric Potential Practice Problems

Electric Potential Practice Problems Electric Potential Practice Problems AP Physics Name Multiple Choice 1. A negative charge is placed on a conducting sphere. Which statement is true about the charge distribution (A) Concentrated at the

More information

Phys2120 Spring 2017 Practice Exam 1. Chapters Name

Phys2120 Spring 2017 Practice Exam 1. Chapters Name Name 1. Two point charges are 4 cm apart. They are moved to a new separation of 2 cm. By what factor does the resulting mutual force between them change? 2. An uncharged conductor is supported by an insulating

More information

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power Name Period AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power Dr. Campbell 1. The two plates of a capacitor hold +2500 µc and -2500 µc of charge, respectively, when

More information

Chapter 20 Electric Potential and Electric Potential Energy

Chapter 20 Electric Potential and Electric Potential Energy Chapter 20 Electric Potential and Electric Potential Energy 1 Overview of Chapter 20 Electric Potential Energy and the Electric Potential! Energy Conservation! The Electric Potential of Point Charges!

More information

PHYSICS - CLUTCH CH 23: ELECTRIC POTENTIAL.

PHYSICS - CLUTCH CH 23: ELECTRIC POTENTIAL. !! www.clutchprep.com CONCEPT: ELECTRIC POTENTIAL ENERGY If you release 2 charges, they move gain. Where did it come from? - Two charges have a stored energy between them, called - ENERGY CONSERVATION:

More information

General Physics II (PHYS 104) Exam 2: March 21, 2002

General Physics II (PHYS 104) Exam 2: March 21, 2002 General Physics II (PHYS 104) Exam 2: March 21, 2002 Name: Multiple Choice (3 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the

More information

Electric Force and Coulombs Law

Electric Force and Coulombs Law Electric Force and Coulombs Law 1 Coulombs law is an inverse squared law prove this graphically / experimentally 2 NOTE: THIS IS ONLY FOR POINT CHARGES. Schematics I.) +5C 3C II.) Q Q 3 III.) more than

More information

Roll Number SET NO. 42/1

Roll Number SET NO. 42/1 Roll Number SET NO. 4/1 INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.018 Max. Marks: 70 General Instructions: 1. All questions are compulsory. There

More information

Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems

Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems Problem 1: Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems A parallel-plate capacitor is charged to a potential V 0, charge Q 0 and then disconnected from the battery. The separation

More information

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Q1. igure 1 shows four situations in which a central proton (P) is surrounded by protons or electrons fixed in place along a half-circle. The angles

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

4) A 3.0 pf capacitor consists of two parallel plates that have surface charge densities of 1.0

4) A 3.0 pf capacitor consists of two parallel plates that have surface charge densities of 1.0 Quantitative 3) Two parallel plates are separated by 1.0 mm. If the potential difference between them is 2.0 V, what is the magnitude of their surface charge densities? A) 18 nc/m2 4) A 3.0 pf capacitor

More information

As we discussed in class, here are the key properties of the topographical map:

As we discussed in class, here are the key properties of the topographical map: Ch21P Page 1 1P22/1P92 Problems (2011) Chapter 21 Electric Potential Friday, January 14, 2011 10:03 AM In the previous chapter we learned about the use of the electric field concept to describe electric

More information

4 pt. (in J) 3.A

4 pt. (in J) 3.A Mark Reeves - Physics 22, Fall 2011 1 A point charge of mass 0.0699 kg and charge q = +6.87 µc is suspended by a thread between the vertical parallel plates of a parallel-plate capacitor, as shown in the

More information

c. They have electric charges that move freely d. Electrons are added to the rod a. charges are of unlike signs b. charges are of like signs

c. They have electric charges that move freely d. Electrons are added to the rod a. charges are of unlike signs b. charges are of like signs Physics Review Chapter 17 & 18 Name: Date: Period: 1. What sentence best characterizes electron conductors? a. They have low mass density b. They have high tensile strength c. They have electric charges

More information

1. zero. Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is

1. zero. Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is Week 5 Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is 1. zero 2. between zero and 90 3. 90 4. not enough information given to

More information

Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field

Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field In this chapter, you will learn: Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field 2.1 Electric potential energy When a charged particle

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged? 1. In which Orientation, a dipole placed in uniform electric field is in (a) stable (b) unstable equilibrium. 2. Two point charges having equal charges separated by 1 m in distance experience a force of

More information

Electricity and Magnetism. Electric Potential Energy and Voltage

Electricity and Magnetism. Electric Potential Energy and Voltage Electricity and Magnetism Electric Potential Energy and Voltage Work and Potential Energy Recall from Mechanics that E mech = K + U is a conserved quantity for particles that interact via conservative

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Physics 2135 Exam 1 September 20, 2016

Physics 2135 Exam 1 September 20, 2016 Eam Total / 200 Phsics 2135 Eam 1 September 20, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearl correct answer. 1. Two positive charges

More information

Exam 1--PHYS 102--Spring 2013

Exam 1--PHYS 102--Spring 2013 ame: Class: Date: Exam 1--PHYS 102--Spring 2013 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A metallic object holds a charge of 3.8 10 6 C. What total

More information

47 CHARGE. 1. What are the basic particles of charge?

47 CHARGE. 1. What are the basic particles of charge? 47 CHARGE 1. What are the basic particles of charge? 2. There are three variables for charge listed to the right. Tell the typical circumstances when each is used. 3. Charge What are the units of charge?

More information

Electric Field of a uniformly Charged Thin Spherical Shell

Electric Field of a uniformly Charged Thin Spherical Shell Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the

More information

PHYSICS - CLUTCH CALC-BASED PHYSICS 1E CH 23: ELECTRIC POTENTIAL.

PHYSICS - CLUTCH CALC-BASED PHYSICS 1E CH 23: ELECTRIC POTENTIAL. !! www.clutchprep.com CONCEPT: ELECTRIC POTENTIAL ENERGY If you release 2 charges, they move gain. Where did it come from? - Two charges have a stored energy between them, called - ENERGY CONSERVATION:

More information

Physics 122 Spring 2012 Test 2

Physics 122 Spring 2012 Test 2 Name: Instructions: Physics 122 Spring 2012 Test 2 There are some useful tables at the end of this exam paper. You may use a calculator and your 3x5 index card. Please ATTACH your index card to the test

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Electric Potential Energy Conservative Force

Electric Potential Energy Conservative Force Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,

More information

Lecture Outline Chapter 19. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 19. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 19 Physics, 4 th Edition James S. Walker Chapter 19 Electric Charges, Forces, and Fields Units of Chapter 19 Electric Charge Insulators and Conductors Coulomb s Law The Electric

More information

Sharpen thinking about connections among electric field, electric potential difference, potential energy

Sharpen thinking about connections among electric field, electric potential difference, potential energy PHYS 2015 -- Week 6 Sharpen thinking about connections among electric field, electric potential difference, potential energy Apply the ideas to capacitance and the parallel plate capacitor For exclusive

More information

Chapter 16. Electric Energy and Capacitance

Chapter 16. Electric Energy and Capacitance Chapter 16 Electric Energy and Capacitance Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical potential energy function with this force Work

More information

P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova Name: Date: 1. Each of three objects has a net charge. Objects A and B attract one another. Objects B and C also attract one another, but objects

More information

Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate.

Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate. Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate. 1. If a charged rod A attracts another rod B, you can conclude that a.

More information

melectron= 9.1x10-31 kg e = 1.6x10-19 C MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

melectron= 9.1x10-31 kg e = 1.6x10-19 C MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #1, PHYS 102 Name Chapters 16, 17, & 18 8 February 2006 Constants k=9x109 Nm2/C2 e o =8.85x10-12 F/m mproton=1.673x10-27 kg melectron= 9.1x10-31 kg e = 1.6x10-19 C MULTIPLE CHOICE. Choose the one

More information

PHY112 Chapter 16 Problems Electrical Energy and Capacitance

PHY112 Chapter 16 Problems Electrical Energy and Capacitance PHY112 Chapter 16 Problems Electrical Energy and Capacitance 1. A uniform electric field of magnitude 375 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. After

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Physics 202 Midterm 1 Practice Exam

Physics 202 Midterm 1 Practice Exam Physics 202 Midterm 1 Practice Exam Name: Student ID: Section: TA (please circle): Daniel Crow Scott Douglas Yutao Gong Taylor Klaus Aaron Levine Andrew Loveridge Jason Milhone Hojin Yoo Instructions:

More information

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B99 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

Taller de Electróstatica

Taller de Electróstatica Taller de Electróstatica TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A neutron carries a negative charge. 1) 2) The coulomb, which is the unit of charge, is the

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

E&M: Worksheet 6 Fields, Potential, and Energy

E&M: Worksheet 6 Fields, Potential, and Energy Name Date Pd () (-) E&M: Worksheet 6 Fields, Potential, and Energy 1. Below are two parallel conducting plates, each carrying an equal quantity of excess charge of opposite type. The plates are separated

More information

Chapter 20 Electric Potential and Electric potential Energy

Chapter 20 Electric Potential and Electric potential Energy Outline Chapter 20 Electric Potential and Electric potential Energy 20-1 Electric Potential Energy and the Electric Potential 20-2 Energy Conservation 20-3 The Electric Potential of Point Charges 20-4

More information

Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

More information

Physics 42 Exam 2 PRACTICE Name: Lab

Physics 42 Exam 2 PRACTICE Name: Lab Physics 42 Exam 2 PRACTICE Name: Lab 1 2 3 4 Conceptual Multiple Choice (2 points each) Circle the best answer. 1.Rank in order, from brightest to dimmest, the identical bulbs A to D. A. C = D > B > A

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Physics (

Physics ( Question 2.12: A charge of 8 mc is located at the origin. Calculate the work done in taking a small charge of 2 10 9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

More information

PRACTICE EXAM 1 for Midterm 1

PRACTICE EXAM 1 for Midterm 1 PRACTICE EXAM 1 for Midterm 1 Multiple Choice Questions 1) The figure shows three electric charges labeled Q 1, Q 2, Q 3, and some electric field lines in the region surrounding the charges. What are the

More information

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa Capacitors II Physics 2415 Lecture 9 Michael Fowler, UVa Today s Topics First, some review then Storing energy in a capacitor How energy is stored in the electric field Dielectrics: why they strengthen

More information

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Chapter 16 Electrical Energy Capacitance HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Electrical Potential Reminder from physics 1: Work done by a conservative force, depends only

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

---------------------------------------------------------------------------------------------------------- PHYS 2326 University Physics II Class number ---------------------------------------------------------------------------------------------------------------------

More information

Nicholas J. Giordano. Chapter 18. Electric Potential. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.  Chapter 18. Electric Potential. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 18 Electric Potential Marilyn Akins, PhD Broome Community College Electric Potential Electric forces can do work on a charged object Electrical

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy The work done on q2 (and the change in potential energy) is path independent. lecture 5.1.1 Electric Potential Energy Going to P1 to P2 independent of path taken. lecture 5.1.2

More information

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B98 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Consider a point P on the line joining the two charges, as shown in the given figure.

Consider a point P on the line joining the two charges, as shown in the given figure. Question 2.1: Two charges 5 10 8 C and 3 10 8 C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

More information

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 3: Exam #1 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be a 1.5

More information

which checks. capacitance is determined entirely by the dimensions of the cylinders.

which checks. capacitance is determined entirely by the dimensions of the cylinders. 4.3. IDENTIFY and SET UP: It is a parallel-plate air capacitor, so we can apply the equations of Section 4.. EXEUTE: (a) (b) = ε 0 A d (c) V ab so Q V = so 0 ab V ab 6 Q 0. 48 0 = = = 604 V. 45 0 F 3 d

More information

104 Practice Exam 1-2/21/02

104 Practice Exam 1-2/21/02 104 Practice Exam 1-2/21/02 1. One mole of a substance contains 6.02 > 10 23 protons and an equal number of electrons. If the protons could somehow be separated from the electrons and placed in separate

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Chapter 10. Electrostatics

Chapter 10. Electrostatics Chapter 10 Electrostatics 3 4 AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A solid conducting sphere

More information

d) (6) If a third charge q = 2.0 µc is now placed 12.0 cm to the left of Q 1, what magnitude electric force will it experience?

d) (6) If a third charge q = 2.0 µc is now placed 12.0 cm to the left of Q 1, what magnitude electric force will it experience? Gen. Phys. II Exam 1 - Chs. 16,17,18A - Electric Fields, Potential, Current Sep. 12, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Potential from a distribution of charges = 1

Potential from a distribution of charges = 1 Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually

More information

Physics 2B Winter 2012 Final Exam Practice

Physics 2B Winter 2012 Final Exam Practice Physics 2B Winter 2012 Final Exam Practice 1) When the distance between two charges is increased, the force between the charges A) increases directly with the square of the distance. B) increases directly

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the

More information

PHYSICS. Electrostatics

PHYSICS. Electrostatics Electrostatics Coulomb s Law: SYNOPSIS SI unit of electric intensity is NC -1 Dimensions The electric intensity due to isolated point charge, Electric dipole moment, P = q (2a), SI unit is C m Torque on

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

PHYS102 Previous Exam Problems. Electric Potential

PHYS102 Previous Exam Problems. Electric Potential PHYS102 Previous Exam Problems CHAPTER 24 Electric Potential Electric potential energy of a point charge Calculating electric potential from electric field Electric potential of point charges Calculating

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

(21/703) At what distance from a point charge of 8µC would the potential equal 3.6X10 4 V?

(21/703) At what distance from a point charge of 8µC would the potential equal 3.6X10 4 V? (/73) At what distance from a point charge of 8µC would the potential equal 3.6X 4 V? (6/73) A positron has the same charge as a proton but the same mass as an electron. Suppose a positron moves 5. cm

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law.

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law. Prof. Eugene Dunnam Prof. Paul Avery Feb. 6, 007 Exam 1 Solutions 1. A charge Q 1 and a charge Q = 1000Q 1 are located 5 cm apart. The ratio of the electrostatic force on Q 1 to that on Q is: (1) none

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Outline 25.1 Potential difference and electric Potential 25.2 Potential Difference and electric field 25.3 Electric Potential and Potential energy due to point charges 25.1

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

Chapter Electrostatic Potential and Capacitance

Chapter Electrostatic Potential and Capacitance Chapter Electrostatic Potential and Capacitance C/ 2 C/2 Ans: Q6. MockTime.com Q1. A 4µF conductor is charged to 400 volts and then its plates are joined through a resistance of 1 kω. The heat produced

More information

LAB 03 Electric Fields and Potentials

LAB 03 Electric Fields and Potentials Group: LAB 03 Electric Fields and Potentials Names: (Principle Coordinator) (Lab Partner) (Lab Partner) Motto: Say map! Say map! Dora the Explorer Goals: Developing an intuitive picture of the electric

More information

Physics 202 Midterm Exam 1 Oct 2 nd, 2012

Physics 202 Midterm Exam 1 Oct 2 nd, 2012 ID CODE: A Physics 202 Midterm Exam 1 Oct 2 nd, 2012 Name:...Yibin Pan... Student ID:... Section:... TA (please circle): James Buchannan Diptaranjan Das Ross Devol Yutao Gong Minho Kwon Greg Lau Andrew

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

Gen. Phys. II Exam 1 - Chs. 18,19,20 - Electric Fields, Potential, Current Feb. 12, 2018

Gen. Phys. II Exam 1 - Chs. 18,19,20 - Electric Fields, Potential, Current Feb. 12, 2018 Gen. Phys. II Exam 1 - Chs. 18,19,20 - Electric Fields, Potential, Current Feb. 12, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

2000 February 25 Exam I Physics 106

2000 February 25 Exam I Physics 106 February 5 Exam I Physics 6 ircle the letter of the single best answer. Each question is worth point Physical onstants: proton charge = e =.6 9 proton mass = m p =.67 7 kg electron mass = m e = 9. kg permittivity

More information

Section 16.1 Potential Difference and Electric Potential

Section 16.1 Potential Difference and Electric Potential PROBLEMS 1, 2, 3 = straightforward, intermediate, challenging = full solution available in Student Solutions Manual/Study Guide = biomedical application Section 16.1 Potential Difference and Electric Potential

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information