ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

Size: px
Start display at page:

Download "ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities"

Transcription

1 ECE66: Solid State evices Lecture 3 MOSFET I- Characteristics MOSFET non-idealities Gerhard Klimeck gekco@purdue.edu Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified theory 3) Few comments about bulk charge theory, small transistors 4) Flat band voltage - What is it and how to measure it? 5) Threshold voltage shift due to trapped charges 6) Conclusion Ref: Sec of SF Chapter 18, SF

2 Post-Threshold MOS Current ( G > th ) I W = S eff L µ ch Q i ( ) d Formula overview derivation to follow 1) Square Law ) Bulk Charge 3) Simplified Bulk Charge [ ] Q ( ) = C ) i G G T 4) Eact (Pao-Sah or Pierret-Shields) i G G T ( φ + ) qε SiN A B Q ( ) i = CG G FB ψ B C O Q ( ) = C ) [ m ] 3 Effect of Gate Bias S G GS W W M n+ n+ P B y BI GS > T ψ B No source-drain bias Gated doped or p-mos with adjacent n + region a) gate biased at flat-band b) gate biased in inversion A. Grove, Physics of Semiconductor evices,

3 The Effect of rain Bias band diagram for an n-mosfet a) device b) equilibrium (flat band) c) equilibrium (ψ S > ) d) non-equilibrium with G and > applied epletion very different in source and drain side Alam Gate voltage ECE-66 must ensure S9channel formation=> LARGE 5 SM. Sze, Physics of Semiconductor evices, 1981 and Pao and Sah. F N Effect of a Reverse Bias at rain W W M R R R GS > T ( R ) BI + R ψ S = ψ B + R Gated doped or p-mos with adjacent, reverse-biased n + region a) gate biased at flat-band b) gate biased in depletion c) gate biased in inversion A. Grove, Physics of Semiconductor evices,

4 S G n+ n+ G = = P B G = > Inversion Charge in the Channel Band diagrams (Gate Channel - rain) Q = C ( ) i G th + qn ( W ( ) W ( = ) ) B A T ue to drain bias, additional gate voltage (as compared to threshold in MOSCAP) is now needed to invert the channel throughout its length G > > T B Body potential = constant, n+ region potential lowered 7 Inversion Charge at one point in Channel G G B th qn AWT ( = ) = φf C * th qn AWT ( ) = ( φf + ) C ( W ) W = ) * qn A T ( T ( ) th = th + C Q C * i = ( G th ) Threshold voltage in the presence of drain bias 8

5 Apprimations for Inversion Charge ( ) Q = C ( ) + qn W ( ) W ( = ) i O G th A T T ( φ + ) κ ε ( φ ) = C ( ) O G th + qκ Sε on A q S on B A B Apprimations: Q C ( ) i G th Q C ( m ) i G th Square law apprimation Simplified bulk charge apprimation 9 The MOSFET S G S = > n+ n+ P F n = F p = E F B F n = F p q F n increasingly negative from source to drain (reverse bias increases from source to drain) 1

6 Elements of Square-law Theory oltage and hence inversion charge vary spatially G > y GCA : E y << E G G [ ] Q ( y) = C m ( y) i G th 11 Charge along the channel. n ( E F ) β ( E Fp ) β p = NCe C n = N e C p n

7 Charge along the channel n ( E F ) β ( E Fp ) β p = NCe C n = N e C G > epletion into the channel. n C n = N e C ( E F ) β p ( E F ) β p = N e C G N A n W T ( =) W T ( )

8 epletion into the channel G > epletion Another view of Channel Potential Source rain N+ N+ P-doped F P F P F N F N F P F N E C E F E 16

9 d J1 = Q1 µ E1 = Q1 µ dy d J = Q µ E = Q µ dy d J3 = Q3 µ E3 = Q3 µ dy d J4 = Q4 µ E4 = Q4 µ dy Jidy = µ i = 1, N i = 1, N J µ dy = C ( m ) d i = 1, N Q d i G th = ( G th ) Lch µ C J m Q Square Law Theory G > Q 1 Q Q 3 Q 4 17 Square Law or Simplified Bulk Charge Theory µ C I = W ( G th ) m Lch di * = = ( G th ) m, sat = ( G th ) m d I SAT = ( GS T )/ m GS W µ Co I = ml ( ) G T ch Unphysical, since current does not decrease with increase in d µ C J = ( G th ) m Lch W I = µ C ( ) L o G T S Region of validity for the epression for currents 18

10 Why square law? And why does it become invalid SAT = ( GS T )/ m W µ Co I = ml ( ) G T ch Q C ( m ) i G th G > I GS Q S This situation doesn t arise since electrons travelling from left to right are swept into the drain under the effect of the reverse bias applied 19 Linear Region (Low S ) µ C I = W ( G th ) m Lch I W I = µ C ( ) o G T Lch = R S CH Slope gives mobility S small Actual Mobility degradation at high GS Subthreshold Conduction T Intercept gives T GS Can get T also from C-

11 Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified theory 3) Few comments about bulk charge theory, small transistors 4) Flat band voltage - What is it and how to measure it? 5) Threshold voltage shift due to trapped charges 6) Conclusion Ref: Sec of SF Chapter 18, SF 1 elocity vs. Field Characteristic (electrons) velocity cm/s ---> elocity saturates at high fields because of scattering 1 7 υ = µe 1 4 υ = υ sat Electric field /cm ---> υ µ E d = 1/ 1 + ( E Ec) µ E υd = 1 + ( E E ) υ µe d, sat = This epression can be used to re-derive the epression for current since since mobility is now, in principle, a function of distance c c

12 Recap - derivation for MOSFET current G > d J1 = Q1 µ 1E1 = Q1 µ 1 dy d J = Q µ E = Q µ dy d J3 = Q3 µ 3E3 = Q3 µ 3 dy d J 4 = Q4 µ 4E4 = Q4µ 4 dy Jidy = µ ( y) i= 1, N i= 1, N Q d i 3 elocity Saturation dy = 1, G th i N E µ 1 + Ec J = C ( m ) d G > 1 L ch d m dy 1 + = C ( G th ) c dy J µ E L ch S J m J dy + d = C ( G th ) Ec µ C m J = ( ) G th Lch + E c Q υ v sat 4

13 Significance of the new epression µ C m J = ( ) G th Lch + E c At very small channel lengths and high drain biases, the current epression becomes independent of the channel length In the linear region in the I- d characteristics, you have a resistance that doesn t depend on the length of the channel 5 Calculating SAT di d S = I µ C W L o = ( G th ) m + ch Ec Take log on both sides and then set the derivative to zero. SAT = ( ) / m G th µ o ( G th ) mυ sat L ch < GS T ( ) m 6

14 µ C m J = ( ), sat G th, sat, sat L + ch EC elocity Saturation in short channel devices, sat I This epression can be derived by plugging in the value of d,sat for the short channel regime ( ) I = WC υ sat G T GS S 7 Linear Law Epression at the limit of L --> SAT ( G th ) ( ) / m = µ mυ L G th sat ch ( ) υ L mµ SAT sat ch G th ( ) I = W C υ SAT sat G th ( ) I = W C υ SAT sat G th ( ) ( ) 1+ µ mυ L 1 G th sat ch 1+ µ mυ L + 1 G th sat ch Complete velocity saturation Current independent of L 8

15 Signature of elocity Saturation I I GS GS ( ) W G I = µ C L m ch S S th ( ) I = Wυ C sat G th Can pull out ide thickness from eperimental curves How? 9 I and ( GS - T ): In practice.. I I α ( = ) ~ ( ) G th GS 1 < α < S Complete velocity saturation Long channel 3

16 Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified theory 3) Few comments about bulk charge theory, small transistors 4) Flat band voltage - What is it and how to measure it? 5) Threshold voltage shift due to trapped charges 6) Conclusion Ref: Sec of SF Chapter 18, SF 31 Apprimations for Inversion Charge ( ) Q = C ( ) + qn W ( ) W ( = ) i O G th A T T ( ) ( ) = C ( ) + qκ ε N φ + qκ ε N φ O G th S o A B S o A B Apprimations: Q C ( ) i G th Q C ( m ) i G th Square law apprimation Simplified bulk charge apprimation One could substitute the epression for Q i above eplicitly instead of using m to simplify the equation, resulting in a more complete bulk charge epression 3

17 J µ dy = C ( ) d + [...] d i= 1, N O G th Complete Bulk-charge Theory Additional dependent terms abstracted into m previously J µ L ch dy = C ( ) d + [...] d J O G th 3 / µ C 4 3 qn AWT = ( G th ) φf Lch 3 CO φ F 4φ F (Eq in SF). Eplicit dependence on bulk doping 33 elocity Overshoot υ µ n Average velocity (cm/s) ( E)E 1 3 /cm 1 5 /cm 1 3 /cm υ sat Position (µm) Kinetic energy per electron (e) alid for bulk semiconductors, not valid at top of the barrier 34

18 elocity Overshoot in a MOSFET 35 Intermediate Summary 1) elocity saturation is an important consideration for short channel transistors (e.g., =1, L ch =nm). Therefore, α ~ 1 for most modern transistors. ) Bulk charge theory eplains why MOSFET current depends on substrate (bulk) doping. In the simplified bulk charge theory, doping dependence is encapsulated in m. 3) Additional considerations of velocity overshoot could complicate calculation of current. 4) Good news is that for very short channel transistors, electrons travel from source to drain without scattering. A considerably simpler Lundstrom theory of MOSFET applies. 36

19 Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified theory 3) Few comments about bulk charge theory, small transistors 4) Flat band voltage - What is it and how to measure it? 5) Threshold voltage shift due to trapped charges 6) Conclusion I ( = ) ~ ( G th ) α 1 < α < Ref: Sec of SF Chapter 18, SF th γ MQM QF QIT ( φs ) = th, ideal + φms C C C O O O 37 (1) Idealized MOS Capacitor In the idealized MOS capacitor, the Fermi Levels in metal and semiconductor align perfectly so that at zero applied bias, the energy bands are flat acuum level y Substrate (p) χ i χ s Φ m E C Recall that Q = C ( ) i G th, ideal E F th, ideal Q = ψ s B C ψ s = φ F metal insulator p semiconductor 38

20 Potential, Field, Charges χ i χ s Φ m E bi = ρ No built in potential, fields or charges at zero applied bias in the idealized MOS structure 39 Real MOS Capacitor with Φ M < Φ S E AC Note the difference Φ M = qφ m χ S Φ S qψ S > E C E F E C E F E E In reality, the metal and semiconductor Fermi Levels are never aligned perfectly when you bring them together there is charge transfer from the bulk of the semiconductor to the surface so that we have alignment o we need to apply less or more G to invert the channel? 4

21 G = Physical Interpretation of Flatband oltage The Flatband oltage is the voltage applied to the gate that gives zero-band bending in the MOS structure. Applying this voltage nullifies the effect of the built-in potential. This voltage needs to be incorporated into the idealized MOS analysis while calculating threshold voltage = φ = < FB ms bi E C E F G = FB < E C E E F E bi = φ ms > + ψ S = flat band 41 How to Calculate Built-in or Flat-band oltage The presence of a flatband voltage lowers or raises the threshold voltage of a MOS structure. Engineering question Is it desirable to have a metal having a work function greater or less than the electron affinity+(ec-ef) in the semiconductor? q = q ( χs E ) = + Φ bi g p FB φ MS M q bi acuum level χ s Therefore, Q = C ( ) i G th Φ m E C E F E th Q B = φ F C FB 4

22 Measure of Flat-band shift from C- Characteristics The transition point between accumulation and depletion in a non-ideal MOS structure is shifted to the left when the metal work function is smaller that the electron affinity +(Ec-Ef). At zero applied bias the semiconductor is already depleted so that a very small positive bias inverts the channel. The flatband voltage is the amount of voltage required to shift the curve such that the transition point is at zero bias. C/C Ideal th Actual G th 43 Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified theory 3) Few comments about bulk charge theory, small transistors 4) Flat band voltage - What is it and how to measure it? 5) Threshold voltage shift due to trapped charges 6) Conclusion Ref: Sec of SF Chapter 18, SF γ Q Q Q ( φ ) = + φ M M F IT s C C C th th, ideal MS 44

23 () Idealized MOS Capacitor acuum level y Substrate (p) χ i χ s Φ m Recall that Q = C ( ) i G th, ideal Q = E C E F E th, ideal Q = ψ s B C ψ s = φ F metal insulator p semiconductor 45 istributed Trapped charge in the Oide O X O E C QM = ρ( ) In the absence of charges in the ide, the field is constant (d/d = constant). The presence E of a charge distribution inside F the ide changes the field inside the ide and effectively traps field lines comping from the gate. As a result, depending on E the ρ polarity of charges in the ie, the threshold voltage Mis modified. γ M = ρ d ( ) d ( ) d th QF = ψ S γ C M Q C M m represents the centroid of the charge distribution one can think of this as replacing the entire distribution with a delta charge at this point 46

24 An Intuitive iew Reduced gate charge Ideal charge-free ide Bulk charge -E -E Interface charge -E 47 Gate oltage and Oide Charge G = +ψ s Kirchoff s Law balancing voltages d de ρ( ) = = d d κ ε E ( ) E ( ) de = d d =E ( ) E ( ) =E ( ) ρ ( ')d ' κ ε ρ( ') d' κ ε Known from boundary conditions in semiconductor and continuity of E = κ S κ E S ( ) = κ S κ E S ( ) ρ d ( ')d ' κ ε ρ ( )d κ ε -E 48

25 Gate oltage and Oide Charge S ( ) = κ ρ E S ( ) κ o κε = ψ ( = φ ) + th s F κ S 1 = ψ s = φf ) + E S ( ρ κ C κ S 1 = E S κ C ( ) ( ) d d ( ) ρ ( ) d 1 = th, ideal ( ) d C Q = th, ideal C ρo M γ M 49 Interpretation for Bulk Charge C/C 1 1 th = th, ideal ρ( ) δ ( 1 ) d C = th, ideal o QM ( 1 ) C o New T Ideal T G 5

26 Interpretation for Interface Charge C/C * 1 th = th ρ( ) δ ( o ) d C o * Q = th C F o New T Ideal T G 51 Time-dependent shift of Trapped Charge C/C E 1 = Q ( ) δ ( ( t)) d th th, ideal 1 C ( t) Q ( ) C 1 = th, ideal Ideal T G Sodium related bias temperature instability (BTI) issue 5

27 Bias Temperature Instability (Eperiment) M O S (-) biases + M O S + (+) biases ρ ion ρ ion.1 o o.9 o o 53 Conclusion 1) Non-ideal threshold characteristics are important consideration of MOSFET design. ) The non-idealities arise from differences in gate and substrate work function, trapped charges, interface states. 3) Although nonindeal effects often arise from transistor degradation, there are many cases where these effects can be used to enhance desirable characteristics. 54

ECE606: Solid State Devices Lecture 24 MOSFET non-idealities

ECE606: Solid State Devices Lecture 24 MOSFET non-idealities EE66: Solid State Devices Lecture 24 MOSFET non-idealities Gerhard Klimeck gekco@purdue.edu Outline ) Flat band voltage - What is it and how to measure it? 2) Threshold voltage shift due to trapped charges

More information

ECE606: Solid State Devices Lecture 22 MOScap Frequency Response MOSFET I-V Characteristics

ECE606: Solid State Devices Lecture 22 MOScap Frequency Response MOSFET I-V Characteristics EE66: olid tate evices Lecture 22 MOcap Frequency Response MOFET I- haracteristics erhard Klimeck gekco@purdue.edu. Background 2. mall signal capacitances 3. Large signal capacitance 4. Intermediate ummary

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

ECE 305: Fall MOSFET Energy Bands

ECE 305: Fall MOSFET Energy Bands ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Electrical Characteristics of MOS Devices

Electrical Characteristics of MOS Devices Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Threshold-voltage

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues EE105 - Fall 006 Microelectronic evices and Circuits Prof. Jan M. Rabaey (jan@eecs Lecture 8: MOS Small Signal Model Some Administrative Issues REIEW Session Next Week Tu Sept 6 6:00-7:30pm; 060 alley

More information

Lecture 18 Field-Effect Transistors 3

Lecture 18 Field-Effect Transistors 3 Lecture 18 Field-Effect Transistors 3 Schroder: Chapters, 4, 6 1/38 Announcements Homework 4/6: Is online now. Due Today. I will return it next Wednesday (30 th May). Homework 5/6: It will be online later

More information

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM. INEL 6055 - Solid State Electronics ECE Dept. UPRM 20th March 2006 Definitions MOS Capacitor Isolated Metal, SiO 2, Si Threshold Voltage qφ m metal d vacuum level SiO qχ 2 E g /2 qφ F E C E i E F E v qφ

More information

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th MOSFET Id-Vd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 Contents: 1. Second-order and

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime

More information

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002 6.720J/3.43J Integrated Microelectronic Devices Fall 2002 Lecture 30 1 Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor November 15, 2002 Contents: 1. Short channel effects Reading

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 - 6.012 - Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 - Posted on Stellar. Due net Wednesday. Qualitative description - MOS in thermal equilibrium

More information

Transistors - a primer

Transistors - a primer ransistors - a primer What is a transistor? Solid-state triode - three-terminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

The Three terminal MOS structure. Semiconductor Devices: Operation and Modeling 115

The Three terminal MOS structure. Semiconductor Devices: Operation and Modeling 115 The Three terminal MOS structure 115 Introduction MOS transistor two terminal MOS with another two opposite terminal (back to back of inversion layer). Theses two new terminal make the current flow if

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well. nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well. nmosfet Schematic 0 y L n + source n + drain depletion region polysilicon gate x z

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

Long-channel MOSFET IV Corrections

Long-channel MOSFET IV Corrections Long-channel MOSFET IV orrections Three MITs of the Day The body ect and its influence on long-channel V th. Long-channel subthreshold conduction and control (subthreshold slope S) Scattering components

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices C-305: Fall 2017 Metal Oxide Semiconductor Devices Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel lectrical and Computer ngineering Purdue

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Typical example of the FET: MEtal Semiconductor FET (MESFET)

Typical example of the FET: MEtal Semiconductor FET (MESFET) Typical example of the FET: MEtal Semiconductor FET (MESFET) Conducting channel (RED) is made of highly doped material. The electron concentration in the channel n = the donor impurity concentration N

More information

MENA9510 characterization course: Capacitance-voltage (CV) measurements

MENA9510 characterization course: Capacitance-voltage (CV) measurements MENA9510 characterization course: Capacitance-voltage (CV) measurements 30.10.2017 Halvard Haug Outline Overview of interesting sample structures Ohmic and schottky contacts Why C-V for solar cells? The

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

The Gradual Channel Approximation for the MOSFET:

The Gradual Channel Approximation for the MOSFET: 6.01 - Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v

More information

Lecture 7 MOS Capacitor

Lecture 7 MOS Capacitor EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 7 MOS Capacitor Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

More information

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005 6.12 Microelectronic Devices and Circuits Fall 25 Lecture 8 1 Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oide Semiconductor Structure (cont.) Contents: October 4, 25 1. Overview

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics MOS Device Uses: Part 4: Heterojunctions - MOS Devices MOSCAP capacitor: storing charge, charge-coupled device (CCD), etc. MOSFET transistor: switch, current amplifier, dynamic random access memory (DRAM-volatile),

More information

ECE-305: Spring 2016 MOSFET IV

ECE-305: Spring 2016 MOSFET IV ECE-305: Spring 2016 MOSFET IV Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu Lundstrom s lecture notes: Lecture 4 4/7/16 outline

More information

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 29-1 Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 Contents: 1. Non-ideal and second-order

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5 Semiconductor Devices C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5 Global leader in environmental and industrial measurement Wednesday 3.2. afternoon Tour around facilities & lecture

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

an introduction to Semiconductor Devices

an introduction to Semiconductor Devices an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor -

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Lecture 17 Field-Effect Transistors 2

Lecture 17 Field-Effect Transistors 2 Lecture 17 Field-Effect Transistors chroder: Chapters, 4, 6 1/57 Announcements Homework 4/6: Is online now. ue Monday May 1st at 10:00am. I will return it the following Monday (8 th May). Homework 5/6:

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 189 197 MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations S. EFTIMIE 1, ALEX. RUSU

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 4: Physics of Semiconductor iodes Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material EE-Fall 7 igital Integrated Circuits MO Transistor Lecture MO Transistor Model Announcements Review: hat is a Transistor? Lab this week! Lab next week Homework # is due Thurs. Homework # due next Thurs.

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information