Chapter 5: Thermal Properties of Crystal Lattices

Size: px
Start display at page:

Download "Chapter 5: Thermal Properties of Crystal Lattices"

Transcription

1 Chapter 5: Thermal Properties of Crystal Lattices Debye January 30, 07 Contents Formalism. The Virial Theorem The Phonon Density of States Models of Lattice Dispersion 7. The Debye Model The Einstein Model Thermodynamics of Crystal Lattices 9 3. Mermin-Wagner Theory, Long-Range Order Thermodynamics Thermal Expansion, the Gruneisen Parameter Thermal Conductivity

2 In the previous chapter, we have shown that the motion of a harmonic crystal can be described by a set of decoupled harmonic oscillators. H = P s (k) + ω s(k) Q s (k) () At a given temperature T, the occupancy of a given mode is k,s n s (k) = e βωs(k) In this chapter, we will apply this information to calculate the thermodynamic properties of the ionic lattice, in addition to addressing questions regarding its long-range order in the presence of lattice vibrations (i.e. do phonons destroy the order). In order to evaluate the different formulas for these quantities, we will first discuss two matters of formal convenience. () Formalism To evaluate some of these properties we can use the virial theorem and, integrals over the density of states.. The Virial Theorem Consider the Hamiltonian for a quantum system H(x, p), where x and p are the canonically conjugate variables. Then the expectation value of any function of these canonically conjugate variables f(x, p) in a stationary state (eigenstate) is constant in time. Consider d dt x p = ī h [H, x p] = ī Hx p x ph h = iē h where E is the eigenenergy of the stationary state. Let x p x p = 0 (3) H = p + V (x), (4) m

3 then 0 = = = [ ] p m + V (x), x p [ ] p m, x p + [V (x), x p] [ p, x ] p + x [V (x), p] m (5) Then as [p, x] = p [p, x] + [p, x] p = i hp and p = i h x, i h 0 = m p + i hx x V (x) (6) or, the Virial theorem: T = x x V (x) (7) Now, lets apply this to a harmonic oscillator where V = mω x and T = p /m, < H >=< T > + < V >= hω(n + ) and. We get T = V (x) = hω(n + ) (8) Lets now apply this to find the RMS excursion of a lattice site in an elemental 3

4 lattice r = s = s N n,i n,i = N n,i = N n,i = N = = = s = NM NM NM NM n,i NM NM NM,k,r,k,r,k,r Qs (q) ωs(q) ωs(q) hω s(q) h ω s (q) Q s (q)ɛ s i (q)e iq rn Q r (k)ɛ r i (k)e ik rn Q s (q)ɛ s i (q)e iq rn Q r ( k)ɛ r i ( k)e ik rn Q s (q)ɛ s i (q)e iq rn Q r(k)ɛ r i (k)e ik rn ω s(q) Q s (q) ( n s (q) + ( n s (q) + ) ) (9) This integral, which must be finite in order for the system to have long-range order, is still difficult to perform. However, the integral may be written as a function of ω s (q) only. s = NM ( h ω s (q) e βωs(q) + It would be convenient therefore, to introduce a density of phonon states ) (0) Z(ω) = δ (ω ω s (q)) () N so that s = h M dωz(ω) ω ( n(ω) + ) () 4

5 . The Phonon Density of States In addition to the calculation of s, the density of states Z(ω) is also useful in the calculation of E =< H >, the partition function, and the related thermodynamic properties In order to calculate Z(ω) = N δ (ω ω s (q)) (3) we must first better define the sum over q. As we discussed last chapter for a 3- d cubic system, we will assume that we Figure : First Brillouin zone of the square have a periodic finite lattice of N basis lattice points, or N /3 in each of the principle lattice directions a, a, and a 3. Then, we want the Fourier representation to respect the periodic boundary conditions (pbc), so e iq (r+n /3 (a +a +a 3 )) = e iq r (4) This means that q i = πm/n /3, where m is an integer, and i indicates one of the principle lattice directions. In addition, we only want unique values of q i, so we will choose those within the first Brillouin zone, so that G q G (5) The size of this region is the same as that of a unit cell of the reciprocal lattice g (g g 3 ). Since there are N states in this region, the density of q states is N g (g g 3 ) = NV c (π) 3 = V (π) 3 (6) where V c is the volume of a Bravais lattice cell (a a a 3 ), and V is the lattice volume. 5

6 Clearly as N the density increases until a continuum of states is formed (all that we need here is that the spacing between q-states be much smaller than any physically relevant value of q). The number of states in a frequency interval dω is then given by the volume of q-space between the surfaces defined by ω = ω s (q) and ω = ω s (q) + dω multiplied by V/(π) 3 Z(ω)dω = = ω+dω V (π) 3 ω V (π) dω 3 s As shown in Fig., dω = q ω s (q)dq, and Figure : States in q-space. S ω is the surface of constant ω = ω s (q), so that d 3 q (7) d 3 q = ds w dq = dsωdω d 3 qδ (ω ω s (q)) d 3 q = ds w dq = qω s(q). ds ωdω q ω s (q), (8) where S ω is the surface in q-space of constant ω = ω s (q). Then Z(ω)dω = V (π) dω ds ω 3 s ω=ω s(q) q ω s (q) (9) Thus the density of states is high in regions where the dispersion is flat so that q ω s (q) is small. As an example, consider the -d Harmonic chain shown in Fig. 3. The phonon dispersion must be symmetric around q = 0 and q = pi/a due to the point group symmetries. In addition, there must be an acoustic mode as shown in Chapter 4. As a result, the dispersion is linear near q = 0 and has a peak at the one boundary. Since the peak is flat there is a corresponding peak in the phonon DOS. In fact, any point within the Brillouin zone for which q ω(q) = 0 (cusp, maxima, minima) will yield an integrable singularity in the DOS. 6

7 Figure 3: Linear harmonic chain. The dispersion ω(q) is linear near q = 0, and flat near q = ±π/a. Thus, the density of states (DOS) is flat near ω = 0 corresponding to the acoustic mode (for which q ω(q) =constant), and divergent near ω = ω 0 corresponding to the peak of the dispersion (where q ω(q) = 0) Models of Lattice Dispersion. The Debye Model For most thermodynamic properties, we are interested in the modes hω(q) k B T which are low frequency modes in general. From a very general set of (symmetry) constraints we have argued that all interacting lattices in which the total energy is invariant to an overall arbitrary rigid shift in the location of the lattice must have at least one acoustic mode, where for small ω s (q) = c s q. Thus, for the thermodynamic properties of the lattice, we care predominantly about the limit ω(q) 0. This physics is rather accurately described by the Debye model. In the Debye model, we will assume that all modes are acoustic (elastic), so that 7

8 Figure 4: Dispersion for the diatomic linear chain. In the Debye model, we replace the acoustic mode by a purely linear mode and ignore any optical modes. ω s (q) = c s q for all s and q, then q ω s (q) = c s for all s and q, and V ds ω Z(ω) = (π) 3 s q ω s (q) V dsω = (0) (π) 3 c s The surface integral may be evaluated, and yields a constant ds ω = S s for each branch. Typically c s is different for different modes. However, we will assume that the system is isotropic, so c s = c. If the dispersion is isotopic, then the surface of constant ω s (q) is just a sphere, so the surface integral is trivial for d = S s (ω = ω(q)) = πq = πω/c for d = 4πq = 4πω /c for d = 3 s () 8

9 Figure 5: Helium on a Vycor surface. Each He is attracted weakly to the surface by a van der Waals attraction and sits in a local minimum of the surface lattice potential. then since the number of modes = d Z(ω) = V /c for d = (π) 3 πq = 4πω/c for d = 4πq = πω /c 3 for d = 3 0 < ω < ω D () Note that since the total number of states is finite, we have introduced a cutoff ω D on the frequency.. The Einstein Model Real two dimensional systems, i.e., a monolayer of gas (He) deposited on an atomically perfect surface (Vycor), may be better described by an Einstein model where each atom oscillates with a frequency ω 0 and does not interact with its neighbors. The model is dispersionless ω(q) = ω 0, and the DOS for this system is a delta function Z(ω) = cδ(ω ω 0 ). Note that it does not have an acoustic mode; however, this is not in violation of the discussion in the last chapter. Why? 3 Thermodynamics of Crystal Lattices We are now in a situation to calculate many of the thermodynamic properties of crystal lattices. However before addressing such questions as the lattice energy free 9

10 energy and specific heat we should see if our model has long-range order... ie., is it consistent with our initial assumptions. 3. Mermin-Wagner Theory, Long-Range Order For simplicity, we will work on an elemental lattice model. We may define long-ranged order (LRO) as a finite value of s = = h MN h MN ( ω s (q) e βωs(q) + sinh (βω s (q)/) ω s (q)cosh (βω s (q)/) Since we expect all lattices to melt for some high temperature, we are interested only in the T 0 limit. Given the factor of ω s(q) in the summand, we are most interested in acoustic modes since they are the ones which will cause a divergence. lim β s = h MN lim ( β ω s (q) βω s (q) + ) (4) The low frequency modes are most important so a Debye model may be used lim β s h ωd dωz(ω) ( MN ω βω + ), (5) where Z(ω) is the same as was defined above in Eq.. Z(ω) = V /c for d = (π) 3 πq = 4πω/c for d = 4πq = πω /c 3 for d = 3 0 ) (3) 0 < ω < ω D (6) Thus in 3-d the DOS always cancels the /ω singularity but in two dimensions the singularity is only cancelled when T = 0 (β = ), and in one dimension s = for all T. This is a specific case of the Mermin-Wagner Theorem. We should emphasize that the result s = does not mean that our theory has failed. The harmonic approximation requires that the near-neighbor strains must be small, not the displacements. 0

11 s d = d = d = 3 T = 0 finite finite T 0 finite Table : s for lattices of different dimension, assuming the presence of an acoustic mode. Figure 6: Random fluctuaions of atoms in a -d lattice may accumulate to produce a very large displacements of the atoms. Physically, it is easy to understand why one-dimensional systems do not have long range order, since as you go along the chain, the displacements of the atoms can accumulate to produce a very large rms displacement. In higher dimensional systems, the displacements in any direction are constrained by the neighbors in orthogonal directions. Real two dimensional systems, i.e., a monolayer of gas deposited on an atomically perfect surface, do have long-range order even at finite temperatures due to the surface potential (corrugation of the surface). These may be better described by an Einstein model where each atom oscillates with a frequency ω 0 and does not interact with its neighbors. The DOS for this system is a delta function as described

12 above. For such a DOS, s is always finite. You will explore this physics, in much more detail, in your homework. 3. Thermodynamics We will assume that our system is in equilibrium with a heat bath at temperature T. This system is described by the canonical ensemble, and may be justified by dividing an infinite system into a finite number of smaller subsystems. Each subsystem is expected to interact weakly with the remaining system which also acts as the subsystems heat bath. The probability that any state in the subsystem is occupied is given by P ({n s (k)}) e βe({ns(k)}) (7) Thus the partition function is given by Z = e βe({ns(k)}) {n s(k)} = e β k,s hωs(k)(ns(k)+ ) {n s(k)} = s,k Z s (k) (8) where Z s (k) is the partition function for the mode s, k; i.e. the modes are independent and decouple. Z s (k) = n e β hωs(k)(ns(k)+ ) = e β hωs(k)/ n e β hωs(k)(ns(k)) The free energy is given by = e β hωs(k)/ = e β hωs(k) sinh (βω s (k)/) (9) F = k B T ln (Z) = k B T k,s ln ( sinh (β hω s (k)/)) (30)

13 Since de = T ds P dv and df = T ds P dv T ds SdT, the entropy is ( ) F S =, (3) T and system energy is then given by E = F + T S = F T V ( ) F T V where constant volume V is guaranteed by the harmonic approximation (since < s >= 0). E = k,s (3) hω s(k)coth (βω s (k)/) (33) The specific heat is then given by ( ) de C = = k B (β hω s (k)) csch (βω s (k)/) (34) dt where csch (x) = /sinh (x) V Consider the specific heat of our 3-dimensional Debye model. k,s ωd C = k B dωz(ω) (βω/) csch (βω/) 0 ωd ( ) V πω = k B dω (βω/) csch (βω/) (35) (πc) 3 0 Where the Debye frequency ω D is determined by the requirement that ωd ωd ( ) V πω 3rN = dωz(ω) = dω, (36) (πc) 3 or V/(πc) 3 = 3rN/(4ω 3 D ). 0 Clearly the integral for C is a mess, except in the high and low T limits. At high temperatures β hω D /, 0 ωd C k B dωz(ω) = 3Nrk B (37) 0 This is the well known classical result (equipartition theorem) which attributes (/)k B of the specific heat to each quadratic degree of freedom. Here for each element of 3

14 the basis we have 6 quadratic degrees of freedom (three translational, and three momenta). At low temperatures, β hω/, csch (βω/) e βω/ (38) Thus, at low T, only the low frequency modes contribute, so the upper bound of integration may be extended to C πk B 3rN 4ω D 0 ( ) β hω dωω e βωs(k)/. (39) If we make the change of variables x = β hω/, we get C 9k ( ) 3 BrNπ dxx 4 e x (40) ω D β h 0 9k ( ) 3 BrNπ 4 (4) ω D β h Then, if we identify the Debye temperature θ D = hω D /k B, we get C 96πrNk B ( T θ D ) 3 (4) C T 3 at low temperature is the characteristic signature of low-energy phonon excitations. 3.3 Thermal Expansion, the Gruneisen Parameter Consider a cubic system of linear dimension L. If unconstrained, we expect that the volume of this system will change with temperature (generally expand with increasing T, but not always. cf. ice or Si). We define the coefficient of free expansion (P = 0) as α L = dl L dt or α V = 3α L = V dv dt. (43) Of course, this measurement only makes sense in equilibrium. ( ) df P = = 0 (44) dv 4 T

15 Figure 7: Plot of the potential V (x) = mx + cx 3 when m = ω = and c = 0.0, 0.. The average position of a particle < x > in the anharmonic potential, c = 0., will shift to the left as the energy (temperature) is increased; whereas, that in the harmonic potential, c = 0, is fixed < x >= 0. As mentioned earlier, since < s >= 0 in the harmonic approximation, a harmonic crystal does not expand when heated. Of course, real crystals do, so that lack of thermal expansion of a harmonic crystal can be considered a limitation of the harmonic theory. To address this limitation, we can make a quasiharmonic approximation. Consider a more general potential between the ions, of the form V (x) = bx + cx 3 + mω x (45) and let s see if any of these terms will produce a temperature dependent displacement. The last term is the usual harmonic term, which we have already shown does not produce a T-dependent < x >. Also the first term does not have the desired effect! It corresponds to a temperature-independent shift in the oscillator, as can be seen by completing the square mω x + bx = ( x + b ) b mω mω. (46) Then < x >= b mω, independent of the temperature; that is, assuming that b is temperature-independent. What we need is a temperature dependent coefficient b! The cubic term has the desired effect. As can be seen in Fig 7, as the average energy (temperature) of a particle trapped in a cubic potential increases, the mean 5

16 position of the particle shifts. However, it also destroys the solubility of the model. To get around this, approximate the cubic term with a mean-field decomposition. cx 3 cηx x + c( η)x x (47) and treat these two terms separately (the new parameter η is to be determined selfconsistently, usually by minimizing the free energy with respect to η). The first term yields the needed temperature dependent shift of < x > mω x + cηx x = ( mω x + cη < ) x > c < x > (48) mω mω so that < x >= cη<x >. Clearly the renormalization of the equilibrium position mω of the harmonic oscillator will be temperature dependent. While the second term, ( η)x < x >, yields a shift in the frequency ω ω ( ω = ω + ) ( η) < x > mω which is a function of the equilibrium position. Thus a mean-field description of the cubic term is consistent with the observed physics. (49) In what follows, we will approximate the effect of the anharmonic cubic term as a shift in the equilibrium position of the lattice (and hence the lattice potential) and a change of ω to ω ; however, we imagine that the energy levels remain of the form E n = hω (< x >)(n + ), (50) and that < x > varies with temperature, consistent with the mean-field approximation just described. To proceed, imagine the cube of cubic system to be made up of oscillators which are independent. Since the final result can be formulated as a sum over these independent modes, consider only one. In equilibrium, where P = ( ) df = 0, the free energy dv T of one of the modes is F = Φ + hω + k BT ln ( e β hω) (5) 6

17 and (following the notation of Ibach and Lüth), let the lattice potential where f is the spring constant. Then ( ) df 0 = P = = f(a a 0 ) + da ω Φ = Φ 0 + f(a a 0) + (5) T ( ω a hω ) hω, (53) e β hω If we identify the last term in parenthesis as ɛ(ω, T ), and solve for a, then a = a 0 ɛ(ω, T ) ω ωf a (54) Since we now know a(t ) for a single mode, we may calculate the linear expansion coefficient for this mode α L = da a 0 dt = ln w ɛ(ω, T ) a 0f ln a T (55) To generalize this to a solid let α L α V (as discussed above) and a 0f V dp dv (κ is the bulk modulus) and sum over all modes the modes k, s α V = V dv dt = κv k,s = V κ ln ω s(k) ɛ (ω s (k), T ). (56) ln V T ɛ Clearly (due to the factor of ), α T V will have a behavior similar to that of the specific heat (α V T 3 for low T, and α V =constant for high T ). In addition, for many lattices, the Gruneisen number γ = ln ω s(k) ln V (57) shows a weak dependence upon s, k, and may be replaced by its average, called the Gruneisen parameter ln ωs (k) γ =, (58) ln V typically on the order of two. 7

18 Figure 8: Three-phonon processes resulting from cubic terms in the inter-ion potential. Six other three-phonon processes are possible. Before proceeding to the next section, I would like to reexamine the cubic term in a crystal where s 3 l = l h 3/ e i(p+q+k G) r l (59) (MN) 3/ l,k,q,p ω(q)ω(k)ω(p) ( a(k) + a ( k) ) ( a(p) + a ( p) ) ( a(q) + a ( q) ). The sum over l yields a delta function δ p+q+k,g (ie., crystal momentum conservation). Physically, these processes correspond to phonon decay in which a phonon can decompose into two others. As we shall see, such anharmonic processes are crucial to the calculation of the thermal conductivity, κ, of crystals. 3.4 Thermal Conductivity Metals predominately carry heat with free electrons, and are considered to be good conductors. Insulators, which lack free electrons, predominantly carry heat with lattice vibrations phonons. Nevertheless, some very hard insulating crystals have very high thermal conductivities - diamond C which is often highly temperature dependent. However, most insulators are not good thermal conductors. The square of the thermal conductivity also figures into the figure of merit for thermoelectrics[]. This subsection will be devoted to understanding what makes stiff crystals like diamond such good conductors of heat. 8

19 material/t 73.K 98.K C Cu Table : The thermal conductivities of copper and diamond (CRC) ( in µohm-cm). The thermal conductivity κ is measured by setting up a small steady thermal gradient across the material, then Q = κ T (60) where Q is the thermal current density; i.e., the energy times the density times the velocity. If the thermal current is in the x-direction, then Q x = V hω s (q) n s (q) v sx (q) (6) where the group velocity is given by v sx (q) = ωs(q) q x. Since we assume T is small, we will only look at the linear response of the system where n s (q) deviates little from its equilibrium value n s (q) 0. Furthermore since ω s (q) = ω s ( q), v sx ( q) = ω s( q) q x = v sx (q) (6) Thus as n s ( q) 0 = n s (q) 0 Q 0 x = V hω s (q) n s (q) 0 v sx (q) = 0 (63) since the sum is over all q in the B.Z. Thus if we expand n s (q) = n s (q) 0 + n s (q) + (64) we get Q x V hω s (q) n s (q) v sx (q) (65) 9

20 Figure 9: Change of phonon density within a trapazoidal region. n s (q) can change either by phonon decay or by phonon diffusion into and out of the region. since we presumably already know ω s (k), the calculation of Q and hence κ reduces to the evaluation of the linear change in < n >. Within a region, < n > can change in two ways. Either phonons can diffuse into the region, or they can decay through an anharmonic (cubic) term into other modes. so d n dt = n t + n diffusion t (66) decay However d n = 0 since we are in a steady state. The decay process is usually described dt by a relaxation time τ (or a mean-free path l = vτ ) n t = < n > < n >0 decay τ = < n > τ The diffusion part of d n is addressed pictorially in Fig. 0. Formally, dt n t n(x v x t) n(x) n(x) v x (68) diffusion t x n(x) T v x T x v ( n(x) 0 + n(x) ) T x T x Keeping only the lowest order term, n n(x) 0 T t v x diffusion T x 0 (67) (69)

21 Figure 0: Phonon diffusion. In time t, all the phonons in the left, source region, will travel into the region of interest on the right, while those on the right region will all travel out in time t. Thus, n/ t = (n left n right )/ t. Then as d n dt = 0, or Thus and since Q = κ T Q x V n t = n diffusion t (70) decay n = v x τ s (q) n(x) 0 T κ V hω s (q)v sx(q)τ s (q) n(x) 0 T hω s (q)v sx(q)τ n(x) 0 T T x. (7) T x, (7). (73) From this relationship we can learn several things. First since κ v sx(q), phonons near the zone boundary or optical modes with small v s (q) = q ω s (q) contribute little to the thermal conductivity. Also, stiff materials, with very fast speed of the acoustic modes v sx (q) c will have a large κ. Second, since κ τ s (q), and l s (q) = v sx (q)τ s (q), κ will be small for materials with short mean-free paths. The mean-free path is effected by defects, anharmonic Umklapp processes, etc. We will explore this effect, especially its temperature dependence, in more detail.

22 Figure : Umklapp processes involve a reciprocal lattice vector G in lattice momentum conservation. They are possible whenever q > G/, for some G, and involve a virtual reversal of the momentum and heat carried by the phonons (far right). At low T, only low-energy, acoustic, modes can be excited (those with hω s (q) k B T ). These modes have v s (q) = c s (74) In addition, since the momentum of these modes q G, we only have to worry about anharmonic processes which do not involve a reciprocal lattice vector G in lattice momentum conservation. Consider one of the three-phonon anharmonic processes of phonon decay shown in Fig. 8 (with G = 0). For these processes Q hωc so the thermal current is not disturbed by anharmonic processes. Thus the anharmonic terms at low T do not affect the mean-free path, so the thermal resistivity (the inverse of the conductivity) is dominated by scattering from impurities in the bulk and surface imperfections at low temperatures. At high T momentum conservation in an anharmonic process may involve a reciprocal lattice vector G if the q of an excited mode is large enough and there exists a sufficiently small G so that q > G/ (c.f. Fig. ). This is called an Umklapp process, and it involves a very large change in the heat current (almost a reversal). Thus the mean-free path l and κ are very much smaller for high temperatures where q can be larger than half the smallest G. So what about diamond? It is very hard and very stiff, so the sound velocities c s

23 are large, and so thermally excited modes for which k B T hω hcq involve small q for which Umklapp processes are irrelevant. Second κ c which is large. Thus κ for diamond is huge! References [] materials 3

Solid State Physics II Lattice Dynamics and Heat Capacity

Solid State Physics II Lattice Dynamics and Heat Capacity SEOUL NATIONAL UNIVERSITY SCHOOL OF PHYSICS http://phya.snu.ac.kr/ ssphy2/ SPRING SEMESTER 2004 Chapter 3 Solid State Physics II Lattice Dynamics and Heat Capacity Jaejun Yu jyu@snu.ac.kr http://phya.snu.ac.kr/

More information

Phonons II - Thermal Properties (Kittel Ch. 5)

Phonons II - Thermal Properties (Kittel Ch. 5) Phonons II - Thermal Properties (Kittel Ch. 5) Heat Capacity C T 3 Approaches classical limit 3 N k B T Physics 460 F 2006 Lect 10 1 Outline What are thermal properties? Fundamental law for probabilities

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons 3b. Lattice Dynamics Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons Neutron scattering G. Bracco-Material

More information

Chapter 5 Phonons II Thermal Properties

Chapter 5 Phonons II Thermal Properties Chapter 5 Phonons II Thermal Properties Phonon Heat Capacity < n k,p > is the thermal equilibrium occupancy of phonon wavevector K and polarization p, Total energy at k B T, U = Σ Σ < n k,p > ħ k, p Plank

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

Phonons II. Thermal Properties

Phonons II. Thermal Properties Chapter 5. Phonons II. Thermal Properties Thermal properties of phonons As mentioned before, we are now going to look at how what we know about phonons will lead us to a description of the heat capacity

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Phonons II: Thermal properties

Phonons II: Thermal properties Phonons II: Thermal properties specific heat of a crystal density of state Einstein mode Debye model anharmonic effect thermal conduction A technician holding a silica fibre thermal insulation tile at

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

Lecture 12: Phonon heat capacity

Lecture 12: Phonon heat capacity Lecture 12: Phonon heat capacity Review o Phonon dispersion relations o Quantum nature of waves in solids Phonon heat capacity o Normal mode enumeration o Density of states o Debye model Review By considering

More information

Concepts for Specific Heat

Concepts for Specific Heat Concepts for Specific Heat Andreas Wacker 1 Mathematical Physics, Lund University August 17, 018 1 Introduction These notes shall briefly explain general results for the internal energy and the specific

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

Lecture 9 Anharmonic effects in crystals.

Lecture 9 Anharmonic effects in crystals. Lecture 9 Anharmonic effects in crystals. 1 Introduction Most of the effects related to lattice dynamics that you have so far encountered in this course and in previous courses lattice specific heat, Debye-Waller

More information

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value I believe that nobody who has a reasonably reliable sense for the experimental test of a theory will be able to contemplate these results without becoming convinced of the mighty logical power of the quantum

More information

Identical Particles. Bosons and Fermions

Identical Particles. Bosons and Fermions Identical Particles Bosons and Fermions In Quantum Mechanics there is no difference between particles and fields. The objects which we refer to as fields in classical physics (electromagnetic field, field

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

FYS Vår 2015 (Kondenserte fasers fysikk)

FYS Vår 2015 (Kondenserte fasers fysikk) FYS410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0)

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

PHONON HEAT CAPACITY

PHONON HEAT CAPACITY Solid State Physics PHONON HEAT CAPACITY Lecture 11 A.H. Harker Physics and Astronomy UCL 4.5 Experimental Specific Heats Element Z A C p Element Z A C p J K 1 mol 1 J K 1 mol 1 Lithium 3 6.94 24.77 Rhenium

More information

Lecture 8 Anharmonic effects in crystals.

Lecture 8 Anharmonic effects in crystals. Lecture 8 Anharmonic effects in crystals. 1 Introduction Most of the effects related to lattice dynamics that you have so far encountered in this course and in previous courses lattice specific heat, Debye-Waller

More information

Department of Physics, University of Maryland, College Park MIDTERM TEST

Department of Physics, University of Maryland, College Park MIDTERM TEST PHYSICS 731 Nov. 5, 2002 Department of Physics, University of Maryland, College Park Name: MIDTERM TEST Budget your time. Look at all 5 pages. Do the problems you find easiest first. 1. Consider a D-dimensional

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

9.3. Total number of phonon modes, total energy and heat capacity

9.3. Total number of phonon modes, total energy and heat capacity Phys50.nb 6 E = n = n = exp - (9.9) 9... History of the Planck distribution or the Bose-Einstein distribution. his distribution was firstly discovered by Planck in the study of black-body radiation. here,

More information

introduction of thermal transport

introduction of thermal transport Subgroup meeting 2010.12.07 introduction of thermal transport members: 王虹之. 盧孟珮 introduction of thermal transport Phonon effect Electron effect Lattice vibration phonon Debye model of lattice vibration

More information

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice 4. Thermal properties of solids Time to study: 4 hours Objective After studying this chapter you will get acquainted with a description of oscillations of atoms learn how to express heat capacity for different

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

Heat conduction and phonon localization in disordered harmonic lattices

Heat conduction and phonon localization in disordered harmonic lattices Heat conduction and phonon localization in disordered harmonic lattices Anupam Kundu Abhishek Chaudhuri Dibyendu Roy Abhishek Dhar Joel Lebowitz Herbert Spohn Raman Research Institute NUS, Singapore February

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Summary: Thermodynamic Potentials and Conditions of Equilibrium

Summary: Thermodynamic Potentials and Conditions of Equilibrium Summary: Thermodynamic Potentials and Conditions of Equilibrium Isolated system: E, V, {N} controlled Entropy, S(E,V{N}) = maximum Thermal contact: T, V, {N} controlled Helmholtz free energy, F(T,V,{N})

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

3. LATTICE VIBRATIONS. 3.1 Sound Waves

3. LATTICE VIBRATIONS. 3.1 Sound Waves 3. LATTIC VIBRATIONS Atoms in lattice are not stationary even at T 0K. They vibrate about particular equilibrium positions at T 0K ( zero-point energy). For T > 0K, vibration amplitude increases as atoms

More information

Introduction to solid state physics

Introduction to solid state physics PHYS 342/555 Introduction to solid state physics Instructor: Dr. Pengcheng Dai Professor of Physics The University of Tennessee (Room 407A, Nielsen, 974-1509) Chapter 5: Thermal properties Lecture in pdf

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities Umesh V. Waghmare Theoretical Sciences Unit J N C A S R Bangalore ICMR OUTLINE Vibrations and interatomic force constants (IFC) Extended

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2008 Lecture

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Chapter 6 Free Electron Fermi Gas

Chapter 6 Free Electron Fermi Gas Chapter 6 Free Electron Fermi Gas Free electron model: The valence electrons of the constituent atoms become conduction electrons and move about freely through the volume of the metal. The simplest metals

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics In-class Midterm Exam Wednesday, October 26, 2011 / 14:00 15:20 / CCIS 4-285 Student s Name: Instructions There are 23 questions. You should attempt all of them. Mark

More information

Solutions for Homework 4

Solutions for Homework 4 Solutions for Homework 4 October 6, 2006 1 Kittel 3.8 - Young s modulus and Poison ratio As shown in the figure stretching a cubic crystal in the x direction with a stress Xx causes a strain e xx = δl/l

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. PHYSICS 219 Homework 2 Due in class, Wednesday May 3 Note: Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. No lecture: May 8 (I m away at a meeting) and May 29 (holiday).

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Quasi-Harmonic Theory of Thermal Expansion

Quasi-Harmonic Theory of Thermal Expansion Chapter 5 Quasi-Harmonic Theory of Thermal Expansion 5.1 Introduction The quasi-harmonic approximation is a computationally efficient method for evaluating thermal properties of materials. Planes and Manosa

More information

Thermodynamics & Statistical Mechanics

Thermodynamics & Statistical Mechanics hysics GRE: hermodynamics & Statistical Mechanics G. J. Loges University of Rochester Dept. of hysics & Astronomy xkcd.com/66/ c Gregory Loges, 206 Contents Ensembles 2 Laws of hermodynamics 3 hermodynamic

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Lecture 10 Planck Distribution

Lecture 10 Planck Distribution Lecture 0 Planck Distribution We will now consider some nice applications using our canonical picture. Specifically, we will derive the so-called Planck Distribution and demonstrate that it describes two

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 10 The Free Electron Theory of Metals - Electrical Conductivity (Refer Slide Time: 00:20)

More information

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals From Micro to Macro Statistical Mechanics (Statistical

More information

Condensed matter theory Lecture notes and problem sets 2012/2013

Condensed matter theory Lecture notes and problem sets 2012/2013 Condensed matter theory Lecture notes and problem sets 2012/2013 Dmitri Ivanov Recommended books and lecture notes: [AM] N. W. Ashcroft and N. D. Mermin, Solid State Physics. [Mar] M. P. Marder, Condensed

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: The Big Bang Problem Set #9 Due in hand-in box by 4;00 PM, Friday, April 19 Early in the

More information

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0, 5. Superconductivity In this chapter we shall introduce the fundamental experimental facts about superconductors and present a summary of the derivation of the BSC theory (Bardeen Cooper and Schrieffer).

More information

Handout 10. Applications to Solids

Handout 10. Applications to Solids ME346A Introduction to Statistical Mechanics Wei Cai Stanford University Win 2011 Handout 10. Applications to Solids February 23, 2011 Contents 1 Average kinetic and potential energy 2 2 Virial theorem

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

In-class exercises Day 1

In-class exercises Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 11 Exercises due Mon Apr 16 Last correction at April 16, 2018, 11:19 am c 2018, James Sethna,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: Ripplons Problem Set #11 Due in hand-in box by 4:00 PM, Friday, May 10 (k) We have seen

More information

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 3, 29 This afternoon s plan introductory talk Phonons: harmonic vibrations for solids Phonons:

More information

The one-dimensional monatomic solid

The one-dimensional monatomic solid Chapter 5 The one-dimensional monatomic solid In the first few chapters we found that our simple models of solids, and electrons in solids, were insufficient in several ways. In order to improve our understanding,

More information

Lecture 12 Debye Theory

Lecture 12 Debye Theory Lecture 12 Debye Theory 12.1 Background As an improvement over the Einstein model, we now account for interactions between particles they are really coupled together by springs. Consider the 3N normal

More information

Electron levels in a periodic potential: general remarks. Daniele Toffoli January 11, / 46

Electron levels in a periodic potential: general remarks. Daniele Toffoli January 11, / 46 Electron levels in a periodic potential: general remarks Daniele Toffoli January 11, 2017 1 / 46 Outline 1 Mathematical tools 2 The periodic potential 3 Bloch s theorem and Born-von Karman boundary conditions

More information

Solid State Physics. Lecturer: Dr. Lafy Faraj

Solid State Physics. Lecturer: Dr. Lafy Faraj Solid State Physics Lecturer: Dr. Lafy Faraj CHAPTER 1 Phonons and Lattice vibration Crystal Dynamics Atoms vibrate about their equilibrium position at absolute zero. The amplitude of the motion increases

More information

Thermal Energy at the Nanoscale Homework Solution - Week 3

Thermal Energy at the Nanoscale Homework Solution - Week 3 Thermal Energy at the Nanoscale Homework Solution - Week 3 Spring 3. Graphene ZA mode specific heat (a) The cutoff wavevector K Q is found by equating the number of states in k-space within a circle of

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 8: Lattice Waves in 1D Monatomic Crystals Outline Overview of Lattice Vibrations so far Models for Vibrations in Discrete 1-D Lattice Example of Nearest

More information

Section B. Electromagnetism

Section B. Electromagnetism Prelims EM Spring 2014 1 Section B. Electromagnetism Problem 0, Page 1. An infinite cylinder of radius R oriented parallel to the z-axis has uniform magnetization parallel to the x-axis, M = m 0ˆx. Calculate

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

8.044 Lecture Notes Chapter 7: Thermal Radiation

8.044 Lecture Notes Chapter 7: Thermal Radiation 8.44 Lecture Notes Chapter 7: Thermal Radiation Lecturer: McGreevy 7.1 Thermodynamics of blackbody (thermal) radiation.............. 7-4 7.2 Statistical treatment of thermal radiation....................

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator.

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. PHYS208 spring 2008 Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. 07.02.2008 Adapted from the text Light - Atom Interaction PHYS261 autumn 2007 Go to list of topics

More information

Chemistry 365: Normal Mode Analysis David Ronis McGill University

Chemistry 365: Normal Mode Analysis David Ronis McGill University Chemistry 365: Normal Mode Analysis David Ronis McGill University 1. Quantum Mechanical Treatment Our starting point is the Schrodinger wave equation: Σ h 2 2 2m i N i=1 r 2 i + U( r 1,..., r N ) Ψ( r

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

ES - Solid State

ES - Solid State Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2017 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle)

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle) Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle In classical mechanics an adiabatic invariant is defined as follows[1]. Consider the Hamiltonian system with

More information

Versuchsprotokoll: Spezifische Wärme

Versuchsprotokoll: Spezifische Wärme Versuchsprotokoll: Spezifische Wärme Christian Buntin, ingfan Ye Gruppe 30 Karlsruhe, 30. anuar 2012 Contents 1 Introduction 2 1.1 The Debye- and Sommerfeld-Model of Heat Capacity.................... 2

More information

Lecture 11: Periodic systems and Phonons

Lecture 11: Periodic systems and Phonons Lecture 11: Periodic systems and Phonons Aims: Mainly: Vibrations in a periodic solid Complete the discussion of the electron-gas Astrophysical electrons Degeneracy pressure White dwarf stars Compressibility/bulk

More information

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry Crystals Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 1, Statistical Thermodynamics, MC26P15, 5.1.216 If you find a mistake, kindly report it to the

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS This exam contains five problems. Work any three of the five problems. All problems

More information

1+e θvib/t +e 2θvib/T +

1+e θvib/t +e 2θvib/T + 7Mar218 Chemistry 21b Spectroscopy & Statistical Thermodynamics Lecture # 26 Vibrational Partition Functions of Diatomic Polyatomic Molecules Our starting point is again the approximation that we can treat

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Chapter 4: Crystal Lattice Dynamics

Chapter 4: Crystal Lattice Dynamics Chapter 4: Crystal Lattice Dynamics Debye December 29, 200 Contents An Adiabatic Theory of Lattice Vibrations 2. The Equation of Motion.................. 6.2 Example, a Linear Chain.................. 8.3

More information

221B Lecture Notes Spontaneous Symmetry Breaking

221B Lecture Notes Spontaneous Symmetry Breaking B Lecture Notes Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking is an ubiquitous concept in modern physics, especially in condensed matter and particle physics.

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

First Problem Set for Physics 847 (Statistical Physics II)

First Problem Set for Physics 847 (Statistical Physics II) First Problem Set for Physics 847 (Statistical Physics II) Important dates: Feb 0 0:30am-:8pm midterm exam, Mar 6 9:30am-:8am final exam Due date: Tuesday, Jan 3. Review 0 points Let us start by reviewing

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Summary: In this video we introduce the concept that atoms are not rigid, fixed points within the lattice. Instead we treat them as quantum harmonic

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

HWK#7solution sets Chem 544, fall 2014/12/4

HWK#7solution sets Chem 544, fall 2014/12/4 HWK#7solution sets Chem 544, fall 04//4 Problem # Show that the following relations for state functions hold: a. In analogy to ( lnz/ ) N,V =U and ( lnz/ ) N,V = U proved in class, what are ( ln / ) N,V

More information

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i G25.265: Statistical Mechanics Notes for Lecture 4 I. THE CLASSICAL VIRIAL THEOREM (MICROCANONICAL DERIVATION) Consider a system with Hamiltonian H(x). Let x i and x j be specic components of the phase

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts Atkins / Paula Physical Chemistry, 8th Edition Chapter 16. Statistical thermodynamics 1: the concepts The distribution of molecular states 16.1 Configurations and weights 16.2 The molecular partition function

More information

Fermi surfaces which produce large transverse magnetoresistance. Abstract

Fermi surfaces which produce large transverse magnetoresistance. Abstract Fermi surfaces which produce large transverse magnetoresistance Stephen Hicks University of Florida, Department of Physics (Dated: August 1, ) Abstract The Boltzmann equation is used with elastic s-wave

More information

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! Hamilton s principle Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! based on FW-18 REVIEW the particle takes the path that minimizes the integrated difference

More information