Testing Linear Restrictions: cont.

Size: px
Start display at page:

Download "Testing Linear Restrictions: cont."

Transcription

1 Testing Linear Restrictions: cont. The F-statistic is closely connected with the R of the regression. In fact, if we are testing q linear restriction, can write the F-stastic as F = (R u R r)=q ( R u)=(n k) ; where R u and R r are the R from the unrestricted and restricted model, respectively. So far we have seen how to write down the unrestricted (large) model and the restricted (smaller) model and test whether the restrictions are "true" or not, via an F-test. The construction of the F-test requires the estimation of both models. There is an alternative test, known as Wald test, which allows to test for multiple linear restrictions via the estimation of the large model only. Indeed, later in the course, we ll see other advantages (in terms of exibility and robustness) of the Wald test over the F-test. Consider, y = X + u where y is n ; X is n k; is k and u is n : Specify restrictions using matrix R and vector r, in R = r where each row of R is a q k vector, where q < k denotes the number of restrictions and so r is q :. Suppose we want to test H : = vs H : 6= : equivalent to = vs 6= R = : : : ; r =. Suppose we want to test H : = 3 = ::: = k = vs H : i 6= for at least one i = ; :::; k: In this case we test 3 : : : R = ; r = 6 4 where R is (k ) k and r is (k )

2 3. Suppose we want to test H : + 3 = vs H : + 3 6= : In this case we test R = : : : ; r = 4. Suppose we want to test H : 3 4 = and = vs H : 3 4 6= and/or 6= : In this case we test R has two rows, one for =, and one for 3 4 = : : : : R = ; : : : r = Wald tests We want to test As we do not know ; we replace it with : b Intuitively, r is close to zero under the null, and far away from zero under the alternative. Now, assume that A.MLR-A.MLR6 hold. (recall, that A.MLR6 requires ujx ' N(; I n u)): We know that, ^ = + (X X) X u and so R ^ = R (X X) X u; and regardless which hypothesis is true, E jx = R h var i R jx = E R ^ R ^ jx = RE ^ ^ jx R = ur (X X) R and so rjx ' N R r; ur (X X) R Thus under the null, Using the result that if rjx ' N ; R (X X) R Y N k [; ]

3 then: it follows that under the null, = (Y ) (Y ) (k) ; r h ur (X X) R i r (q) where q, the number of restrictions, is the row dimension of R. The problem is that we do not know u and we need to replace it with its estimator b u = u u=(n k): De ne the Wald statistic as: W = r hb ur (X X) R i r For n large, b u is very close to u; and so for n large, we (do not) reject H, at a 5% signi cance level, if W is (smaller) larger than the 95% critical value of a (q) : For small n; instead W=q is distributed as F (q; n k): In fact as n ; qf (g; n k) approaches a (q): LM tests: testing based on the restricted regression We have seen that the F test required estimation of both the unrestricted and restricted model, while the Wald test requires only the estimation of the unrestricted model. Finally, the LM (Lagrange Multiplier) test requires only the estimation of the restricted model. Consider the unrestricted model: y i = + x ;i + 3 x 3;i + 4 x 4;i + 5 x 5;i + u i and consider the restricted model y i = + x ;i + 5 x 5;i + u i We want to test H : 3 = 4 = versus H : 3 6= and/or 4 6= : Estimate the restricted model, take the residuals bu i = y i b b x ;i b 5 x 5;i : Now, run a OLS regression with bu i as a dependent variable and x 3;i and x 4;i as regressors. Compute the R from that regression. Under the null, and as n ; nr is distributed as a () : Intuitively, under the null, x 4;i and x 5;i do not explain y i ; thus we expect an R very close to zero. 3

4 Large Sample Properties of OLS So far we have considered properties of OLS which hold for any sample size n; for n > k: For example, under A.MLR-A.MLR5 b is BLUE, i.e. best unbiased estimator, this holds for any n > k: Also, under A.MLR6, ujx ' N(; I n u)) we have seen that t-statistics have exactly a Student-t distribution with n k degrees of freedom, F-statistics have exactly a Fisher-F distribution with g and n k degrees of freedom, where g denotes the number of restrictions. However, A.MLR6 is quite strong, often the error has a distribution di erent from the normal. Basically, we want to be able to do valid inference even when A.MLR6 does not hold. This is possible, as n gets large. How large is large? It depends on the problems, as for OLS properties, say that n > is reasonably large. We want to show that (i) b is consistent for and (ii) n = b is asymptotically normal. From (i) and (ii), we ll be able to show that t-statistics, under the null, have a standard normal distribution as n gets large, and that F-statistics (multiplied for the degree of freedom at the numerator), under the null, have a chi-squared limiting distribution. Therefore, when n is large, can perform hypothesis tests even without assuming that the error has a normal distribution. Consistency Let W n be an estimator of a parameter ; based on a sample (Y ; Y ; :::; Y n ): We say that W n is consistent for ; if for any " > (" small), Pr (jw n j > ") as n () that is as n the probability that W n and are far away for more than " is going to zero. Otherwise, W n is inconsistent for : When () holds, we also say that is the probability limit (plim) of W n ; or p limw n = Properties of plim. Suppose that p limt n = and p limu n = : We have: (P) p lim (T n + U n ) = + ; i.e. the plim of the sum is the sum of the plims. (P) p lim (T n U n ) = ; i.e. the plim of the product is the product of the plims. (P3) p lim (T n =U n ) = =; provided 6= ; i.e. the plim of the ratio is the ratio of the plims. (P4) for any continuous function f; p limf(t n ) = fp lim(t n ) = f() How can we check that an estimator is consistent? Typically, estimators are function of sample means, and then consistency is checked via the Law of Large Numbers. 4

5 Law of Large Numbers Let (Y ; Y ; :::; Y n ) be identically and independently (iid) distributed, with mean Y. Then, for " > ; Pr n Y i Y > " as n or p limn P n Y i = Y : Thus, for the law of large numbers, the sample mean is a consistent estimator of the mean. Asymptotic Normality Let fz n ; n = ; ; :::g be a sequence of random variables. We say that Z n is asymptotically standard normal, if for any number z; Pr (Z n < z) (z) for n ; where (z) is the CDF (cumulative distribution function) of a standard normal. In other words, Z n is asymptotically normal if its CDF converges to that of a standard normal as n : How can we check whether a sequence of random variables is asymptotically normal? Via the Central Limit Theorem. Central Limit Theorem Let (Y ; Y ; :::; Y n ) be identically and independently (iid) distributed, with mean Y and variance Y : Then, Pr n = n = Y i Y Y Y i Y Y IMPORTANT: Suppose that b Y n = Y i b Y Y is asymptotically normal < z = (z) for n is a consistent estimator of Y : Then, is asymptotically normal In other words, if we use a consistent estimator of the standard deviation, instead of the standard deviation itself, Central Limit Theory still applies. Consistency of OLS Let ^ = (X X) X y and let A.ML (linearity), A.MLR ((y i ; X i ) identically and independently distributed, A.MLR4 (no perfect collinearity), and replace A.MLR3 (E(ujX) =E(u) = ) with A.MLR3 : E(u) = and E (X u) = (i.e. u is uncorrelated with X): Note that A.MLR3 implies A.MLR3 but not the other way round. Result LS-OLS-: Let A.MLR, A.MLR, A.MLR3, A.MLR4 hold. Then, p lim b = ; 5

6 i.e. b is consistent for : Note that in nite sample b may be biased, but as n ; b gets closer and closer to : Sketch of Proof: ^ = (X X=n) X u=n By Properties P-P4 of the plim, p lim ^ = (p lim (X X=n)) p lim (X u=n) Given A.MLR, by the law of large number p lim (X u=n) = Cov(X u) and Cov(X u) = by A.MLR3. Computing Inconsistency of OLS We now see that in the case of omitted relevant variable, OLS is not only biased but also inconsistent. Back to our old example. True model y i = + x ;i + 3 x 3;i + u i () with E(u i ) = : Cov(u i x i ) = ; x i = (x ;i ; x 3;i ): We estimate: y i = + x ;i + e i (3) Note that, e i = u i + 3 x 3;i : Now, if x ;i is correlated with x 3;i then E(e i jx 3;i ) 6= E(e i ) and is not zero. Thus, b is biased. b = Now, by the law of large number P n x ;i b x yi b y P n x ;i b x = + 3 n P n x ;i b x x3;i b x3 n P n x ;i b x + n P n x ;i b x ui n P n x ;i b x p lim n n X = Cov(x ; x 3 ) x ;i b x x3;i b x3 p lim n n X = V ar(x ) x ;i b x 6

7 p lim n n X = Cov(x ; u) = x ;i b x ui p lim b = + 3 Cov(x ; x 3 ) V ar(x ) 7

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Asymptotics Asymptotics Multiple Linear Regression: Assumptions Assumption MLR. (Linearity in parameters) Assumption MLR. (Random Sampling from the population) We have a random

More information

Econometrics Midterm Examination Answers

Econometrics Midterm Examination Answers Econometrics Midterm Examination Answers March 4, 204. Question (35 points) Answer the following short questions. (i) De ne what is an unbiased estimator. Show that X is an unbiased estimator for E(X i

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

Econometrics Multiple Regression Analysis: Heteroskedasticity

Econometrics Multiple Regression Analysis: Heteroskedasticity Econometrics Multiple Regression Analysis: João Valle e Azevedo Faculdade de Economia Universidade Nova de Lisboa Spring Semester João Valle e Azevedo (FEUNL) Econometrics Lisbon, April 2011 1 / 19 Properties

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = 0 + 1 x 1 + x +... k x k + u 6. Heteroskedasticity What is Heteroskedasticity?! Recall the assumption of homoskedasticity implied that conditional on the explanatory variables,

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

1. The Multivariate Classical Linear Regression Model

1. The Multivariate Classical Linear Regression Model Business School, Brunel University MSc. EC550/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 08956584) Lecture Notes 5. The

More information

x i = 1 yi 2 = 55 with N = 30. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

x i = 1 yi 2 = 55 with N = 30. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations. Exercises for the course of Econometrics Introduction 1. () A researcher is using data for a sample of 30 observations to investigate the relationship between some dependent variable y i and independent

More information

ECONOMET RICS P RELIM EXAM August 19, 2014 Department of Economics, Michigan State University

ECONOMET RICS P RELIM EXAM August 19, 2014 Department of Economics, Michigan State University ECONOMET RICS P RELIM EXAM August 19, 2014 Department of Economics, Michigan State University Instructions: Answer all ve (5) questions. Be sure to show your work or provide su cient justi cation for your

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

Econometrics. Week 8. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 8. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 8 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 25 Recommended Reading For the today Instrumental Variables Estimation and Two Stage

More information

Simple Linear Regression: The Model

Simple Linear Regression: The Model Simple Linear Regression: The Model task: quantifying the effect of change X in X on Y, with some constant β 1 : Y = β 1 X, linear relationship between X and Y, however, relationship subject to a random

More information

ECON Introductory Econometrics. Lecture 16: Instrumental variables

ECON Introductory Econometrics. Lecture 16: Instrumental variables ECON4150 - Introductory Econometrics Lecture 16: Instrumental variables Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 12 Lecture outline 2 OLS assumptions and when they are violated Instrumental

More information

Chapter 1. GMM: Basic Concepts

Chapter 1. GMM: Basic Concepts Chapter 1. GMM: Basic Concepts Contents 1 Motivating Examples 1 1.1 Instrumental variable estimator....................... 1 1.2 Estimating parameters in monetary policy rules.............. 2 1.3 Estimating

More information

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity R.G. Pierse 1 Omitted Variables Suppose that the true model is Y i β 1 + β X i + β 3 X 3i + u i, i 1,, n (1.1) where β 3 0 but that the

More information

Heteroskedasticity and Autocorrelation

Heteroskedasticity and Autocorrelation Lesson 7 Heteroskedasticity and Autocorrelation Pilar González and Susan Orbe Dpt. Applied Economics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 7. Heteroskedasticity

More information

Linear Regression. y» F; Ey = + x Vary = ¾ 2. ) y = + x + u. Eu = 0 Varu = ¾ 2 Exu = 0:

Linear Regression. y» F; Ey = + x Vary = ¾ 2. ) y = + x + u. Eu = 0 Varu = ¾ 2 Exu = 0: Linear Regression 1 Single Explanatory Variable Assume (y is not necessarily normal) where Examples: y» F; Ey = + x Vary = ¾ 2 ) y = + x + u Eu = 0 Varu = ¾ 2 Exu = 0: 1. School performance as a function

More information

Least Squares Estimation-Finite-Sample Properties

Least Squares Estimation-Finite-Sample Properties Least Squares Estimation-Finite-Sample Properties Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Finite-Sample 1 / 29 Terminology and Assumptions 1 Terminology and Assumptions

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Spring 2013 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Spring 2013 Instructor: Victor Aguirregabiria ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Spring 2013 Instructor: Victor Aguirregabiria SOLUTION TO FINAL EXAM Friday, April 12, 2013. From 9:00-12:00 (3 hours) INSTRUCTIONS:

More information

Motivation for multiple regression

Motivation for multiple regression Motivation for multiple regression 1. Simple regression puts all factors other than X in u, and treats them as unobserved. Effectively the simple regression does not account for other factors. 2. The slope

More information

Maximum Likelihood (ML) Estimation

Maximum Likelihood (ML) Estimation Econometrics 2 Fall 2004 Maximum Likelihood (ML) Estimation Heino Bohn Nielsen 1of32 Outline of the Lecture (1) Introduction. (2) ML estimation defined. (3) ExampleI:Binomialtrials. (4) Example II: Linear

More information

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE 1. You have data on years of work experience, EXPER, its square, EXPER, years of education, EDUC, and the log of hourly wages, LWAGE You estimate the following regressions: (1) LWAGE =.00 + 0.05*EDUC +

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna November 23, 2013 Outline Introduction

More information

Economics 241B Estimation with Instruments

Economics 241B Estimation with Instruments Economics 241B Estimation with Instruments Measurement Error Measurement error is de ned as the error resulting from the measurement of a variable. At some level, every variable is measured with error.

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

ECONOMETRICS FIELD EXAM Michigan State University May 9, 2008

ECONOMETRICS FIELD EXAM Michigan State University May 9, 2008 ECONOMETRICS FIELD EXAM Michigan State University May 9, 2008 Instructions: Answer all four (4) questions. Point totals for each question are given in parenthesis; there are 00 points possible. Within

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

Spatial Regression. 3. Review - OLS and 2SLS. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 3. Review - OLS and 2SLS. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 3. Review - OLS and 2SLS Luc Anselin http://spatial.uchicago.edu OLS estimation (recap) non-spatial regression diagnostics endogeneity - IV and 2SLS OLS Estimation (recap) Linear Regression

More information

ECONOMET RICS P RELIM EXAM August 24, 2010 Department of Economics, Michigan State University

ECONOMET RICS P RELIM EXAM August 24, 2010 Department of Economics, Michigan State University ECONOMET RICS P RELIM EXAM August 24, 2010 Department of Economics, Michigan State University Instructions: Answer all four (4) questions. Be sure to show your work or provide su cient justi cation for

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators Thilo Klein University of Cambridge Judge Business School Session 4: Linear regression,

More information

Additional Topics on Linear Regression

Additional Topics on Linear Regression Additional Topics on Linear Regression Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Additional Topics 1 / 49 1 Tests for Functional Form Misspecification 2 Nonlinear

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Econ 510 B. Brown Spring 2014 Final Exam Answers

Econ 510 B. Brown Spring 2014 Final Exam Answers Econ 510 B. Brown Spring 2014 Final Exam Answers Answer five of the following questions. You must answer question 7. The question are weighted equally. You have 2.5 hours. You may use a calculator. Brevity

More information

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions Journal of Modern Applied Statistical Methods Volume 8 Issue 1 Article 13 5-1-2009 Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error

More information

Econometrics II - EXAM Answer each question in separate sheets in three hours

Econometrics II - EXAM Answer each question in separate sheets in three hours Econometrics II - EXAM Answer each question in separate sheets in three hours. Let u and u be jointly Gaussian and independent of z in all the equations. a Investigate the identification of the following

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

Introductory Econometrics

Introductory Econometrics Introductory Econometrics Violation of basic assumptions Heteroskedasticity Barbara Pertold-Gebicka CERGE-EI 16 November 010 OLS assumptions 1. Disturbances are random variables drawn from a normal distribution.

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Econometrics Master in Business and Quantitative Methods

Econometrics Master in Business and Quantitative Methods Econometrics Master in Business and Quantitative Methods Helena Veiga Universidad Carlos III de Madrid Models with discrete dependent variables and applications of panel data methods in all fields of economics

More information

Two-Variable Regression Model: The Problem of Estimation

Two-Variable Regression Model: The Problem of Estimation Two-Variable Regression Model: The Problem of Estimation Introducing the Ordinary Least Squares Estimator Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Two-Variable

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

1 Motivation for Instrumental Variable (IV) Regression

1 Motivation for Instrumental Variable (IV) Regression ECON 370: IV & 2SLS 1 Instrumental Variables Estimation and Two Stage Least Squares Econometric Methods, ECON 370 Let s get back to the thiking in terms of cross sectional (or pooled cross sectional) data

More information

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 4 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 23 Recommended Reading For the today Serial correlation and heteroskedasticity in

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

Quantitative Techniques - Lecture 8: Estimation

Quantitative Techniques - Lecture 8: Estimation Quantitative Techniques - Lecture 8: Estimation Key words: Estimation, hypothesis testing, bias, e ciency, least squares Hypothesis testing when the population variance is not known roperties of estimates

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Christopher Ting Christopher Ting : christophert@smu.edu.sg : 688 0364 : LKCSB 5036 January 7, 017 Web Site: http://www.mysmu.edu/faculty/christophert/ Christopher Ting QF 30 Week

More information

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

More information

Models, Testing, and Correction of Heteroskedasticity. James L. Powell Department of Economics University of California, Berkeley

Models, Testing, and Correction of Heteroskedasticity. James L. Powell Department of Economics University of California, Berkeley Models, Testing, and Correction of Heteroskedasticity James L. Powell Department of Economics University of California, Berkeley Aitken s GLS and Weighted LS The Generalized Classical Regression Model

More information

Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals

Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals (SW Chapter 5) Outline. The standard error of ˆ. Hypothesis tests concerning β 3. Confidence intervals for β 4. Regression

More information

Inference about Clustering and Parametric. Assumptions in Covariance Matrix Estimation

Inference about Clustering and Parametric. Assumptions in Covariance Matrix Estimation Inference about Clustering and Parametric Assumptions in Covariance Matrix Estimation Mikko Packalen y Tony Wirjanto z 26 November 2010 Abstract Selecting an estimator for the variance covariance matrix

More information

Applied Statistics and Econometrics. Giuseppe Ragusa Lecture 15: Instrumental Variables

Applied Statistics and Econometrics. Giuseppe Ragusa Lecture 15: Instrumental Variables Applied Statistics and Econometrics Giuseppe Ragusa Lecture 15: Instrumental Variables Outline Introduction Endogeneity and Exogeneity Valid Instruments TSLS Testing Validity 2 Instrumental Variables Regression

More information

Econometrics Homework 1

Econometrics Homework 1 Econometrics Homework Due Date: March, 24. by This problem set includes questions for Lecture -4 covered before midterm exam. Question Let z be a random column vector of size 3 : z = @ (a) Write out z

More information

Introduction to Econometrics. Multiple Regression (2016/2017)

Introduction to Econometrics. Multiple Regression (2016/2017) Introduction to Econometrics STAT-S-301 Multiple Regression (016/017) Lecturer: Yves Dominicy Teaching Assistant: Elise Petit 1 OLS estimate of the TS/STR relation: OLS estimate of the Test Score/STR relation:

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Econometrics Lecture 1 Introduction and Review on Statistics

Econometrics Lecture 1 Introduction and Review on Statistics Econometrics Lecture 1 Introduction and Review on Statistics Chau, Tak Wai Shanghai University of Finance and Economics Spring 2014 1 / 69 Introduction This course is about Econometrics. Metrics means

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College University at Albany PAD 705 Handout: Suggested Review Problems from Pindyck & Rubinfeld Original prepared by Professor Suzanne Cooper John F. Kennedy School of Government, Harvard

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0 Introduction to Econometrics Midterm April 26, 2011 Name Student ID MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (5,000 credit for each correct

More information

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity Outline: Further Issues in Using OLS with Time Series Data 13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process I. Stationary and Weakly Dependent Time Series III. Highly Persistent

More information

Econometrics II. Nonstandard Standard Error Issues: A Guide for the. Practitioner

Econometrics II. Nonstandard Standard Error Issues: A Guide for the. Practitioner Econometrics II Nonstandard Standard Error Issues: A Guide for the Practitioner Måns Söderbom 10 May 2011 Department of Economics, University of Gothenburg. Email: mans.soderbom@economics.gu.se. Web: www.economics.gu.se/soderbom,

More information

The Statistical Property of Ordinary Least Squares

The Statistical Property of Ordinary Least Squares The Statistical Property of Ordinary Least Squares The linear equation, on which we apply the OLS is y t = X t β + u t Then, as we have derived, the OLS estimator is ˆβ = [ X T X] 1 X T y Then, substituting

More information

Introduction to Econometrics. Heteroskedasticity

Introduction to Econometrics. Heteroskedasticity Introduction to Econometrics Introduction Heteroskedasticity When the variance of the errors changes across segments of the population, where the segments are determined by different values for the explanatory

More information

Maximum-Likelihood Estimation: Basic Ideas

Maximum-Likelihood Estimation: Basic Ideas Sociology 740 John Fox Lecture Notes Maximum-Likelihood Estimation: Basic Ideas Copyright 2014 by John Fox Maximum-Likelihood Estimation: Basic Ideas 1 I The method of maximum likelihood provides estimators

More information

Introduction to Econometrics. Multiple Regression

Introduction to Econometrics. Multiple Regression Introduction to Econometrics The statistical analysis of economic (and related) data STATS301 Multiple Regression Titulaire: Christopher Bruffaerts Assistant: Lorenzo Ricci 1 OLS estimate of the TS/STR

More information

10 Panel Data. Andrius Buteikis,

10 Panel Data. Andrius Buteikis, 10 Panel Data Andrius Buteikis, andrius.buteikis@mif.vu.lt http://web.vu.lt/mif/a.buteikis/ Introduction Panel data combines cross-sectional and time series data: the same individuals (persons, firms,

More information

Econometrics - 30C00200

Econometrics - 30C00200 Econometrics - 30C00200 Lecture 11: Heteroskedasticity Antti Saastamoinen VATT Institute for Economic Research Fall 2015 30C00200 Lecture 11: Heteroskedasticity 12.10.2015 Aalto University School of Business

More information

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as:

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as: 1 Joint hypotheses The null and alternative hypotheses can usually be interpreted as a restricted model ( ) and an model ( ). In our example: Note that if the model fits significantly better than the restricted

More information

(c) i) In ation (INFL) is regressed on the unemployment rate (UNR):

(c) i) In ation (INFL) is regressed on the unemployment rate (UNR): BRUNEL UNIVERSITY Master of Science Degree examination Test Exam Paper 005-006 EC500: Modelling Financial Decisions and Markets EC5030: Introduction to Quantitative methods Model Answers. COMPULSORY (a)

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information

Hypothesis Tests and Confidence Intervals in Multiple Regression

Hypothesis Tests and Confidence Intervals in Multiple Regression Hypothesis Tests and Confidence Intervals in Multiple Regression (SW Chapter 7) Outline 1. Hypothesis tests and confidence intervals for one coefficient. Joint hypothesis tests on multiple coefficients

More information

Topic 7: Heteroskedasticity

Topic 7: Heteroskedasticity Topic 7: Heteroskedasticity Advanced Econometrics (I Dong Chen School of Economics, Peking University Introduction If the disturbance variance is not constant across observations, the regression is heteroskedastic

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

1 Correlation between an independent variable and the error

1 Correlation between an independent variable and the error Chapter 7 outline, Econometrics Instrumental variables and model estimation 1 Correlation between an independent variable and the error Recall that one of the assumptions that we make when proving the

More information

Topic 3: Inference and Prediction

Topic 3: Inference and Prediction Topic 3: Inference and Prediction We ll be concerned here with testing more general hypotheses than those seen to date. Also concerned with constructing interval predictions from our regression model.

More information

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2.

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2. Updated: November 17, 2011 Lecturer: Thilo Klein Contact: tk375@cam.ac.uk Contest Quiz 3 Question Sheet In this quiz we will review concepts of linear regression covered in lecture 2. NOTE: Please round

More information

Spatial Regression. 9. Specification Tests (1) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 9. Specification Tests (1) Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 9. Specification Tests (1) Luc Anselin http://spatial.uchicago.edu 1 basic concepts types of tests Moran s I classic ML-based tests LM tests 2 Basic Concepts 3 The Logic of Specification

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Econometrics. Week 6. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 6. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 6 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 21 Recommended Reading For the today Advanced Panel Data Methods. Chapter 14 (pp.

More information

Evaluating Value-at-Risk models via Quantile Regression

Evaluating Value-at-Risk models via Quantile Regression Evaluating Value-at-Risk models via Quantile Regression Luiz Renato Lima (University of Tennessee, Knoxville) Wagner Gaglianone, Oliver Linton, Daniel Smith. NASM-2009 05/31/2009 Motivation Recent nancial

More information

The returns to schooling, ability bias, and regression

The returns to schooling, ability bias, and regression The returns to schooling, ability bias, and regression Jörn-Steffen Pischke LSE October 4, 2016 Pischke (LSE) Griliches 1977 October 4, 2016 1 / 44 Counterfactual outcomes Scholing for individual i is

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models Journal of Finance and Investment Analysis, vol.1, no.1, 2012, 55-67 ISSN: 2241-0988 (print version), 2241-0996 (online) International Scientific Press, 2012 A Non-Parametric Approach of Heteroskedasticity

More information

AUTOCORRELATION. Phung Thanh Binh

AUTOCORRELATION. Phung Thanh Binh AUTOCORRELATION Phung Thanh Binh OUTLINE Time series Gauss-Markov conditions The nature of autocorrelation Causes of autocorrelation Consequences of autocorrelation Detecting autocorrelation Remedial measures

More information

Linear Regression with Multiple Regressors

Linear Regression with Multiple Regressors Linear Regression with Multiple Regressors (SW Chapter 6) Outline 1. Omitted variable bias 2. Causality and regression analysis 3. Multiple regression and OLS 4. Measures of fit 5. Sampling distribution

More information

ECON Introductory Econometrics. Lecture 7: OLS with Multiple Regressors Hypotheses tests

ECON Introductory Econometrics. Lecture 7: OLS with Multiple Regressors Hypotheses tests ECON4150 - Introductory Econometrics Lecture 7: OLS with Multiple Regressors Hypotheses tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 7 Lecture outline 2 Hypothesis test for single

More information

Heteroskedasticity (Section )

Heteroskedasticity (Section ) Heteroskedasticity (Section 8.1-8.4) Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Heteroskedasticity 1 / 44 Consequences of Heteroskedasticity for OLS Consequences

More information

ECON 4551 Econometrics II Memorial University of Newfoundland. Panel Data Models. Adapted from Vera Tabakova s notes

ECON 4551 Econometrics II Memorial University of Newfoundland. Panel Data Models. Adapted from Vera Tabakova s notes ECON 4551 Econometrics II Memorial University of Newfoundland Panel Data Models Adapted from Vera Tabakova s notes 15.1 Grunfeld s Investment Data 15.2 Sets of Regression Equations 15.3 Seemingly Unrelated

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information