# FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41

Size: px
Start display at page:

Transcription

1 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41 RAVI VAKIL CONTENTS 1. Normalization 1 2. Extending maps to projective schemes over smooth codimension one points: the clear denominators theorem 5 Welcome back! Let s now use what we have developed to study something explicit curves. Our motivating question is a loose one: what are the curves, by which I mean nonsingular irreducible separated curves, finite type over a field k? In other words, we ll be dealing with geometry, although possibly over a non-algebraically closed field. Here is an explicit question: are all curves (say reduced, even non-singular, finite type over given k) isomorphic? Obviously not: some are affine, and some (such as P 1 ) are not. So to simplify things and we ll further motivate this simplification in Class 42 are all projective curves isomorphic? Perhaps all nonsingular projective curves are isomorphic to P 1? Once again the answer is no, but the proof is a bit subtle: we ve defined an invariant, the genus, and shown that P 1 has genus 0, and that there exist nonsingular projective curves of non-zero genus. Are all (nonsingular) genus 0 curves isomorphic to P 1? We know there exist nonsingular genus 1 curves (plane cubics) is there only one? If not, how many are there? In order to discuss interesting questions like these, we ll develop some theory. We first show a useful result that will help us focus our attention on the projective case. 1. NORMALIZATION I now want to tell you how to normalize a reduced Noetherian scheme, which is roughly how best to turn a scheme into a normal scheme. More precisely, a normalization of a scheme X is a morphism ν : X X from a normal scheme, where ν induces a bijection of irreducible components of X and X, and ν gives a birational morphism on each of the components. It will be nicer still, as it will satisfy a universal property. (I drew a picture of a normalization of a curve.) Date: Tuesday, April 1,

2 Let s begin with the case where X is irreducible, and hence integral. (We will then deal with the more general case, and also discuss normalization in a function field extension.) In this case of X irreducible, the normalization ν : X X is an affine and surjective map, such that given any dominant morphism f from an irreducible normal scheme to X, this morphism factors uniquely through ν: Y! X. ν X Thus if the normalization exists, then it is unique up to unique isomorphism. We now have to show that it exists, and we do this in the usual way. We deal first with the case where X is affine, say X = Spec A, where A is an integral domain. Then let Ã be the integral closure of A in its fraction field FF(A). 1.A. EXERCISE. Theorem.) Show that ν : Spec Ã Spec A is surjective. (Hint: use the Going-up 1.B. EXERCISE. Show that ν : Spec Ã Spec A satisfies the universal property. 1.C. EXERCISE. Show that normalizations exist in general. 1.D. EXERCISE. Show that dim X = dim X (hint: see the discussion around the notes for the Going-Up Theorem). 1.E. EXERCISE. Explain how to generalize the notion of normalization to the case where X is a reduced Noetherian scheme (with possibly more than one component). This basically requires defining a universal property. I m not sure what the perfect definition, but all reasonable universal properties should be equivalent. 1.F. EXERCISE. subset of X. Show that the normalization map is an isomorphism on an open dense Now might be a good time to see some examples. 1.G. EXERCISE. Show that Spec k[t] Spec k[x, y]/(y 2 x 2 (x + 1)) given by (x, y) (t 2 1, t(t 2 1)) (see Figure 1) is a normalization. (Hint: show that k[t] and k[x, y]/(y 2 x 2 (x + 1)) have the same fraction field. Show that k[t] is integrally closed. Show that k[t]/k[x, y]/(y 2 x 2 (x + 1)) is an integral extension.) 2

3 FIGURE 1. The normalization Spec k[t] Spec k[x, y]/(y 2 x 2 (x + 1)) given by (x, y) (t 2 1, t(t 2 1)) You will see that once we guess what the normalization is, it isn t hard to verify that it is indeed the normalization. Perhaps a few words are in order as to where the polynomials t 2 1 and t(t 2 1) arose in the previous exercise. The key idea is to guess t = y/x. (Then t 2 = x + 1 and y = xt quickly.) The key idea comes from three possible places. We begin by sketching the curve, and noticing the node at the origin. (a) The function y/x is welldefined away from the node, and at the node, the two branches have values y/x = 1 and y/x = 1. (b) We can also note that if t = y/x, then t 2 is a polynomial, so we ll need to adjoin t in order to obtain the normalization. (c) The curve is cubic, so we expect a general line to meet the cubic in three points, counted with multiplicity. (We ll make this precise when we discuss Bezout s Theorem.) There is a P 1 parametrizing lines through the origin (with co-ordinate equal to the slope of the line, y/x), and most such lines meet the curve with multiplicity two at the origin, and hence meet the curve at precisely one other point of the curve. So this co-ordinatizes most of the curve, and we try adding in this co-ordinate. 1.H. EXERCISE. Find the normalization of the cusp y 2 = x 3. 1.I. EXERCISE. Find the normalization of the tacnode y 2 = x 4. Notice that in the previous examples, normalization resolves the singularities of the curve. In general, it will do so in dimension one (in reasonable Noetherian circumstances, as normal Noetherian domains of dimension one are all Discrete Valuation Rings), but won t do so in higher dimension (we ll see that the cone z 2 = x 2 + y 2 is normal). 1.J. EXERCISE. Suppose X = Spec Z[15i]. Describe the normalization X X. (Hint: it isn t hard to find an integral extension of Z[15i] that is integrally closed.) Over what points of X is the normalization not an isomorphism? 3

4 The following fact is useful Theorem (finiteness of integral closure). Suppose A is a domain, K = FF(A), L/K is a finite separable field extension, and B is the integral closure of A in L ( the integral closure of A in the field extension L/K, i.e. those elements of L integral over A). (a) if A is integrally closed, then B is a finitely generated A-module. (b) if A is a finitely generated k-algebra, then B (the integral closure of A in its fraction field) is a finitely generated A-module. I hope to type up a proof of these facts at some point to show you that they are not that bad. Much of part (a) was proved by Greg Brumfiel in 210B. Warning: (b) does not hold for Noetherian A in general. I find this very alarming. I don t know an example offhand, but one is given in Eisenbud s book. This is a sign that this Theorem is not easy. 1.K. EXERCISE. Show that if X is an integral finite-type k-scheme, then its normalization ν : X X is a finite morphism. 1.L. EXERCISE. (This is an important generalization!) Suppose X is an integral scheme. Define the normalization of X, ν : X X, in a given finite field extension of the function field of X. Show that X is normal. (This will be hard-wired into your definition.) Show that if either X is itself normal, or X is finite type over a field k, then the normalization in a finite field extension is a finite morphism. Again, this is a finite morphism. (Again, for this we need finiteness of integral closure 1.1.) Let s try this in a few cases. 1.M. EXERCISE. Suppose X = Spec Z (with function field Q). Find its integral closure in the field extension Q(i). (There is no geometric way to do this; it is purely an algebraic problem, although the answer should be understood geometrically.) A finite extension K of Q is called a number field, and the integral closure of Z in K the ring of integers of K, denoted O K. (This notation is a little awkward given our other use of the symbol O.) By the previous exercises, Spec O K is a Noetherian normal domain of dimension 1 (hence regular). This is called a Dedekind domain. We think of it as a smooth curve. 1.N. EXERCISE. (a) Suppose X = Spec k[x] (with function field k(x)). Find its integral closure in the field extension k(y), where y 2 = x 2 +x. (Again we get a Dedekind domain.) (b) Suppose X = P 1, with distinguished open Spec k[x]. Find its integral closure in the field extension k(y), where y 2 = x 2 + x. (Part (a) involves computing the normalization over one affine open set; now figure out what happens over the other affine open set.) 4

5 2. EXTENDING MAPS TO PROJECTIVE SCHEMES OVER SMOOTH CODIMENSION ONE POINTS: THE CLEAR DENOMINATORS THEOREM 2.1. The curve to projective extension Theorem. Suppose C is a pure dimension 1 Noetherian scheme over a base S, and p C is a nonsingular closed point of it. Suppose Y is a projective S- scheme. Then any morphism C p Y extends to C Y. I often called this the clear denominators theorem because it reminds me of the central simple idea in the proof. Suppose you have a map from A 1 {0} to projective space, and you wanted to extend it to P n. Say for example the map was given by t [t 4 + t 3 ; t 2 + 4t]. Then of course you would clear the denominators, and replace the map by t [t 7 + 1; t + t 4 ]. In practice, we ll use this theorem when S = k, and C is a k-variety. Note that if such an extension exists, then it is unique: The non-reduced locus of C is a closed subset (we checked this earlier for any Noetherian scheme), not including p, so by replacing C by an open neighborhood of p that is reduced, we can use the theorem that maps from reduced schemes to separated schemes are determined by their behavior on a dense open set. I will give three proofs, which I find enlightening in different ways. Proof 1. By restricting to an affine neighborhood of C, we can reduce to the case where C is affine. We can similarly assume S is affine. We next reduce to the case where Y = P n S. Choose a closed immersion Y Pn S. If the result holds for P n, and we have a morphism C P n with C p mapping to Y, then C must map to Y as well. Reason: we can reduce to the case where the source is an affine open subset, and the target is A n k Pn k (and hence affine). Then the functions vanishing on Y A n k pull back to functions that vanish at the generic point of C and hence vanish everywhere on C, i.e. C maps to Y. Choose a uniformizer t m m 2 in the local ring of C at p. By discarding the points of the vanishing set V(t) aside from p, and taking an affine open subset of p in the remainder we reduce to the case where t cuts out precisely m (i.e. m = (y)). Choose a dense open subset U of C p where the pullback of O(1) is trivial. Take an affine open neighborhood Spec A of p in U {p}. Then the map Spec A p P n corresponds to n + 1 functions, say f 0,..., f n A m, not all zero. Let m be the smallest valuation of all the f i. Then [t m f 0 ;... ; t m f n ] has all entries in A, and not all in the maximal ideal, and thus is defined at p as well. Proof 2. We first extend the map Spec FF(C) Y to Spec O C,p Y. We do this as follows. Note that O C,p is a discrete valuation ring. We show first that there is a morphism Spec O C,p P n. The rational map can be described as [a 0 ; a 1 ; ; a n ] where a i O C,p. Let m be the minimum valuation of the a i, and let t be a uniformizer of O C,p (an element 5

6 of valuation 1). Then [t m a 0 ; t m a 1 ;... t m a n ] is another description of the morphism Spec FF(O C,p ) P n, and each of the entries lie in O C,p, and not all entries lie in m (as one of the entries has valuation 0). This same expression gives a morphism Spec O C,p P n. Our intuition now is that we want to glue the maps Spec O C,p Y (which we picture as a map from a germ of a curve) and C p Y (which we picture as the rest of the curve). Let Spec R Y be an affine open subset of Y containing the image of Spec O C,p. Let Spec A C be an affine open of C containing p, and such that the image of Spec A p in Y lies in Spec R, and such that p is cut out scheme-theoretically by a single equation (i.e. there is an element t A such that (t) is the maximal ideal corresponding to p. Then R and A are domains, and we have two maps R A (t) (corresponding to Spec O C,p Spec R) and R A t (corresponding to Spec A p Spec R) that agree at the generic point, i.e. that give the same map R FF(A). But A t A (t) = A in FF(A) (e.g. by algebraic Hartogs theorem elements of the fraction field of A that don t have any poles away from t, nor at t, must lie in A), so we indeed have a map R A agreeing with both morphisms. Proof 3. As Y S, by the valuative criterion of properness, the map Spec FF(C) Y extends to Spec O C,p Y. Then proceed as in Proof 2. The third proof is quite short, and indeed extends the statement of Theorem 2.1 to the proper case. The only downside is that the previous proofs are straightforward, while the proof of the valuative criterion is highly nontrivial. 2.A. EXERCISE (USEFUL PRACTICE!). Suppose X is a Noetherian k-scheme, and Z is an irreducible codimension 1 subvariety whose generic point is a nonsingular point of X (so the local ring O X,Z is a discrete valuation ring). Suppose X Y is a rational map to a projective k-scheme. Show that the domain of definition of the rational map includes a dense open subset of Z. In other words, rational maps from Noetherian k-schemes to projective k-schemes can be extended over nonsingular codimension 1 sets. (By the easy direction of the valuative criterion of separatedness, or the theorem of uniqueness of extensions of maps from reduced schemes to separated schemes.) this map is unique.) address: 6

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETR CLASS 24 RAVI VAKIL CONTENTS 1. Normalization, continued 1 2. Sheaf Spec 3 3. Sheaf Proj 4 Last day: Fibers of morphisms. Properties preserved by base change: open immersions,

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27 RAVI VAKIL CONTENTS 1. Proper morphisms 1 2. Scheme-theoretic closure, and scheme-theoretic image 2 3. Rational maps 3 4. Examples of rational maps 5 Last day:

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48 RAVI VAKIL CONTENTS 1. A little more about cubic plane curves 1 2. Line bundles of degree 4, and Poncelet s Porism 1 3. Fun counterexamples using elliptic curves

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Motivation and game plan 1 2. The affine case: three definitions 2 Welcome back to the third quarter! The theme for this quarter, insofar

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 26

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 26 RAVI VAKIL CONTENTS 1. Proper morphisms 1 Last day: separatedness, definition of variety. Today: proper morphisms. I said a little more about separatedness of

### NONSINGULAR CURVES BRIAN OSSERMAN

NONSINGULAR CURVES BRIAN OSSERMAN The primary goal of this note is to prove that every abstract nonsingular curve can be realized as an open subset of a (unique) nonsingular projective curve. Note that

### INTERSECTION THEORY CLASS 2

INTERSECTION THEORY CLASS 2 RAVI VAKIL CONTENTS 1. Last day 1 2. Zeros and poles 2 3. The Chow group 4 4. Proper pushforwards 4 The webpage http://math.stanford.edu/ vakil/245/ is up, and has last day

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48 RAVI VAKIL CONTENTS 1. The local criterion for flatness 1 2. Base-point-free, ample, very ample 2 3. Every ample on a proper has a tensor power that

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24 RAVI VAKIL CONTENTS 1. Vector bundles and locally free sheaves 1 2. Toward quasicoherent sheaves: the distinguished affine base 5 Quasicoherent and coherent sheaves

### COMPLEX ALGEBRAIC SURFACES CLASS 9

COMPLEX ALGEBRAIC SURFACES CLASS 9 RAVI VAKIL CONTENTS 1. Construction of Castelnuovo s contraction map 1 2. Ruled surfaces 3 (At the end of last lecture I discussed the Weak Factorization Theorem, Resolution

### INTERSECTION THEORY CLASS 6

INTERSECTION THEORY CLASS 6 RAVI VAKIL CONTENTS 1. Divisors 2 1.1. Crash course in Cartier divisors and invertible sheaves (aka line bundles) 3 1.2. Pseudo-divisors 3 2. Intersecting with divisors 4 2.1.

### DIVISORS ON NONSINGULAR CURVES

DIVISORS ON NONSINGULAR CURVES BRIAN OSSERMAN We now begin a closer study of the behavior of projective nonsingular curves, and morphisms between them, as well as to projective space. To this end, we introduce

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 43 AND 44

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 43 AND 44 RAVI VAKIL CONTENTS 1. Flat implies constant Euler characteristic 1 2. Proof of Important Theorem on constancy of Euler characteristic in flat families

### INTERSECTION THEORY CLASS 19

INTERSECTION THEORY CLASS 19 RAVI VAKIL CONTENTS 1. Recap of Last day 1 1.1. New facts 2 2. Statement of the theorem 3 2.1. GRR for a special case of closed immersions f : X Y = P(N 1) 4 2.2. GRR for closed

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 51 AND 52

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 51 AND 52 RAVI VAKIL CONTENTS 1. Smooth, étale, unramified 1 2. Harder facts 5 3. Generic smoothness in characteristic 0 7 4. Formal interpretations 11 1. SMOOTH,

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 RAVI VAKIL CONTENTS 1. Hyperelliptic curves 1 2. Curves of genus 3 3 1. HYPERELLIPTIC CURVES A curve C of genus at least 2 is hyperelliptic if it admits a degree

### INTERSECTION THEORY CLASS 1

INTERSECTION THEORY CLASS 1 RAVI VAKIL CONTENTS 1. Welcome! 1 2. Examples 2 3. Strategy 5 1. WELCOME! Hi everyone welcome to Math 245, Introduction to intersection theory in algebraic geometry. Today I

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14 RAVI VAKIL Contents 1. Dimension 1 1.1. Last time 1 1.2. An algebraic definition of dimension. 3 1.3. Other facts that are not hard to prove 4 2. Non-singularity:

### CHEVALLEY S THEOREM AND COMPLETE VARIETIES

CHEVALLEY S THEOREM AND COMPLETE VARIETIES BRIAN OSSERMAN In this note, we introduce the concept which plays the role of compactness for varieties completeness. We prove that completeness can be characterized

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 5

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 5 RAVI VAKIL CONTENTS 1. The inverse image sheaf 1 2. Recovering sheaves from a sheaf on a base 3 3. Toward schemes 5 4. The underlying set of affine schemes 6 Last

### 10. Smooth Varieties. 82 Andreas Gathmann

82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18 CONTENTS 1. Invertible sheaves and divisors 1 2. Morphisms of schemes 6 3. Ringed spaces and their morphisms 6 4. Definition of morphisms of schemes 7 Last day:

### 9. Birational Maps and Blowing Up

72 Andreas Gathmann 9. Birational Maps and Blowing Up In the course of this class we have already seen many examples of varieties that are almost the same in the sense that they contain isomorphic dense

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23 RAVI VAKIL Contents 1. More background on invertible sheaves 1 1.1. Operations on invertible sheaves 1 1.2. Maps to projective space correspond to a vector

### INTERSECTION THEORY CLASS 12

INTERSECTION THEORY CLASS 12 RAVI VAKIL CONTENTS 1. Rational equivalence on bundles 1 1.1. Intersecting with the zero-section of a vector bundle 2 2. Cones and Segre classes of subvarieties 3 2.1. Introduction

### PROBLEMS, MATH 214A. Affine and quasi-affine varieties

PROBLEMS, MATH 214A k is an algebraically closed field Basic notions Affine and quasi-affine varieties 1. Let X A 2 be defined by x 2 + y 2 = 1 and x = 1. Find the ideal I(X). 2. Prove that the subset

### 12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

12. Linear systems Theorem 12.1. Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n A (1) is an invertible sheaf on X, which is generated by the global sections s 0, s

### Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

### MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Application of cohomology: Hilbert polynomials and functions, Riemann- Roch, degrees, and arithmetic genus 1 1. APPLICATION OF COHOMOLOGY:

### where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

### MODULI SPACES OF CURVES

MODULI SPACES OF CURVES SCOTT NOLLET Abstract. My goal is to introduce vocabulary and present examples that will help graduate students to better follow lectures at TAGS 2018. Assuming some background

### 9. Integral Ring Extensions

80 Andreas Gathmann 9. Integral ing Extensions In this chapter we want to discuss a concept in commutative algebra that has its original motivation in algebra, but turns out to have surprisingly many applications

### CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic

### Algebraic Geometry. Andreas Gathmann. Class Notes TU Kaiserslautern 2014

Algebraic Geometry Andreas Gathmann Class Notes TU Kaiserslautern 2014 Contents 0. Introduction......................... 3 1. Affine Varieties........................ 9 2. The Zariski Topology......................

### Lecture 7: Etale Fundamental Group - Examples

Lecture 7: Etale Fundamental Group - Examples October 15, 2014 In this lecture our only goal is to give lots of examples of etale fundamental groups so that the reader gets some feel for them. Some of

### Resolution of Singularities in Algebraic Varieties

Resolution of Singularities in Algebraic Varieties Emma Whitten Summer 28 Introduction Recall that algebraic geometry is the study of objects which are or locally resemble solution sets of polynomial equations.

### 14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski

14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski topology are very large, it is natural to view this as

### Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 As usual, all the rings we consider are commutative rings with an identity element. 18.1 Regular local rings Consider a local

### Porteous s Formula for Maps between Coherent Sheaves

Michigan Math. J. 52 (2004) Porteous s Formula for Maps between Coherent Sheaves Steven P. Diaz 1. Introduction Recall what the Thom Porteous formula for vector bundles tells us (see [2, Sec. 14.4] for

### 2. Prime and Maximal Ideals

18 Andreas Gathmann 2. Prime and Maximal Ideals There are two special kinds of ideals that are of particular importance, both algebraically and geometrically: the so-called prime and maximal ideals. Let

### Here is another way to understand what a scheme is 1.GivenaschemeX, and a commutative ring R, the set of R-valued points

Chapter 7 Schemes III 7.1 Functor of points Here is another way to understand what a scheme is 1.GivenaschemeX, and a commutative ring R, the set of R-valued points X(R) =Hom Schemes (Spec R, X) This is

### MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1

MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1 CİHAN BAHRAN I discussed several of the problems here with Cheuk Yu Mak and Chen Wan. 4.1.12. Let X be a normal and proper algebraic variety over a field k. Show

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27 RAVI VAKIL CONTENTS 1. Quasicoherent sheaves of ideals, and closed subschemes 1 2. Invertible sheaves (line bundles) and divisors 2 3. Some line bundles on projective

### Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

Algebraic Geometry Andreas Gathmann Notes for a class taught at the University of Kaiserslautern 2002/2003 CONTENTS 0. Introduction 1 0.1. What is algebraic geometry? 1 0.2. Exercises 6 1. Affine varieties

### COMPLEX ALGEBRAIC SURFACES CLASS 15

COMPLEX ALGEBRAIC SURFACES CLASS 15 RAVI VAKIL CONTENTS 1. Every smooth cubic has 27 lines, and is the blow-up of P 2 at 6 points 1 1.1. An alternate approach 4 2. Castelnuovo s Theorem 5 We now know that

### 3. The Sheaf of Regular Functions

24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

### COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY BRIAN OSSERMAN Classical algebraic geometers studied algebraic varieties over the complex numbers. In this setting, they didn t have to worry about the Zariski

### Néron Models of Elliptic Curves.

Néron Models of Elliptic Curves. Marco Streng 5th April 2007 These notes are meant as an introduction and a collection of references to Néron models of elliptic curves. We use Liu [Liu02] and Silverman

### 0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

### Math 6140 Notes. Spring Codimension One Phenomena. Definition: Examples: Properties:

Math 6140 Notes. Spring 2003. 11. Codimension One Phenomena. A property of the points of a variety X holds in codimension one if the locus of points for which the property fails to hold is contained in

### ALGORITHMS FOR ALGEBRAIC CURVES

ALGORITHMS FOR ALGEBRAIC CURVES SUMMARY OF LECTURE 7 I consider the problem of computing in Pic 0 (X) where X is a curve (absolutely integral, projective, smooth) over a field K. Typically K is a finite

### AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES DOMINIC L. WYNTER Abstract. We introduce the concepts of divisors on nonsingular irreducible projective algebraic curves, the genus of such a curve,

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 21

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 21 RAVI VAKIL CONTENTS 1. Integral extensions, the going-up theorem, Noether normalization, and a proof of the big dimension theorem (that transcendence degree =

### Math 418 Algebraic Geometry Notes

Math 418 Algebraic Geometry Notes 1 Affine Schemes Let R be a commutative ring with 1. Definition 1.1. The prime spectrum of R, denoted Spec(R), is the set of prime ideals of the ring R. Spec(R) = {P R

### ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

### Summer Algebraic Geometry Seminar

Summer Algebraic Geometry Seminar Lectures by Bart Snapp About This Document These lectures are based on Chapters 1 and 2 of An Invitation to Algebraic Geometry by Karen Smith et al. 1 Affine Varieties

### 1 Existence of the Néron model

Néron models Setting: S a Dedekind domain, K its field of fractions, A/K an abelian variety. A model of A/S is a flat, separable S-scheme of finite type X with X K = A. The nicest possible model over S

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 1. Contents 1. Commutative algebra 2 2. Algebraic sets 2 3. Nullstellensatz (theorem of zeroes) 4

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 1 RAVI VAKIL Contents 1. Commutative algebra 2 2. Algebraic sets 2 3. Nullstellensatz (theorem of zeroes) 4 I m going to start by telling you about this course,

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Motivation and game plan 1 2. The affine case: three definitions 2 Welcome back to the third quarter! The theme for this quarter, insofar

### ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

ORAL QUALIFYING EXAM QUESTIONS JOHN VOIGHT Below are some questions that I have asked on oral qualifying exams (starting in fall 2015). 1.1. Core questions. 1. Algebra (1) Let R be a noetherian (commutative)

### ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

ALGEBRAIC GEOMETRY (NMAG401) JAN ŠŤOVÍČEK Contents 1. Affine varieties 1 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30 1. Affine varieties The basic objects

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 RAVI VAKIL CONTENTS 1. Where we were 1 2. Yoneda s lemma 2 3. Limits and colimits 6 4. Adjoints 8 First, some bureaucratic details. We will move to 380-F for Monday

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS. ANDREW SALCH. More about some claims from the last lecture. Perhaps you have noticed by now that the Zariski topology

### CRing Project, Chapter 7

Contents 7 Integrality and valuation rings 3 1 Integrality......................................... 3 1.1 Fundamentals................................... 3 1.2 Le sorite for integral extensions.........................

### BEZOUT S THEOREM CHRISTIAN KLEVDAL

BEZOUT S THEOREM CHRISTIAN KLEVDAL A weaker version of Bézout s theorem states that if C, D are projective plane curves of degrees c and d that intersect transversally, then C D = cd. The goal of this

### MA 206 notes: introduction to resolution of singularities

MA 206 notes: introduction to resolution of singularities Dan Abramovich Brown University March 4, 2018 Abramovich Introduction to resolution of singularities 1 / 31 Resolution of singularities Let k be

### INTERSECTION THEORY CLASS 16

INTERSECTION THEORY CLASS 16 RAVI VAKIL CONTENTS 1. Where we are 1 1.1. Deformation to the normal cone 1 1.2. Gysin pullback for local complete intersections 2 1.3. Intersection products on smooth varieties

### (1) is an invertible sheaf on X, which is generated by the global sections

7. Linear systems First a word about the base scheme. We would lie to wor in enough generality to cover the general case. On the other hand, it taes some wor to state properly the general results if one

### 1 Flat, Smooth, Unramified, and Étale Morphisms

1 Flat, Smooth, Unramified, and Étale Morphisms 1.1 Flat morphisms Definition 1.1. An A-module M is flat if the (right-exact) functor A M is exact. It is faithfully flat if a complex of A-modules P N Q

### Algebraic v.s. Analytic Point of View

Algebraic v.s. Analytic Point of View Ziwen Zhu September 19, 2015 In this talk, we will compare 3 different yet similar objects of interest in algebraic and complex geometry, namely algebraic variety,

### 2. Intersection Multiplicities

2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

### LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL In this lecture we discuss a criterion for non-stable-rationality based on the decomposition of the diagonal in the Chow group. This criterion

### DESCENT THEORY (JOE RABINOFF S EXPOSITION)

DESCENT THEORY (JOE RABINOFF S EXPOSITION) RAVI VAKIL 1. FEBRUARY 21 Background: EGA IV.2. Descent theory = notions that are local in the fpqc topology. (Remark: we aren t assuming finite presentation,

### mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

2. The canonical divisor In this section we will introduce one of the most important invariants in the birational classification of varieties. Definition 2.1. Let X be a normal quasi-projective variety

### HARTSHORNE EXERCISES

HARTSHORNE EXERCISES J. WARNER Hartshorne, Exercise I.5.6. Blowing Up Curve Singularities (a) Let Y be the cusp x 3 = y 2 + x 4 + y 4 or the node xy = x 6 + y 6. Show that the curve Ỹ obtained by blowing

### 11. Dimension. 96 Andreas Gathmann

96 Andreas Gathmann 11. Dimension We have already met several situations in this course in which it seemed to be desirable to have a notion of dimension (of a variety, or more generally of a ring): for

### Elliptic Curves and Public Key Cryptography

Elliptic Curves and Public Key Cryptography Jeff Achter January 7, 2011 1 Introduction to Elliptic Curves 1.1 Diophantine equations Many classical problems in number theory have the following form: Let

### ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

ALGEBRAIC GROUPS Disclaimer: There are millions of errors in these notes! 1. Some algebraic geometry The subject of algebraic groups depends on the interaction between algebraic geometry and group theory.

### SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN The notions o separatedness and properness are the algebraic geometry analogues o the Hausdor condition and compactness in topology. For varieties over the

### Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013

18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013 As usual, a curve is a smooth projective (geometrically irreducible) variety of dimension one and k is a perfect field. 23.1

### Projective Varieties. Chapter Projective Space and Algebraic Sets

Chapter 1 Projective Varieties 1.1 Projective Space and Algebraic Sets 1.1.1 Definition. Consider A n+1 = A n+1 (k). The set of all lines in A n+1 passing through the origin 0 = (0,..., 0) is called the

### Local Parametrization and Puiseux Expansion

Chapter 9 Local Parametrization and Puiseux Expansion Let us first give an example of what we want to do in this section. Example 9.0.1. Consider the plane algebraic curve C A (C) defined by the equation

### THREE APPROACHES TO CHOW S THEOREM

THREE APPROACHES TO CHOW S THEOREM EVAN WARNER 1. Statement and overview The focus of this talk will be on Chow s theorem, a simple but very useful result linking complex analytic geometry to algebraic

### (dim Z j dim Z j 1 ) 1 j i

Math 210B. Codimension 1. Main result and some interesting examples Let k be a field, and A a domain finitely generated k-algebra. In class we have seen that the dimension theory of A is linked to the

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25 RAVI VAKIL CONTENTS 1. Quasicoherent sheaves 1 2. Quasicoherent sheaves form an abelian category 5 We began by recalling the distinguished affine base. Definition.

### Lecture 3: Flat Morphisms

Lecture 3: Flat Morphisms September 29, 2014 1 A crash course on Properties of Schemes For more details on these properties, see [Hartshorne, II, 1-5]. 1.1 Open and Closed Subschemes If (X, O X ) is a

### SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Last quarter, we introduced the closed diagonal condition or a prevariety to be a prevariety, and the universally closed condition or a variety to be complete.

### GEOMETRIC CLASS FIELD THEORY I

GEOMETRIC CLASS FIELD THEORY I TONY FENG 1. Classical class field theory 1.1. The Artin map. Let s start off by reviewing the classical origins of class field theory. The motivating problem is basically

### ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY DAVID WHITE Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ANDREW SALCH 1. Affine schemes. About notation: I am in the habit of writing f (U) instead of f 1 (U) for the preimage of a subset

### INTERSECTION THEORY CLASS 7

INTERSECTION THEORY CLASS 7 RAVI VAKIL CONTENTS 1. Intersecting with a pseudodivisor 1 2. The first Chern class of a line bundle 3 3. Gysin pullback 4 4. Towards the proof of the big theorem 4 4.1. Crash

### Commutative algebra 19 May Jan Draisma TU Eindhoven and VU Amsterdam

1 Commutative algebra 19 May 2015 Jan Draisma TU Eindhoven and VU Amsterdam Goal: Jacobian criterion for regularity 2 Recall A Noetherian local ring R with maximal ideal m and residue field K := R/m is

### ON A THEOREM OF CAMPANA AND PĂUN

ON A THEOREM OF CAMPANA AND PĂUN CHRISTIAN SCHNELL Abstract. Let X be a smooth projective variety over the complex numbers, and X a reduced divisor with normal crossings. We present a slightly simplified

### Another way to proceed is to prove that the function field is purely transcendental. Now the coordinate ring is

3. Rational Varieties Definition 3.1. A rational function is a rational map to A 1. The set of all rational functions, denoted K(X), is called the function field. Lemma 3.2. Let X be an irreducible variety.

### Basic Algebraic Geometry 1

Igor R. Shafarevich Basic Algebraic Geometry 1 Second, Revised and Expanded Edition Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Table of Contents Volume 1

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry