A convex QP solver based on block-lu updates

Size: px
Start display at page:

Download "A convex QP solver based on block-lu updates"

Transcription

1 Block-LU updates p. 1/24 A convex QP solver based on block-lu updates PP06 SIAM Conference on Parallel Processing for Scientific Computing San Francisco, CA, Feb 22 24, 2006 Hanh Huynh and Michael Saunders SCCM Program Dept of Management Sci & Eng Stanford University Stanford University Stanford, CA Stanford, CA hhuynh@stanford.edu saunders@stanford.edu

2 Block-LU updates p. 2/24 Abstract Active-set methods have an advantage over interior methods in permitting warm starts. We describe a convex QP method intended for use within SNOPT (a sparse SQP package for constrained optimization). An initial KKT system is factorized by any available method (LUSOL, MA57, PARDISO, SuperLU,... ). Active-set changes are implemented by block-lu updates that retain sparsity while leaving the original KKT factors intact. Acknowledgements: Philip Gill, UC San Diego Comsol, Inc

3 Why a new QP solver? Block-LU updates p. 3/24

4 Block-LU updates p. 4/24 SNOPT Sparse SQP solver for NLP (Gill, Murray & Saunders, 2005) Sequence of QP subproblems currently solved by SQOPT: QP k minimize x subject to g T k x xt H k x linearized constraints and bounds Limited-memory quasi-newton Hessian H 1 = (I + vu T )H 0 (I + uv T ), etc Warm start, few iterations active-set method SQOPT s reduced Hessian Z T H k Z can be large Need a QP solver that works with KKT systems (like QPA in GALAHAD)

5 Block-LU updates p. 5/24 KKT systems Active-set QP solvers start with systems of the form ( ) H A T T K 0 y = d, K 0 = = L 0 D 0 L 0 A 0 and then add/delete rows and cols of H, A Later systems are equivalent to ( ) ( K 0 V V T D y 1 y 2 ) = ( d 1 d 2 ) where we want to treat K 0 as a black box

6 Block-LU updates p. 6/24 QPA Active-set QP solver in GALAHAD (Gould and Toint, 2004) Uses SCU to solve sequence of updated KKT systems ( ) ( ) ( ) K 0 V y 1 d 1 V T = D SCU maintains factors of Schur complement C, where y 2 K 0 T = V C = D V T T K 0 is a black box (QPA uses L 0 D 0 L 0 T via MA27 or MA57) T is not stored (may be fairly dense) One solve with dense C, but two solves with K 0 d 2

7 Symmetric Block-LU updates ( K 0 V T ) V D = ( L 0 Y T D 1 0 I ) ( D 0 L 0 T ) Y C K 0 = L 0 D 0 L 0 T L 0 Y = V C = D Y T D 0 1 Y Solves with L 0, D 0, C, D 0, L 0 T, and products with Y T, Y L 0, D 0 are two black boxes MA57 has separate solves with L 0, D 0, L 0 T Y is likely to be sparse (Thanks Iain!) Small dense LC = U with L square Block-LU updates p. 7/24

8 Same approach for updating simplex-type basis B 0 = L 0 U 0 Block-LU updates p. 8/24 Unsymmetric Block-LU updates ( K 0 W T ) V D = ( L 0 Z T I ) ( U 0 ) Y C K 0 = L 0 U 0, L 0 Y = V, U T 0 Z = W, C = D Z T Y Solves with L 0, C, U 0, and products with Z T, Y L 0, U 0 are two black boxes Y and Z are likely to be sparse Small dense LC = U with L square

9 Block-LU updates p. 9/24 Special request to PARDISO, SuperLU,... developers: Allow separate solves with L, D, U factors (MA57 already does)

10 Rank-Revealing Factors Block-LU updates p. 10/24

11 Block-LU updates p. 11/24 Partial Pivoting

12 Block-LU updates p. 12/24 Rook Pivoting

13 Block-LU updates p. 13/24 Complete Pivoting

14 Block-LU updates p. 14/24 LUSOL pivoting options TPP TRP TCP Threshold Partial Pivoting Threshold Rook Pivoting Threshold Complete Pivoting

15 Block-LU updates p. 15/24 TPP: Threshold Partial Pivoting Require L ij 2.0 (say)

16 Block-LU updates p. 16/24 TRP: Threshold Rook Pivoting A = LDU Require L ij and U ij 2.0 (say)

17 Block-LU updates p. 17/24 TCP: Threshold Complete Pivoting A = LDU Require L ij and U ij 2.0 (say)

18 Block-LU updates p. 18/24 Rank-Revealing Factors A = XDY T = Demmel et al. (1999): X, Y well-conditioned, D diagonal cond(a) cond(d) SVD QR with column interchanges LU with Rook Pivoting LU with Complete Pivoting UDV T QDR LDU LDU

19 Block-LU updates p. 19/24 Rank-Revealing Factors A = XDY T = Demmel et al. (1999): X, Y well-conditioned, D diagonal cond(a) cond(d) SVD QR with column interchanges LU with Rook Pivoting LU with Complete Pivoting MA27, MA57 (L ij bounded, D block-diag) UDV T QDR LDU LDU LDL T

20 Block-LU updates p. 20/24 Special request to PARDISO, SuperLU,... developers: Provide options for computing rank-revealing factors (LUSOL, MA57 already do) Need off-diags 2.5 say (MA57 s pivot tol 0.4)

21 Block-LU updates p. 21/24 Numerical results QP minimize c T x + 1 x 2 xt x subject to Ax = b, l x u QP problems with H = I A, b, c, l, u come from LPnetlib collection (Tim Davis) Matlab implementation of proposed QP solver using block-lu updates of KKT system [L0,U0,P,Q] = lu(k0) via UMFPACK (Tim Davis) Update 20 times then refactorize current KKT matrix

22 Block-LU updates p. 22/24 Block-LU updates ( K 0 W T ) V D = ( L 0 Z T I ) ( U 0 ) Y C Compare nonzeros in Y and Z: L 0 = I, U 0 = L 0 U 0 Separate L 0 and U 0 Y = V L 0 Y = V U T 0 L T 0 Z = W U T 0 Z = W

23 Black-box K 0 vs separate L 0, U 0 Data Source: capri, K0 = I*K0 Number of Nonzeros Iterations Data Source: capri, K0 = L0*U0 Y Z Number of Nonzeros Iterations Y Z Block-LU updates p. 23/24

24 Block-LU updates p. 24/24 Summary Block-LU updates: ( K 0 W T ) V D = ( L 0 Z T I ) ( U 0 ) Y C Black-box K 0 = L 0 U 0 or L 0 D 0 L T 0 Our main hope for parallelism in LP/QP/NLP solvers Need separate solves with L 0, D 0, U 0 Need rank-revealing factors of K 0 Ideally parallel products Y v, Y T w, Zv, Z T w (OBLAS?)

Implementation of a KKT-based active-set QP solver

Implementation of a KKT-based active-set QP solver Block-LU updates p. 1/27 Implementation of a KKT-based active-set QP solver ISMP 2006 19th International Symposium on Mathematical Programming Rio de Janeiro, Brazil, July 30 August 4, 2006 Hanh Huynh

More information

LUSOL: A basis package for constrained optimization

LUSOL: A basis package for constrained optimization LUSOL: A basis package for constrained optimization IFORS Triennial Conference on OR/MS Honolulu, HI, July 11 15, 2005 Michael O Sullivan and Michael Saunders Dept of Engineering Science Dept of Management

More information

Sparse Rank-Revealing LU Factorization

Sparse Rank-Revealing LU Factorization Sparse Rank-Revealing LU Factorization SIAM Conference on Optimization Toronto, May 2002 Michael O Sullivan and Michael Saunders Dept of Engineering Science Dept of Management Sci & Eng University of Auckland

More information

Sparse Rank-Revealing LU Factorization

Sparse Rank-Revealing LU Factorization Sparse Rank-Revealing LU Factorization Householder Symposium XV on Numerical Linear Algebra Peebles, Scotland, June 2002 Michael O Sullivan and Michael Saunders Dept of Engineering Science Dept of Management

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2015 Notes 11: NPSOL and SNOPT SQP Methods 1 Overview

More information

A review of sparsity vs stability in LU updates

A review of sparsity vs stability in LU updates A review of sparsity vs stability in LU updates Michael Saunders Dept of Management Science and Engineering (MS&E) Systems Optimization Laboratory (SOL) Institute for Computational Mathematics and Engineering

More information

Satisfying Flux Balance and Mass-Action Kinetics in a Network of Biochemical Reactions

Satisfying Flux Balance and Mass-Action Kinetics in a Network of Biochemical Reactions Satisfying Flux Balance and Mass-Action Kinetics in a Network of Biochemical Reactions Speakers Senior Personnel Collaborators Michael Saunders and Ines Thiele Ronan Fleming, Bernhard Palsson, Yinyu Ye

More information

Ax=b. Zack 10/4/2013

Ax=b. Zack 10/4/2013 Ax=b Zack 10/4/2013 Iteration method Ax=b v 1, v 2 x k = V k y k Given (A, b) standard orthonormal base v 1, v 2 x k = V k y k For symmetric A, the method to generate V k is called Lanczos Method Lanczos

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME MS&E 38 (CME 338 Large-Scale Numerical Optimization Course description Instructor: Michael Saunders Spring 28 Notes : Review The course teaches

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME MS&E 318 (CME 338 Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2018 Notes 7: LUSOL: a Basis Factorization

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2017 Notes 10: MINOS Part 1: the Reduced-Gradient

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

A REGULARIZED ACTIVE-SET METHOD FOR SPARSE CONVEX QUADRATIC PROGRAMMING

A REGULARIZED ACTIVE-SET METHOD FOR SPARSE CONVEX QUADRATIC PROGRAMMING A REGULARIZED ACTIVE-SET METHOD FOR SPARSE CONVEX QUADRATIC PROGRAMMING A DISSERTATION SUBMITTED TO THE INSTITUTE FOR COMPUTATIONAL AND MATHEMATICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF

More information

SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines

SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines vs for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines Ding Ma Michael Saunders Working paper, January 5 Introduction In machine learning,

More information

Hot-Starting NLP Solvers

Hot-Starting NLP Solvers Hot-Starting NLP Solvers Andreas Wächter Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu 204 Mixed Integer Programming Workshop Ohio

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-14 1. There was a goof in HW 2, problem 1 (now fixed) please re-download if you have already started looking at it. 2. CS colloquium (4:15 in Gates G01) this Thurs is Margaret

More information

Scientific Computing

Scientific Computing Scientific Computing Direct solution methods Martin van Gijzen Delft University of Technology October 3, 2018 1 Program October 3 Matrix norms LU decomposition Basic algorithm Cost Stability Pivoting Pivoting

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Reduced-Hessian Methods for Constrained Optimization

Reduced-Hessian Methods for Constrained Optimization Reduced-Hessian Methods for Constrained Optimization Philip E. Gill University of California, San Diego Joint work with: Michael Ferry & Elizabeth Wong 11th US & Mexico Workshop on Optimization and its

More information

Chapter 8 Cholesky-based Methods for Sparse Least Squares: The Benefits of Regularization

Chapter 8 Cholesky-based Methods for Sparse Least Squares: The Benefits of Regularization In L. Adams and J. L. Nazareth eds., Linear and Nonlinear Conjugate Gradient-Related Methods, SIAM, Philadelphia, 92 100 1996. Chapter 8 Cholesky-based Methods for Sparse Least Squares: The Benefits of

More information

Trajectory Planning and Collision Detection for Robotics Applications

Trajectory Planning and Collision Detection for Robotics Applications Trajectory Planning and Collision Detection for Robotics Applications joint work with Rene Henrion, Dietmar Homberg, Chantal Landry (WIAS) Institute of Mathematics and Applied Computing Department of Aerospace

More information

SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization

SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization Philip E. Gill; Department of Mathematics, University of California, San Diego, La Jolla, CA Walter Murray, Michael A. Saunders; Department

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 208 LECTURE 3 need for pivoting we saw that under proper circumstances, we can write A LU where 0 0 0 u u 2 u n l 2 0 0 0 u 22 u 2n L l 3 l 32, U 0 0 0 l n l

More information

2 P. E. GILL, W. MURRAY AND M. A. SAUNDERS We assume that the nonlinear functions are smooth and that their rst derivatives are available (and possibl

2 P. E. GILL, W. MURRAY AND M. A. SAUNDERS We assume that the nonlinear functions are smooth and that their rst derivatives are available (and possibl SNOPT: AN SQP ALGORITHM FOR LARGE-SCALE CONSTRAINED OPTIMIZATION PHILIP E. GILL y, WALTER MURRAY z, AND MICHAEL A. SAUNDERS z Abstract. Sequential quadratic programming (SQP) methods have proved highly

More information

Numerical Methods I: Numerical linear algebra

Numerical Methods I: Numerical linear algebra 1/3 Numerical Methods I: Numerical linear algebra Georg Stadler Courant Institute, NYU stadler@cimsnyuedu September 1, 017 /3 We study the solution of linear systems of the form Ax = b with A R n n, x,

More information

Experiments with iterative computation of search directions within interior methods for constrained optimization

Experiments with iterative computation of search directions within interior methods for constrained optimization Experiments with iterative computation of search directions within interior methods for constrained optimization Santiago Akle and Michael Saunders Institute for Computational Mathematics and Engineering

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2015 Notes 4: The Primal Simplex Method 1 Linear

More information

LU Preconditioning for Overdetermined Sparse Least Squares Problems

LU Preconditioning for Overdetermined Sparse Least Squares Problems LU Preconditioning for Overdetermined Sparse Least Squares Problems Gary W. Howell 1 and Marc Baboulin 2 1 North Carolina State University, USA gwhowell@ncsu.edu 2 Université Paris-Sud and Inria, France

More information

5.5 Quadratic programming

5.5 Quadratic programming 5.5 Quadratic programming Minimize a quadratic function subject to linear constraints: 1 min x t Qx + c t x 2 s.t. a t i x b i i I (P a t i x = b i i E x R n, where Q is an n n matrix, I and E are the

More information

Fundamentals Algorithms for Linear Equation Solution. Gaussian Elimination LU Factorization

Fundamentals Algorithms for Linear Equation Solution. Gaussian Elimination LU Factorization Fundamentals Algorithms for Linear Equation Solution Gaussian Elimination LU Factorization J. Roychowdhury, University of alifornia at erkeley Slide Dense vs Sparse Matrices ircuit Jacobians: typically

More information

A dissection solver with kernel detection for unsymmetric matrices in FreeFem++

A dissection solver with kernel detection for unsymmetric matrices in FreeFem++ . p.1/21 11 Dec. 2014, LJLL, Paris FreeFem++ workshop A dissection solver with kernel detection for unsymmetric matrices in FreeFem++ Atsushi Suzuki Atsushi.Suzuki@ann.jussieu.fr Joint work with François-Xavier

More information

A Regularized Interior-Point Method for Constrained Nonlinear Least Squares

A Regularized Interior-Point Method for Constrained Nonlinear Least Squares A Regularized Interior-Point Method for Constrained Nonlinear Least Squares XII Brazilian Workshop on Continuous Optimization Abel Soares Siqueira Federal University of Paraná - Curitiba/PR - Brazil Dominique

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

Sparse linear solvers

Sparse linear solvers Sparse linear solvers Laura Grigori ALPINES INRIA and LJLL, UPMC On sabbatical at UC Berkeley March 2015 Plan Sparse linear solvers Sparse matrices and graphs Classes of linear solvers Sparse Cholesky

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 2 Systems of Linear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Iterative Solution of Sparse Linear Least Squares using LU Factorization

Iterative Solution of Sparse Linear Least Squares using LU Factorization Iterative Solution of Sparse Linear Least Squares using LU Factorization Gary W. Howell Marc Baboulin Abstract In this paper, we are interested in computing the solution of an overdetermined sparse linear

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

Graph Coarsening Method for KKT Matrices Arising in Orthogonal Collocation Methods for Optimal Control Problems

Graph Coarsening Method for KKT Matrices Arising in Orthogonal Collocation Methods for Optimal Control Problems Graph Coarsening Method for KKT Matrices Arising in Orthogonal Collocation Methods for Optimal Control Problems Begüm Şenses Anil V. Rao University of Florida Gainesville, FL 32611-6250 Timothy A. Davis

More information

Scaling and Pivoting in an Out-of-Core Sparse Direct Solver

Scaling and Pivoting in an Out-of-Core Sparse Direct Solver Scaling and Pivoting in an Out-of-Core Sparse Direct Solver JENNIFER A. SCOTT Rutherford Appleton Laboratory Out-of-core sparse direct solvers reduce the amount of main memory needed to factorize and solve

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

Solving linear equations with Gaussian Elimination (I)

Solving linear equations with Gaussian Elimination (I) Term Projects Solving linear equations with Gaussian Elimination The QR Algorithm for Symmetric Eigenvalue Problem The QR Algorithm for The SVD Quasi-Newton Methods Solving linear equations with Gaussian

More information

Linear Algebra in IPMs

Linear Algebra in IPMs School of Mathematics H E U N I V E R S I Y O H F E D I N B U R G Linear Algebra in IPMs Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio Paris, January 2018 1 Outline Linear

More information

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs Advanced Mathematical Programming IE417 Lecture 24 Dr. Ted Ralphs IE417 Lecture 24 1 Reading for This Lecture Sections 11.2-11.2 IE417 Lecture 24 2 The Linear Complementarity Problem Given M R p p and

More information

Optimization Research at SOL

Optimization Research at SOL SOL Research p. 1/44 Optimization Research at SOL A review of the last 30 years Michael SAUNDERS Systems Optimization Laboratory Dept of Management Science and Engineering Stanford University Stanford,

More information

Towards a stable static pivoting strategy for the sequential and parallel solution of sparse symmetric indefinite systems

Towards a stable static pivoting strategy for the sequential and parallel solution of sparse symmetric indefinite systems Technical Report RAL-TR-2005-007 Towards a stable static pivoting strategy for the sequential and parallel solution of sparse symmetric indefinite systems Iain S. Duff and Stéphane Pralet April 22, 2005

More information

Convex Quadratic Approximation

Convex Quadratic Approximation Convex Quadratic Approximation J. Ben Rosen 1 and Roummel F. Marcia 2 Abstract. For some applications it is desired to approximate a set of m data points in IR n with a convex quadratic function. Furthermore,

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

A Column Pre-ordering Strategy for the Unsymmetric-Pattern Multifrontal Method

A Column Pre-ordering Strategy for the Unsymmetric-Pattern Multifrontal Method A Column Pre-ordering Strategy for the Unsymmetric-Pattern Multifrontal Method TIMOTHY A. DAVIS University of Florida A new method for sparse LU factorization is presented that combines a column pre-ordering

More information

Basis Pursuit Denoising and the Dantzig Selector

Basis Pursuit Denoising and the Dantzig Selector BPDN and DS p. 1/16 Basis Pursuit Denoising and the Dantzig Selector West Coast Optimization Meeting University of Washington Seattle, WA, April 28 29, 2007 Michael Friedlander and Michael Saunders Dept

More information

Review Questions REVIEW QUESTIONS 71

Review Questions REVIEW QUESTIONS 71 REVIEW QUESTIONS 71 MATLAB, is [42]. For a comprehensive treatment of error analysis and perturbation theory for linear systems and many other problems in linear algebra, see [126, 241]. An overview of

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

CONVEXIFICATION SCHEMES FOR SQP METHODS

CONVEXIFICATION SCHEMES FOR SQP METHODS CONVEXIFICAION SCHEMES FOR SQP MEHODS Philip E. Gill Elizabeth Wong UCSD Center for Computational Mathematics echnical Report CCoM-14-06 July 18, 2014 Abstract Sequential quadratic programming (SQP) methods

More information

V C V L T I 0 C V B 1 V T 0 I. l nk

V C V L T I 0 C V B 1 V T 0 I. l nk Multifrontal Method Kailai Xu September 16, 2017 Main observation. Consider the LDL T decomposition of a SPD matrix [ ] [ ] [ ] [ ] B V T L 0 I 0 L T L A = = 1 V T V C V L T I 0 C V B 1 V T, 0 I where

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

A Dual Gradient-Projection Method for Large-Scale Strictly Convex Quadratic Problems

A Dual Gradient-Projection Method for Large-Scale Strictly Convex Quadratic Problems A Dual Gradient-Projection Method for Large-Scale Strictly Convex Quadratic Problems Nicholas I. M. Gould and Daniel P. Robinson February 8, 206 Abstract The details of a solver for minimizing a strictly

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 2 Systems of Linear Equations Copyright c 2001. Reproduction permitted only for noncommercial,

More information

A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming

A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming Roger Fletcher Numerical Analysis Report NA/223, August 2005 Abstract A new quasi-newton scheme for updating a low rank positive semi-definite

More information

IPSOL: AN INTERIOR POINT SOLVER FOR NONCONVEX OPTIMIZATION PROBLEMS

IPSOL: AN INTERIOR POINT SOLVER FOR NONCONVEX OPTIMIZATION PROBLEMS IPSOL: AN INTERIOR POINT SOLVER FOR NONCONVEX OPTIMIZATION PROBLEMS A DISSERTATION SUBMITTED TO THE PROGRAM IN SCIENTIFIC COMPUTING AND COMPUTATIONAL MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

The use of second-order information in structural topology optimization. Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher

The use of second-order information in structural topology optimization. Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher The use of second-order information in structural topology optimization Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher What is Topology Optimization? Optimize the design of a structure

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Benchmarking of optimization methods for topology optimization problems

Benchmarking of optimization methods for topology optimization problems Downloaded from orbit.dtu.dk on: Feb, 18 Benchmarking of optimization methods for topology optimization problems Rojas Labanda, Susana; Stolpe, Mathias Publication date: 14 Document Version Peer reviewed

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Using Random Butterfly Transformations to Avoid Pivoting in Sparse Direct Methods

Using Random Butterfly Transformations to Avoid Pivoting in Sparse Direct Methods Using Random Butterfly Transformations to Avoid Pivoting in Sparse Direct Methods Marc Baboulin 1, Xiaoye S. Li 2 and François-Henry Rouet 2 1 University of Paris-Sud, Inria Saclay, France 2 Lawrence Berkeley

More information

Recent Adaptive Methods for Nonlinear Optimization

Recent Adaptive Methods for Nonlinear Optimization Recent Adaptive Methods for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke (U. of Washington), Richard H. Byrd (U. of Colorado), Nicholas I. M. Gould

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices

Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices Jaehyun Park June 1 2016 Abstract We consider the problem of writing an arbitrary symmetric matrix as

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

Numerical Nonlinear Optimization with WORHP

Numerical Nonlinear Optimization with WORHP Numerical Nonlinear Optimization with WORHP Christof Büskens Optimierung & Optimale Steuerung London, 8.9.2011 Optimization & Optimal Control Nonlinear Optimization WORHP Concept Ideas Features Results

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 3 Chapter 10 LU Factorization PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

Nonlinear optimization

Nonlinear optimization Nonlinear optimization Anders Forsgren Optimization and Systems Theory Department of Mathematics Royal Institute of Technology (KTH) Stockholm, Sweden evita Winter School 2009 Geilo, Norway January 11

More information

Revised Simplex Method

Revised Simplex Method DM545 Linear and Integer Programming Lecture 7 Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 2 Motivation Complexity of single pivot operation

More information

SQP METHODS AND THEIR APPLICATION TO NUMERICAL OPTIMAL CONTROL

SQP METHODS AND THEIR APPLICATION TO NUMERICAL OPTIMAL CONTROL c Birkhäuser Verlag Basel 207 SQP METHODS AND THEIR APPLICATION TO NUMERICAL OPTIMAL CONTROL ALEX BARCLAY PHILIP E. GILL J. BEN ROSEN Abstract. In recent years, general-purpose sequential quadratic programming

More information

Constrained Nonlinear Optimization Algorithms

Constrained Nonlinear Optimization Algorithms Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu Institute for Mathematics and its Applications University of Minnesota August 4, 2016

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Key words. numerical linear algebra, direct methods, Cholesky factorization, sparse matrices, mathematical software, matrix updates.

Key words. numerical linear algebra, direct methods, Cholesky factorization, sparse matrices, mathematical software, matrix updates. ROW MODIFICATIONS OF A SPARSE CHOLESKY FACTORIZATION TIMOTHY A. DAVIS AND WILLIAM W. HAGER Abstract. Given a sparse, symmetric positive definite matrix C and an associated sparse Cholesky factorization

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

I-v k e k. (I-e k h kt ) = Stability of Gauss-Huard Elimination for Solving Linear Systems. 1 x 1 x x x x

I-v k e k. (I-e k h kt ) = Stability of Gauss-Huard Elimination for Solving Linear Systems. 1 x 1 x x x x Technical Report CS-93-08 Department of Computer Systems Faculty of Mathematics and Computer Science University of Amsterdam Stability of Gauss-Huard Elimination for Solving Linear Systems T. J. Dekker

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

III. Applications in convex optimization

III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

More information

Key words. Nonconvex quadratic programming, active-set methods, Schur complement, Karush- Kuhn-Tucker system, primal-feasible methods.

Key words. Nonconvex quadratic programming, active-set methods, Schur complement, Karush- Kuhn-Tucker system, primal-feasible methods. INERIA-CONROLLING MEHODS FOR GENERAL QUADRAIC PROGRAMMING PHILIP E. GILL, WALER MURRAY, MICHAEL A. SAUNDERS, AND MARGARE H. WRIGH Abstract. Active-set quadratic programming (QP) methods use a working set

More information

Linear Programming The Simplex Algorithm: Part II Chapter 5

Linear Programming The Simplex Algorithm: Part II Chapter 5 1 Linear Programming The Simplex Algorithm: Part II Chapter 5 University of Chicago Booth School of Business Kipp Martin October 17, 2017 Outline List of Files Key Concepts Revised Simplex Revised Simplex

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

The Solution of Augmented Systems. Iain S. Du 1. We examine the solution of sets of linear equations for which the coecient matrix has H A

The Solution of Augmented Systems. Iain S. Du 1. We examine the solution of sets of linear equations for which the coecient matrix has H A RAL 93-084 The Solution of Augmented Systems Iain S. Du 1 ABSTRACT We examine the solution of sets of linear equations for which the coecient matrix has the form H A A T 0 where the matrix H is symmetric.

More information

Matrix equation Ax = b

Matrix equation Ax = b Fall 2017 Matrix equation Ax = b Authors: Alexander Knop Institute: UC San Diego Previously On Math 18 DEFINITION If v 1,..., v l R n, then a set of all linear combinations of them is called Span {v 1,...,

More information

Rank revealing factorizations, and low rank approximations

Rank revealing factorizations, and low rank approximations Rank revealing factorizations, and low rank approximations L. Grigori Inria Paris, UPMC January 2018 Plan Low rank matrix approximation Rank revealing QR factorization LU CRTP: Truncated LU factorization

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS

SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS Journal of the Operations Research Society of Japan 2008, Vol. 51, No. 3, 241-264 SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS Kazuhiro Kobayashi Sunyoung Kim Masakazu

More information