Problem Set 4 Solutions

Size: px
Start display at page:

Download "Problem Set 4 Solutions"

Transcription

1 University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different ways. 1. a) Notice that the first op amp is simply a noninverting amplifier with input v in and the second is an inverting amplifier with the same input. Denoting the respective outputs of the op amps by v o1 and v o2, we immediately infer that v o1 = R 1 R 1 v in and v o2 = R 4 v in. If you do not see this, you can also write nodal equations at the noninverting inputs of the op amps after applying the golden rules. Now the output v o is given by the difference of the above two voltages: R1 v o = v o1 v o2 = R ) 4 v in R 1 b) Since the supply voltages are ±V s, the maximum output that can be achieved across R L is when v o1 = V s and v o2 = V s, giving us a total output of 2V s. This can be potentially useful because it allows us to achieve a greater gain than is normally allowed by our supply voltages. 2. While the circuit looks intimidating, we can make massive simplifications by applying the golden rules to each op amp. We are left with only two unknown voltages as shown below: 8 kω v 1 2 kω v x 4 kω v x v x.5 kω 4 kω 2 kω 1 kω v o v 2 2 kω 1 kω 4 kω.5 kω 16 kω

2 Firstly, the first two op amps have their inverting inputs at a virtual ground due to the connection to ground at their noninverting inputs. Notice that the two 4 kω resistors don t induce any voltage drop between the first pair of op amps and the second, as the currents into the op amp inputs are always. Because both of the middle op amps are buffers, v x and get carried over to their outputs. Finally, there is no voltage drop across the bottom.5 kω resistor due to lack of current note this is NOT true for the one on the top). With all this in mind, we can simply solve for v x and, and this will give us access to v o. Both v x and are given by inverting amplifiers: v x = 8 kω 2 kω v 1 = 4v 1 16 kω = 2 kω v 1 = 8v 2 KCL at the inverting input of the last op amp gives us v x.5 kω v o 4 kω = Plugging in for our quantities previously solved gives us v o = 32v 1 72v a) Since the first pair of op amps are both buffers, their inputs carry over to their respective output nodes. In addition, we can define one unknown node v x at both inputs of the third op amp, by usage of the golden rules. KCL at the bottom noninverting input node gives us v x due to voltage divider: KCL at the top node gives us v x = v 2 v x v 1 v x v o = Plugging in for v x and solving for v o gives us v o = v 2 v 1 ). b) The situation here is a bit more complex, as we do not know explicitly what the outputs of the first pair of op amps are. Call them v o1 and v o2. If we write nodal equations at the noninverting inputs of these op amps, we get two plus the two from the last part, giving us four equations. v 1 v o1 R 1 v 1 v 2 R gain = v 2 v o2 R 1 v 2 v 1 R gain = v x = v o2 2

3 v x v o1 v x v o = Plug the third into the fourth equation to get rid of v x. Then solve the first two equations for v o1 and v o2 and plug them in to obtain v o in terms of v 1 and v 2. v o = v x v o1 = v o2 v o1 ) v o1 = R 1 v 1 v 2 ) v 1, v o2 = R 1 v 2 v 1 ) v 2 R gain R gain ) v o = 1 2R 1 R gain v 2 v 1 ) 4. a) The circuit redrawn with the transconductance amplifier model looks like the following notice the placement of each of the components): i o i s R s R in v i Gv i R out R L b) The output current i o is simply given by the current divider of the current Gv i : i o = R out R out R L Gv i = 1 kω 1 kω 2 kω 1v i = 8333v i So G msc = io v i = c) To calculate the output, we simply need to relate the input current i s to v i : i o = 8333v i = 8333R s R in )i s = kω 1 Ω)1 µa) =.817 A 5. a) The order of the amplifiers will matter due to the nonidealities of each and the loading effects that they cause. For order AB, our circuit can be redrawn: 1 kω 1 Ω 1 kω v in 8v in 1 Ω 1i in 1 MΩ i in 1 Ω 3

4 The power input is given by the power through the input source v s : ) P i = v s i s = ) =.5 mw 1 kω 1 kω The power output can be found by using the current going through R L : ) 2 ) 2 P o = i 2 1 MΩ LR L = 1 MΩ 1 Ω 1i 8v in in 1 Ω) = 9998 = V) 2 = 1322 W 1 Ω 1 Ω Now consider the order BA: 1 kω i in 1 Ω 1 Ω 1i in 1 MΩ 1 kω v in 8v in 1 Ω ) P i = v s i s = ) =.99 mw 1 kω 1 Ω ) 2 P o = v2 L 1 Ω = R L 1 Ω 1 Ω 8v in /1 Ω) =.627[1i in1 MΩ 1 kω)] 2 ) 2 = = 61.3 W 1 kω 1 Ω Clearly, the power gain of AB is much greater, with as opposed to 62 of BA. Without the amplifiers, the power gain is smaller than 1: G P = i2 R L iv s = i R L v s = v s R S R L R L v s = =.99 b) Consider the power output in the absence of the second stage replace the 1 Ω resistor with a 1 Ω). ) 2 P o = i 2 8v in LR L = 1 Ω) = V) 2 =.157 W 1 Ω 1 Ω Clearly, the second stage delivers a lot more power to the load. 1k Ω c) The voltage gain of the first stage is A 1 Ω 1k Ω1k Ω v = The gain of the 1 Ω1 Ω 1k Ω A cascade amplifiers is v A 1k Ω1k Ω 11 Ω i1m Ω 1 Ω = Since the cascade voltage gain is larger than the gain of the first state, the second stage will clip first when the input voltage is ± = ±27.5 mv

5 6. a) For the sequence BAC, we first have a noninverting amplifier, followed by an inverting amplifier, and finally a voltage follower. The gain is thus G = 1 R ) 4 R ) 2 1) = 1 8 k ) 6 k ) = 9 R 1 4 k 2 k The load resistance seen by the voltage input is infinite, since no current flows into the noninverting input of op amp B. b) The gain here is the same, since it is order-independent multiplication is commutative). However, the input resistance is not in this case; instead, it is R 1 = 2 kω, since the source sees the inverting amplifier first. So in terms of overall gain, both orderings are equally good. However, the former is better for voltage amplification, as its input resistance is much higher. c) The voltage gain remains the same in both cases, since the third stage does not affect it. It is usually useful to prevent loading effects at either the input or output of an op amp, especially if it is non-ideal although it doesn t play any role here since all the op amps are ideal). 7. On the left side, we first combine the 1 µf with the 5 µf in series, followed by the 9 µf in parallel: C eq1 = 1 µf 5 µf) 9 µf = 12.3 µf On the right side, the 9 µf is in parallel with the 7 µf, followed by a series connection with the 8 µf. C eq2 = 9 µf 7 µf) 8 µf) = 5.33 µf These two equivalent capacitances are in parallel with each other, as seen by a and b. C eq = C eq1 C eq2 = 17.7 µf 8. Note that before t =, all the current shorts through the middle branch, since there is no charge nor voltage on the capacitor. Once the switch opens, the capacitor must sustatin a constant 2 ma current to satisfy KCL. vt = 5 ms) = 1 C 5 ms it)dt = 1 5 µf 5 ms 2 madt = 2 ma)5 ms) 5 µf pt = 5 ms) = vt = 5 ms)it = 5 ms) = 2 V)2 ma) =.4 W wt = 5 ms) = 1 2 Cv2 t = 5 ms) = µf)2 V)2 =.1 J = 2 V 9. The current is given by it) = C dvt). Hence it is sufficient to differentiate the given dt graph of voltage in segments. We thus have it) = 5 µa for < t < 1, it) = for 1 < t < 4, it) = 37.5 µa for 4 < t < 6, it) = for 6 < t < 9, and it) = 25 µa for 9 < t < 1. Note that all times listed are in µs. The net charge and energy are both, since both are proportional to voltage, which is itself at the end time t = 1 µs. We are only concerned with net charge and energy, which represents the total transferred.) 5

6 1. Since both capacitors are initially uncharged, conservation demands that the net charge at each node remain after the voltage source is connected. We apply this principle to the node between the two capacitors. Since we are looking at the negative plate of cap 1 and the positive plate of cap 2, we must have that q 1 q 2 = Remember that the charge on parallel-plate capacitors are equal and opposite. Another relation we can construct using KVL is the following: 15 V = v 1 v 2 = q 1 C 1 q 2 C 2 = q 1 12 µf q 2 28 µf The above two equations give us a system that we can solve. The solutions are q 1 = q 2 =.126 mc. With this we find that the voltages are v 1 = 1.5 V and v 2 = 4.5 V. 6

Problem Set 5 Solutions

Problem Set 5 Solutions University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different

More information

Electric Circuits Fall 2015 Solution #5

Electric Circuits Fall 2015 Solution #5 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Problem Set 1 Solutions (Rev B, 2/5/2012)

Problem Set 1 Solutions (Rev B, 2/5/2012) University of California, Berkeley Spring 2012 EE 42/100 Prof. A. Niknejad Problem Set 1 Solutions (Rev B, 2/5/2012) Please note that these are merely suggested solutions. Many of these problems can be

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

0 t < 0 1 t 1. u(t) =

0 t < 0 1 t 1. u(t) = A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult

More information

Homework 2. Due Friday (5pm), Feb. 8, 2013

Homework 2. Due Friday (5pm), Feb. 8, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 2 Due Friday (5pm), Feb. 8, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled EE

More information

P114 University of Rochester NAME S. Manly Spring 2010

P114 University of Rochester NAME S. Manly Spring 2010 Exam 2 (March 23, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where indicated. Problem 1 ( 8 pts): In each

More information

Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2. Exam location: 145 Dwinelle, last SID# 2

Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2. Exam location: 145 Dwinelle, last SID# 2 EECS 16A Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2 Exam location: 145 Dwinelle, last SID# 2 PRINT your student ID: PRINT AND SIGN your name:, (last) (first)

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

ECE2262 Electric Circuit

ECE2262 Electric Circuit ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,

More information

Capacitors. Chapter How capacitors work Inside a capacitor

Capacitors. Chapter How capacitors work Inside a capacitor Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined

More information

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

EIT Quick-Review Electrical Prof. Frank Merat

EIT Quick-Review Electrical Prof. Frank Merat CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS OBJECTIVES 1) To introduce the Source Transformation 2) To consider the concepts of Linearity and Superposition

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

COPYRIGHTED MATERIAL. DC Review and Pre-Test. Current Flow CHAPTER

COPYRIGHTED MATERIAL. DC Review and Pre-Test. Current Flow CHAPTER Kybett c0.tex V3-03/3/2008 8:44pm Page CHAPTER DC Review and Pre-Test Electronics cannot be studied without first understanding the basics of electricity. This chapter is a review and pre-test on those

More information

Midterm Exam 2. Prof. Miloš Popović

Midterm Exam 2. Prof. Miloš Popović Midterm Exam 2 Prof. Miloš Popović 100 min timed, closed book test. Write your name at top of every page (or initials on later pages) Aids: single page (single side) of notes, handheld calculator Work

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

20.2 Design Example: Countdown Timer

20.2 Design Example: Countdown Timer EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

EE40 Midterm Review Prof. Nathan Cheung

EE40 Midterm Review Prof. Nathan Cheung EE40 Midterm Review Prof. Nathan Cheung 10/29/2009 Slide 1 I feel I know the topics but I cannot solve the problems Now what? Slide 2 R L C Properties Slide 3 Ideal Voltage Source *Current depends d on

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

= e = e 3 = = 4.98%

= e = e 3 = = 4.98% PHYS 212 Exam 2 - Practice Test - Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider Node-Voltage Analysis 3 Network Analysis

More information

Department of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions

Department of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions Electrical Engineering 42/00 Summer 202 Instructor: Tony Dear Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley Final Exam Solutions. Diodes Have apacitance?!?!

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Electronics II. Midterm #1

Electronics II. Midterm #1 The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem

More information

Circuit Theory Chapter 7 Response of First-Order RL and R Circuits

Circuit Theory Chapter 7 Response of First-Order RL and R Circuits 140310 Circuit Theory Chapter 7 Response of First-Orer RL an R Circuits 140310 Circuit Theory Chapter 7 Response of First-Orer RL an RC Circuits Chapter Objectives Be able to etermine the natural response

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

Direct-Current Circuits. Physics 231 Lecture 6-1

Direct-Current Circuits. Physics 231 Lecture 6-1 Direct-Current Circuits Physics 231 Lecture 6-1 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

ELECTRONICS. EE 42/100 Lecture 2: Charge, Current, Voltage, and Circuits. Revised 1/18/2012 (9:04PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 2: Charge, Current, Voltage, and Circuits. Revised 1/18/2012 (9:04PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 2 p. 1/26 EE 42/100 Lecture 2: Charge, Current, Voltage, and Circuits ELECTRONICS Revised 1/18/2012 (9:04PM) Prof. Ali M. Niknejad

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

ENGR 2405 Chapter 6. Capacitors And Inductors

ENGR 2405 Chapter 6. Capacitors And Inductors ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

An op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details.

An op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details. CHAPTER 5 Operational Amplifiers In this chapter, we learn how to use a new circuit element called op amp to build circuits that can perform various kinds of mathematical operations. Op amp is a building

More information

Discussion Question 6A

Discussion Question 6A Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits

More information

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4) UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

EE40: Introduction to µelectronic Circuits Lecture Notes

EE40: Introduction to µelectronic Circuits Lecture Notes EE40: Introduction to µelectronic Circuits Lecture Notes Alessandro Pinto University of California at Berkeley 545P Cory Hall, Berkeley, CA 94720 apinto@eecs.berkeley.edu July 0, 2004 Contents First Order

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

A positive value is obtained, so the current is counterclockwise around the circuit.

A positive value is obtained, so the current is counterclockwise around the circuit. Chapter 7. (a) Let i be the current in the circuit and take it to be positive if it is to the left in. We use Kirchhoff s loop rule: ε i i ε 0. We solve for i: i ε ε + 6. 0 050.. 4.0Ω+ 80. Ω positive value

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1 Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers Kevin D. Donohue, University of Kentucky Simple circuits with single loops or node-pairs can result

More information

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. EECS 40 Midterm II

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. EECS 40 Midterm II University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences EECS 40 Midterm II Spring 2001 Prof. Roger T. Howe April 11, 2001 Name: Last, First Student

More information