SOLVING EQUATIONS OF ONE VARIABLE

Size: px
Start display at page:

Download "SOLVING EQUATIONS OF ONE VARIABLE"

Transcription

1 1 SOLVING EQUATIONS OF ONE VARIABLE ELM1222 Numerical Analysis Some of the contents are adopted from Laurene V. Fausett, Applied Numerical Analysis using MATLAB. Prentice Hall Inc., 1999

2 2 Today s lecture Bisection Method Regula Falsi and Secant Method Newton s Method Fied-Point Iteration Matlab Functions

3 3 Equations of one variable Finding the zeros of nonlinear functions has a long story Although the solution of quadratic equations of one variable is possible analytically numerical estimation of the zeros or the roots may be desired. If it is impossible or difficult to find an eact solution we should employ numerical techniques for finding roots or zeros of nonlinear equations.

4 4 Bisection Method y = 2 3 Bisection is a systematic search technique to find a zero of a cont. function. It is dividing the interval into 2 sub-intervals and determining which has the zero in it Here the mid-point is m = a+b 2 The zero can be in the range of either [a, m] or [m, b]

5 5 Bisection Method Eample 1: Approimate the/a zero of y = f( = 2 3 using Bisection method. Sol.: Since f 1 = 2 and f 2 = 1 we can search for a zero in [1,2]. 3 a = b = 2 After k iterations the error can be at most b a 2 5

6 6 Bisection Method Eample 2. Approimate a/the zero of y = f method. = using Bisection Sol.: Since f 0 = 1 and f 1 = 1 we can search for a zero in [0,1].

7 7 Bisection Method Stopping Criteria: Stop the iterations when The function (y i is close enough to zero The change in the succesive iterations is ( i or y i less than a tol value The ma number of iterations ma _iter has reached

8 Regula Falsi and Secant Methods 8 ELM1222 Numerical Analysis Dr Muharrem Mercimek The Regula Falsi and Secant methods start with two points, (a, f(a and (b, f(b, satisfying the condition that f a. f b < 0 The line through the initial two points a, f a, b, f b can be epressed as: The net approimation to the zero is the value of where the straight line through the initial points crosses the -ais (when y is zero ( ( ( ( b a b a f b f b f y ( ( ( b f a f b f a b b

9 9 Regula Falsi Method If there is a zero in the interval [a, ], we leave the value of a unchanged and set b =. On the other hand, if there is no zero in [a, ], the zero must be in the interval [, b]; so we set a = and leave b unchanged.

10 10 Regula Falsi Method Eample 3: Approimate a/the zero of y = f method. = 3 2 using Regula-Falsi Sol.: Since f 1 = 1 and f 2 = 6 we can search for a zero in [1,2]. Our first approimation to the zero is b b f ( b a f ( a 2 6 / 7 8/ f ( b We then find the value of the function: y f ( (8/ Since f(a and y are both negative, but y and f(b have opposite signs

11 11 Regula Falsi Method Stop the iterations when The function (y i is close enough to zero The change ( i or y i in the succesive iterations is less than a tol value The ma number of iterations ma _iter has reached

12 12 Secant Method The secant method, closely related to the Regula Falsi method. Instead of choosing the subinterval that must contain the zero, we form the net approimation from the two most recently generated points: At the k-th stage, the new approimation to the zero is kucg.korea.ac.kr y1 y1 y0 k1 k y k k y k1 k1 y k Stopping Criteria: Stop the iterations when The function (y i is close enough to zero The change ( i or y i in the succesive iterations is less than a tol value The ma number of iterations ma _iter has reached

13 13 Secant Method Eample 4: Approimate the/a zero of y = f( = 2 3 using Secant method. Sol.: Since f 1 = 2 and f 2 = 1 we can search for a zero in [1,2] y1 2 (1 y y 1 (

14 14 Newton s Method Like the Regula Falsi and Secant Methods Newton s Method uses a straight line approimation but in this case the line is tangent to the function. f ( f '( 0( 0 f ( 0 When f( 1 = 0 1 k1 0 k f ( f '( 0 0 f ( f '( k k

15 15 Newton s Method Eample 5: Approimate a/the zero of y = f method. = using Newton s Sol.: Since f(0 = 3 and f(1 = 1 we can start with 0.5 f ( f '( 8 1 f ( f '( 4 0 f ( / f '( 8 1 Stopping Criteria: Stop the iteration when The function (y i is close enough to zero The change ( i or y i in the succesive iterations is less than a tol value The ma number of iterations ma _iter has been reached

16 16 Oscillations in Newton s Method Newton s method give Oscillatory result for some funtions & initial estimates. 3 2 E f ( 3 3 kucg.korea.ac.kr

17 17 Fied Point Iteration Method A zero finding problem f = 0 can be converted to solving = g( Solution of equation = g( is investigated Rewrite the equation y = f = as an implicit equation = 0, = = g( Starting with initial guess 0 Evaluate the function up to an iteration number or until the update is so small 1 = 0.5( k = 0.5( k

18 18 Fied Point Iteration Method Convergence Theorem of fied-point iteration Not all g( functions converge to a good solution 1- For interval [a, b] of if g( maps values to a, b 2- If g is continuous in a, b 3- if there is a number N < 1 such that g N Then = g( has one solution and k = g( k 1 converges to for any starting point in [a, b] Stopping Criteria: Stop the iterations when The function (y i is close enough to zero The change ( i or y i in the succesive iterations is less than a tol value The ma number of iterations ma _iter has reached kucg.korea.ac.kr 18

19 19 Fied Point Iteration Method Eample 6: For problem y = f( = cos ( using a helper function g Check if g( may converge. = cos Condition checks: If is in [0,1] g( will be in [0,1] ( is given in term of radians = sin ( is continuous g ( = 0,85 1 g Then = cos ( has one solution and k = g( k 1 converges to for any starting point in [0,1] kucg.korea.ac.kr 19

20 20 Matlab s Methods roots(p outputs the roots of a polynomial p is a vector Eample 7: find the roots of p=[ ]; roots(p ans = kucg.korea.ac.kr

21 21 Matlab s Methods fzero( function name,0 function name: string 0 : initial estimate of the root Eample 8: find the roots of ; func=@( ^ func fzero(func,0.5 ans = kucg.korea.ac.kr

INTRODUCTION, FOUNDATIONS

INTRODUCTION, FOUNDATIONS 1 INTRODUCTION, FOUNDATIONS ELM1222 Numerical Analysis Some of the contents are adopted from Laurene V. Fausett, Applied Numerical Analysis using MATLAB. Prentice Hall Inc., 1999 2 Today s lecture Information

More information

Numerical Methods. Root Finding

Numerical Methods. Root Finding Numerical Methods Solving Non Linear 1-Dimensional Equations Root Finding Given a real valued function f of one variable (say ), the idea is to find an such that: f() 0 1 Root Finding Eamples Find real

More information

MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations.

MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations. MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations. Dmitriy Leykekhman Fall 2008 Goals Learn about different methods for the solution of f(x) = 0, their advantages and disadvantages. Convergence

More information

Finding Roots of Equations

Finding Roots of Equations Finding Roots of Equations Solution Methods Overview Bisection/Half-interval Search Method of false position/regula Falsi Secant Method Newton Raphson Iteration Method Many more. Open Methods Bracketing

More information

Today s class. Numerical differentiation Roots of equation Bracketing methods. Numerical Methods, Fall 2011 Lecture 4. Prof. Jinbo Bi CSE, UConn

Today s class. Numerical differentiation Roots of equation Bracketing methods. Numerical Methods, Fall 2011 Lecture 4. Prof. Jinbo Bi CSE, UConn Today s class Numerical differentiation Roots of equation Bracketing methods 1 Numerical Differentiation Finite divided difference First forward difference First backward difference Lecture 3 2 Numerical

More information

Nonlinear Equations. Chapter The Bisection Method

Nonlinear Equations. Chapter The Bisection Method Chapter 6 Nonlinear Equations Given a nonlinear function f(), a value r such that f(r) = 0, is called a root or a zero of f() For eample, for f() = e 016064, Fig?? gives the set of points satisfying y

More information

CHAPTER-II ROOTS OF EQUATIONS

CHAPTER-II ROOTS OF EQUATIONS CHAPTER-II ROOTS OF EQUATIONS 2.1 Introduction The roots or zeros of equations can be simply defined as the values of x that makes f(x) =0. There are many ways to solve for roots of equations. For some

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 4

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 4 2.29 Spring 2015 Lecture 4 Review Lecture 3 Truncation Errors, Taylor Series and Error Analysis Taylor series: 2 3 n n i1 i i i i i n f( ) f( ) f '( ) f ''( ) f '''( )... f ( ) R 2! 3! n! n1 ( n1) Rn f

More information

INTRODUCTION TO NUMERICAL ANALYSIS

INTRODUCTION TO NUMERICAL ANALYSIS INTRODUCTION TO NUMERICAL ANALYSIS Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University 3. SOLVING NONLINEAR EQUATIONS 3.1 Background 3.2 Estimation of errors in numerical solutions

More information

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method.

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method. 80 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0 y y = f(x) (p, 0) p 2 p 1 p 0 x (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- Figure 2.16 cant method. Secant Method The

More information

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence Chapter 6 Nonlinear Equations 6. The Problem of Nonlinear Root-finding In this module we consider the problem of using numerical techniques to find the roots of nonlinear equations, f () =. Initially we

More information

NON-LINEAR ALGEBRAIC EQUATIONS Lec. 5.1: Nonlinear Equation in Single Variable

NON-LINEAR ALGEBRAIC EQUATIONS Lec. 5.1: Nonlinear Equation in Single Variable NON-LINEAR ALGEBRAIC EQUATIONS Lec. 5.1: Nonlinear Equation in Single Variable Dr. Niket Kaisare Department of Chemical Engineering IIT Madras NPTEL Course: MATLAB Programming for Numerical Computations

More information

Root Finding (and Optimisation)

Root Finding (and Optimisation) Root Finding (and Optimisation) M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis Michaelmas Term 2018, Lecture 4 Root Finding The idea of root finding is simple we want

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Bracketing Methods Roots of Equations Given a function f(x), the roots are those values of x that

More information

Solving Non-Linear Equations (Root Finding)

Solving Non-Linear Equations (Root Finding) Solving Non-Linear Equations (Root Finding) Root finding Methods What are root finding methods? Methods for determining a solution of an equation. Essentially finding a root of a function, that is, a zero

More information

Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Given function f, we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the function f Problem is known as root

More information

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Root Finding: Close Methods Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Roots Given function f(x), we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the

More information

Solution of Algebric & Transcendental Equations

Solution of Algebric & Transcendental Equations Page15 Solution of Algebric & Transcendental Equations Contents: o Introduction o Evaluation of Polynomials by Horner s Method o Methods of solving non linear equations o Bracketing Methods o Bisection

More information

Finding the Roots of f(x) = 0. Gerald W. Recktenwald Department of Mechanical Engineering Portland State University

Finding the Roots of f(x) = 0. Gerald W. Recktenwald Department of Mechanical Engineering Portland State University Finding the Roots of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

Finding the Roots of f(x) = 0

Finding the Roots of f(x) = 0 Finding the Roots of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b.

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b. Uses of differentials to estimate errors. Recall the derivative notation df d is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input at = b. Eamples.

More information

Numerical Solution of f(x) = 0

Numerical Solution of f(x) = 0 Numerical Solution of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@pdx.edu ME 350: Finding roots of f(x) = 0 Overview Topics covered in these slides

More information

Nonlinear Equations and Continuous Optimization

Nonlinear Equations and Continuous Optimization Nonlinear Equations and Continuous Optimization Sanzheng Qiao Department of Computing and Software McMaster University March, 2014 Outline 1 Introduction 2 Bisection Method 3 Newton s Method 4 Systems

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 Petros Koumoutsakos Gerardo Tauriello (Last update: July 2, 2015) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

TWO METHODS FOR OF EQUATIONS

TWO METHODS FOR OF EQUATIONS TWO METHODS FOR FINDING ROOTS OF EQUATIONS Closed (Bracketing) Methods Open Methods Motivation: i In engineering applications, it is often necessary to determine the rootofan of equation when a formula

More information

Numerical Methods. Roots of Equations

Numerical Methods. Roots of Equations Roots of Equations by Norhayati Rosli & Nadirah Mohd Nasir Faculty of Industrial Sciences & Technology norhayati@ump.edu.my, nadirah@ump.edu.my Description AIMS This chapter is aimed to compute the root(s)

More information

by Martin Mendez, UASLP Copyright 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

by Martin Mendez, UASLP Copyright 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 by Martin Mendez, 1 Roots of Equations Part Why? b m b a + b + c = 0 = aa 4ac But a 5 4 3 + b + c + d + e + f = 0 sin + = 0 =? =? by Martin Mendez, Nonlinear Equation Solvers Bracketing Graphical

More information

Numerical Methods Lecture 3

Numerical Methods Lecture 3 Numerical Methods Lecture 3 Nonlinear Equations by Pavel Ludvík Introduction Definition (Root or zero of a function) A root (or a zero) of a function f is a solution of an equation f (x) = 0. We learn

More information

Solution of Nonlinear Equations

Solution of Nonlinear Equations Solution of Nonlinear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 14, 017 One of the most frequently occurring problems in scientific work is to find the roots of equations of the form f(x) = 0. (1)

More information

Finding roots. Lecture 4

Finding roots. Lecture 4 Finding roots Lecture 4 Finding roots: Find such that 0 or given. Bisection method: The intermediate value theorem states the obvious: i a continuous unction changes sign within a given interval, it has

More information

CS 221 Lecture 9. Tuesday, 1 November 2011

CS 221 Lecture 9. Tuesday, 1 November 2011 CS 221 Lecture 9 Tuesday, 1 November 2011 Some slides in this lecture are from the publisher s slides for Engineering Computation: An Introduction Using MATLAB and Excel 2009 McGraw-Hill Today s Agenda

More information

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD BISECTION METHOD If a function f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs, then there exists at least one root between a and b. It is shown graphically as, Let f a be negative

More information

UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION

UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION. If g x is continuous in a, b, then under what condition the iterative method x = g x has a unique solution in a, b? g x < in a, b. State

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 3 Lecture 3 3.1 General remarks March 4, 2018 This

More information

BSM510 Numerical Analysis

BSM510 Numerical Analysis BSM510 Numerica Anaysis Roots: Bracketing methods : Open methods Prof. Manar Mohaisen Department of EEC Engineering Lecture Content v Introduction v Bracketing methods v Open methods v MATLAB hints 2 Introduction

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

Practical Numerical Analysis: Sheet 3 Solutions

Practical Numerical Analysis: Sheet 3 Solutions Practical Numerical Analysis: Sheet 3 Solutions 1. We need to compute the roots of the function defined by f(x) = sin(x) + sin(x 2 ) on the interval [0, 3] using different numerical methods. First we consider

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

Topic 4b. Open Methods for Root Finding

Topic 4b. Open Methods for Root Finding Course Instructor Dr. Ramond C. Rump Oice: A 337 Phone: (915) 747 6958 E Mail: rcrump@utep.edu Topic 4b Open Methods or Root Finding EE 4386/5301 Computational Methods in EE Outline Open Methods or Root

More information

Determining the Roots of Non-Linear Equations Part I

Determining the Roots of Non-Linear Equations Part I Determining the Roots of Non-Linear Equations Part I Prof. Dr. Florian Rupp German University of Technology in Oman (GUtech) Introduction to Numerical Methods for ENG & CS (Mathematics IV) Spring Term

More information

6.1 The function can be set up for fixed-point iteration by solving it for x

6.1 The function can be set up for fixed-point iteration by solving it for x 1 CHAPTER 6 6.1 The function can be set up for fied-point iteration by solving it for 1 sin i i Using an initial guess of 0 = 0.5, the first iteration yields 1 sin 0.5 0.649637 a 0.649637 0.5 100% 3% 0.649637

More information

Numerical Analysis: Solving Nonlinear Equations

Numerical Analysis: Solving Nonlinear Equations Numerical Analysis: Solving Nonlinear Equations Mirko Navara http://cmp.felk.cvut.cz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office 104a

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Root finding. Root finding problem. Root finding problem. Root finding problem. Notes. Eugeniy E. Mikhailov. Lecture 05. Notes

Root finding. Root finding problem. Root finding problem. Root finding problem. Notes. Eugeniy E. Mikhailov. Lecture 05. Notes Root finding Eugeniy E. Mikhailov The College of William & Mary Lecture 05 Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10 2 sin(x) 1 = 0 2 sin(x) 1 = 0 Often we have a problem which looks

More information

Numerical Methods Dr. Sanjeev Kumar Department of Mathematics Indian Institute of Technology Roorkee Lecture No 7 Regula Falsi and Secant Methods

Numerical Methods Dr. Sanjeev Kumar Department of Mathematics Indian Institute of Technology Roorkee Lecture No 7 Regula Falsi and Secant Methods Numerical Methods Dr. Sanjeev Kumar Department of Mathematics Indian Institute of Technology Roorkee Lecture No 7 Regula Falsi and Secant Methods So welcome to the next lecture of the 2 nd unit of this

More information

Zeroes of Transcendental and Polynomial Equations. Bisection method, Regula-falsi method and Newton-Raphson method

Zeroes of Transcendental and Polynomial Equations. Bisection method, Regula-falsi method and Newton-Raphson method Zeroes of Transcendental and Polynomial Equations Bisection method, Regula-falsi method and Newton-Raphson method PRELIMINARIES Solution of equation f (x) = 0 A number (real or complex) is a root of the

More information

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq Page No.1 File Version v1.5.3 Update: (Dated: 3-May-011) This version of file contains: Content of the Course (Done) FAQ updated version.(these must be read once because some very basic definition and

More information

Mathematical Methods for Numerical Analysis and Optimization

Mathematical Methods for Numerical Analysis and Optimization Biyani's Think Tank Concept based notes Mathematical Methods for Numerical Analysis and Optimization (MCA) Varsha Gupta Poonam Fatehpuria M.Sc. (Maths) Lecturer Deptt. of Information Technology Biyani

More information

Chapter 3: Root Finding. September 26, 2005

Chapter 3: Root Finding. September 26, 2005 Chapter 3: Root Finding September 26, 2005 Outline 1 Root Finding 2 3.1 The Bisection Method 3 3.2 Newton s Method: Derivation and Examples 4 3.3 How To Stop Newton s Method 5 3.4 Application: Division

More information

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 5. Bracketing Methods

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 5. Bracketing Methods The Islami University of Gaza Faulty of Engineering Civil Engineering Department Numerial Analysis ECIV 3306 Chapter 5 Braketing Methods Assoiate Prof. Mazen Abualtayef Civil Engineering Department, The

More information

Roots of Equations. ITCS 4133/5133: Introduction to Numerical Methods 1 Roots of Equations

Roots of Equations. ITCS 4133/5133: Introduction to Numerical Methods 1 Roots of Equations Roots of Equations Direct Search, Bisection Methods Regula Falsi, Secant Methods Newton-Raphson Method Zeros of Polynomials (Horner s, Muller s methods) EigenValue Analysis ITCS 4133/5133: Introduction

More information

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1.

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1. The Bisection method or BOLZANO s method or Interval halving method: Find the positive root of x 3 x = 1 correct to four decimal places by bisection method Let f x = x 3 x 1 Here f 0 = 1 = ve, f 1 = ve,

More information

Example - Newton-Raphson Method

Example - Newton-Raphson Method Eample - Newton-Raphson Method We now consider the following eample: minimize f( 3 3 + -- 4 4 Since f ( 3 2 + 3 3 and f ( 6 + 9 2 we form the following iteration: + n 3 ( n 3 3( n 2 ------------------------------------

More information

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR)

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) Autumn Session UNIT 1 Numerical analysis is the study of algorithms that uses, creates and implements algorithms for obtaining numerical solutions to problems

More information

Iteration & Fixed Point

Iteration & Fixed Point Iteration & Fied Point As a method for finding the root of f this method is difficult, but it illustrates some important features of iterstion. We could write f as f g and solve g. Definition.1 (Fied Point)

More information

Root finding. Eugeniy E. Mikhailov. Lecture 06. The College of William & Mary. Eugeniy Mikhailov (W&M) Practical Computing Lecture 06 1 / 10

Root finding. Eugeniy E. Mikhailov. Lecture 06. The College of William & Mary. Eugeniy Mikhailov (W&M) Practical Computing Lecture 06 1 / 10 Root finding Eugeniy E. Mikhailov The College of William & Mary Lecture 06 Eugeniy Mikhailov (W&M) Practical Computing Lecture 06 1 / 10 Root finding problem Generally we want to solve the following canonical

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

Chapter 1. Root Finding Methods. 1.1 Bisection method

Chapter 1. Root Finding Methods. 1.1 Bisection method Chapter 1 Root Finding Methods We begin by considering numerical solutions to the problem f(x) = 0 (1.1) Although the problem above is simple to state it is not always easy to solve analytically. This

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Polynomials Polynomials A polynomial is of the form: ( x) = a 0 + a 1 x + a 2 x 2 +L+ a n x n f

More information

Numerical Analysis MTH603. Virtual University of Pakistan Knowledge beyond the boundaries

Numerical Analysis MTH603. Virtual University of Pakistan Knowledge beyond the boundaries Numerical Analysis MTH6 Virtual University of Pakistan Knowledge beyond the boundaries Table of Contents Lecture # Topics Page # Lecture Introduction Lecture Errors in Computations 6 Lecture Solution of

More information

Variable. Peter W. White Fall 2018 / Numerical Analysis. Department of Mathematics Tarleton State University

Variable. Peter W. White Fall 2018 / Numerical Analysis. Department of Mathematics Tarleton State University Newton s Iterative s Peter W. White white@tarleton.edu Department of Mathematics Tarleton State University Fall 2018 / Numerical Analysis Overview Newton s Iterative s Newton s Iterative s Newton s Iterative

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revision Guides Numerical Methods for Solving Equations Page of M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C3 Edecel: C3 OCR: C3 NUMERICAL METHODS FOR SOLVING EQUATIONS

More information

2D1240 Numerical Methods II / André Jaun, NADA, KTH NADA

2D1240 Numerical Methods II / André Jaun, NADA, KTH NADA A NADA D4 Numerical Methods II / André Jaun, NADA, KTH 8. PRECISION INTEGRATION, NON-LINEAR EQUATIONS 8.. Remember: what we saw during the last lesson Numerical error propagation, convergence and Richardson

More information

Order of convergence. MA3232 Numerical Analysis Week 3 Jack Carl Kiefer ( ) Question: How fast does x n

Order of convergence. MA3232 Numerical Analysis Week 3 Jack Carl Kiefer ( ) Question: How fast does x n Week 3 Jack Carl Kiefer (94-98) Jack Kiefer was an American statistician. Much of his research was on the optimal design of eperiments. However, he also made significant contributions to other areas of

More information

Linear Algebra II (finish from last time) Root finding

Linear Algebra II (finish from last time) Root finding Lecture 5: Topics: Linear lgebra II (finish from last time) Root finding -Cross product of two vectors -Finding roots of linear equations -Finding roots of nonlinear equations HW: HW 1, Part 3-4 given

More information

APPROXIMATION OF ROOTS OF EQUATIONS WITH A HAND-HELD CALCULATOR. Jay Villanueva Florida Memorial University Miami, FL

APPROXIMATION OF ROOTS OF EQUATIONS WITH A HAND-HELD CALCULATOR. Jay Villanueva Florida Memorial University Miami, FL APPROXIMATION OF ROOTS OF EQUATIONS WITH A HAND-HELD CALCULATOR Jay Villanueva Florida Memorial University Miami, FL jvillanu@fmunivedu I Introduction II III IV Classical methods A Bisection B Linear interpolation

More information

Root finding. Eugeniy E. Mikhailov. Lecture 05. The College of William & Mary. Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10

Root finding. Eugeniy E. Mikhailov. Lecture 05. The College of William & Mary. Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10 Root finding Eugeniy E. Mikhailov The College of William & Mary Lecture 05 Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10 Root finding problem Generally we want to solve the following canonical

More information

Numerical Analysis Fall. Roots: Open Methods

Numerical Analysis Fall. Roots: Open Methods Numerical Analysis 2015 Fall Roots: Open Methods Open Methods Open methods differ from bracketing methods, in that they require only a single starting value or two starting values that do not necessarily

More information

i nfoclearinghouse.com Solving Non-linear Equations with SCILAB Gilberto E. Urroz, Ph.D., P.E. Distributed by

i nfoclearinghouse.com Solving Non-linear Equations with SCILAB Gilberto E. Urroz, Ph.D., P.E. Distributed by Solving Non-linear Equations with SCILAB By Gilberto E. Urroz, Ph.D., P.E. Distributed by i nfoclearinghouse.com 00 Gilberto E. Urroz All Rights Reserved A "zip" file containing all of the programs in

More information

Applied Mathematics Letters. Combined bracketing methods for solving nonlinear equations

Applied Mathematics Letters. Combined bracketing methods for solving nonlinear equations Applied Mathematics Letters 5 (01) 1755 1760 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Combined bracketing methods for

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #2 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Numerical Analysis MTH603

Numerical Analysis MTH603 Numerical Analysis Course Contents Solution of Non Linear Equations Solution of Linear System of Equations Approximation of Eigen Values Interpolation and Polynomial Approximation Numerical Differentiation

More information

5 Finding roots of equations

5 Finding roots of equations Lecture notes for Numerical Analysis 5 Finding roots of equations Topics:. Problem statement. Bisection Method 3. Newton s Method 4. Fixed Point Iterations 5. Systems of equations 6. Notes and further

More information

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems Nonlinear Systems CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Nonlinear Systems 1 / 27 Part III: Nonlinear Problems Not

More information

Numerical solutions of nonlinear systems of equations

Numerical solutions of nonlinear systems of equations Numerical solutions of nonlinear systems of equations Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan E-mail: min@math.ntnu.edu.tw August 28, 2011 Outline 1 Fixed points

More information

Chapter 4. Solution of a Single Nonlinear Algebraic Equation

Chapter 4. Solution of a Single Nonlinear Algebraic Equation Single Nonlinear Algebraic Equation - 56 Chapter 4. Solution of a Single Nonlinear Algebraic Equation 4.1. Introduction Life, my fris, is nonlinear. As such, in our roles as problem-solvers, we will be

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Midterm Review. Igor Yanovsky (Math 151A TA)

Midterm Review. Igor Yanovsky (Math 151A TA) Midterm Review Igor Yanovsky (Math 5A TA) Root-Finding Methods Rootfinding methods are designed to find a zero of a function f, that is, to find a value of x such that f(x) =0 Bisection Method To apply

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

Numerical Integration (Quadrature) Another application for our interpolation tools!

Numerical Integration (Quadrature) Another application for our interpolation tools! Numerical Integration (Quadrature) Another application for our interpolation tools! Integration: Area under a curve Curve = data or function Integrating data Finite number of data points spacing specified

More information

15 Nonlinear Equations and Zero-Finders

15 Nonlinear Equations and Zero-Finders 15 Nonlinear Equations and Zero-Finders This lecture describes several methods for the solution of nonlinear equations. In particular, we will discuss the computation of zeros of nonlinear functions f(x).

More information

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-713209 email: anita.buie@gmail.com 1 . Chapter 4 Solution of Non-linear

More information

Limits and the derivative function. Limits and the derivative function

Limits and the derivative function. Limits and the derivative function The Velocity Problem A particle is moving in a straight line. t is the time that has passed from the start of motion (which corresponds to t = 0) s(t) is the distance from the particle to the initial position

More information

The stationary points will be the solutions of quadratic equation x

The stationary points will be the solutions of quadratic equation x Calculus 1 171 Review In Problems (1) (4) consider the function f ( ) ( ) e. 1. Find the critical (stationary) points; establish their character (relative minimum, relative maimum, or neither); find intervals

More information

Goals for This Lecture:

Goals for This Lecture: Goals for This Lecture: Learn the Newton-Raphson method for finding real roots of real functions Learn the Bisection method for finding real roots of a real function Look at efficient implementations of

More information

Computational Methods CMSC/AMSC/MAPL 460. Solving nonlinear equations and zero finding. Finding zeroes of functions

Computational Methods CMSC/AMSC/MAPL 460. Solving nonlinear equations and zero finding. Finding zeroes of functions Computational Methods CMSC/AMSC/MAPL 460 Solving nonlinear equations and zero finding Ramani Duraiswami, Dept. of Computer Science Where does it arise? Finding zeroes of functions Solving functional equations

More information

R x n. 2 R We simplify this algebraically, obtaining 2x n x n 1 x n x n

R x n. 2 R We simplify this algebraically, obtaining 2x n x n 1 x n x n Math 42 Homework 4. page 3, #9 This is a modification of the bisection method. Write a MATLAB function similar to bisect.m. Here, given the points P a a,f a and P b b,f b with f a f b,we compute the point

More information

Solutions of Equations in One Variable. Newton s Method

Solutions of Equations in One Variable. Newton s Method Solutions of Equations in One Variable Newton s Method Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole,

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N.

MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N. MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N. Dmitriy Leykekhman Fall 2008 Goals Learn about different methods for the solution of F (x) = 0, their advantages and disadvantages.

More information

BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations

BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations Ser Lee Loh a, Wei Sen Loi a a Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka Lesson Outcome Upon completion of this lesson,

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form a 2 + b + c = 0. Quadratic Formula The solutions of a 2 +

More information

THE SECANT METHOD. q(x) = a 0 + a 1 x. with

THE SECANT METHOD. q(x) = a 0 + a 1 x. with THE SECANT METHOD Newton s method was based on using the line tangent to the curve of y = f (x), with the point of tangency (x 0, f (x 0 )). When x 0 α, the graph of the tangent line is approximately the

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information