Compositeness for the N* and Δ* resonances from the πn scattering amplitude

Size: px
Start display at page:

Download "Compositeness for the N* and Δ* resonances from the πn scattering amplitude"

Transcription

1 Compositeness for the N* and Δ* resonances from the πn scattering amplitude [1] T. S., Phys. Rev. C95 (2017) [2] T. S., in preparation. Takayasu SEKIHARA (Japan Atomic Energy Agency) 1. Introduction 2. Two-body wave functions from scattering amplitudes 3. The N* compositeness program 4. Summary [3] T. S., T. Hyodo and D. Jido, PTEP D04. [4] T. S., T. Arai, J. Yamagata-Sekihara and S. Yasui, Phys. Rev. C93 (2016) Strangeness and charm in hadrons and dense YITP (May 15-26, 2017)

2 1. Introduction ++ What we have done is ++ For a given interaction (potential) which generates a bound state, we can calculate the wave function of the bound state with the Lippmann-Schwinger Eq. (off-shell scattering amplitude for asymptotic two-body states). --- Not with the Schrödinger Eq. in a usual manner. Furthermore, the wave function from the scattering amplitude is automatically scaled and shows the correct normalization. --- In contrast to the Schrödinger Eq. case, we need not normalize the wave function by hand! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 2

3 1. Introduction ++ What we have done is ++ One can calculate the wave function for a given interaction. --- Seems to be trivial...? Energy dependent interaction. --- Energy dependence of the interaction can be interpreted as a missing-channel contribution. e.g. --> Then the norm of the bound state WF would deviate from unity. Non-relativistic / semi-relativistic kinematics. Stable bound states / unstable resonances. Coupled-channels effect.... These points are clearly explained with the WF from the amplitude. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 3 or

4 2. Wave functions from amplitudes ++ How to calculate the wave function ++ There are several approaches to calculate the wave function. Ex.) A bound state in a NR single-channel problem. Usual approach: Solve the Schrödinger equation. --- Wave function in coordinate / momentum space: --- q > is an eigenstate of free Hamiltonian H0: --> After solving the Schrödinger equation, we have to normalize the wave function by hand. or <-- We require! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 4

5 2. Wave functions from amplitudes ++ How to calculate the wave function ++ There are several approaches to calculate the wave function. Ex.) A bound state in a NR single-channel problem. Our approach: Solve the Lippmann-Schwinger equation at the pole position of the bound state. --- Near the resonance pole position Epole, amplitude is dominated by the pole term in the expansion by the eigenstates of H as --- The residue of the amplitude at the pole position has information on the wave function! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 5

6 2. Wave functions from amplitudes ++ How to calculate the wave function ++ There are several approaches to calculate the wave function. Ex.) The A idea bound of the state renormalization in a NR single-channel for: problem. Our approach: Solve the Lippmann-Schwinger --- equation We (re-)normalize at the pole position the total of wave the bound function state. as cf. --- Near the resonance pole position Epole, amplitude is dominated by the pole term in the expansion by the eigenstates of H as --- The residue of the amplitude at the pole position has information on the wave function! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 6

7 2. Wave functions from amplitudes ++ How to calculate the wave function ++ There are several approaches to calculate the wave function. Ex.) A bound state in a NR single-channel problem. Our approach: Solve the Lippmann-Schwinger equation at the pole position of the bound state. --- The wave function can be extracted from the residue of the amplitude at the pole position: <-- Off-shell Amp.! --> Because the scattering amplitude cannot be freely scaled (Lippmann-Schwinger Eq. is inhomogeneous!), the WF from the residue of the amplitude is automatically scaled as well! If purely molecule --> <-- We obtain! E. Hernandez and A. Mondragon, Phys. Rev. C29 (1984) 722. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 7

8 2. Wave functions from amplitudes ++ Example 1: Stable bound state ++ A Λ hyperon in A ~ 40 nucleus. --> Calculate wave functions in 2 ways. 1. Solve Schrödinger equation: --> Normalize ψ by hand! Woods-Saxon potential 2. Solve Lippmann-Schwinger equation: --> Extract WF from the residue: --> --- Without normalizing by hand! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 8

9 2. Wave functions from amplitudes ++ Example 1: Stable bound state ++ A Λ hyperon in A ~ 40 nucleus. --> Calculate wave functions in 2 ways. 1. Solve Schrödinger equation: --> Normalize ψ by hand! Woods-Saxon potential 2. Solve Lippmann-Schwinger equation: --> Extract WF from the residue: --> --- Without normalizing by hand! In 1st way: Points. 2nd way: Lines. Exact coincidence! --- We obtain automatically normalized WF from the Amp.! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 9

10 2. Wave functions from amplitudes ++ Example 1: Stable bound state ++ We define the compositeness X as the norm of the wave function: --- In the following, we calculate X from the scattering amplitude. The compositeness is unity for energy independent interaction. 0s, from Scatt. Amp. X = 1 (v1 = 0) Hernandez and Mondragon (1984). However, if the interaction depends on the energy, the compositeness from the scattering amplitude deviates from unity. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 10

11 2. Wave functions from amplitudes ++ Example 1: Stable bound state ++ We define the compositeness X as the norm of the wave function: --- In the following, we calculate X from the scattering amplitude. The compositeness is unity for energy independent interaction. 0s, from Scatt. Amp. X = 1 (v1 = 0) Lines: X from Amp. Points: X = X V/ E Hernandez and Mondragon (1984). Consistent with the norm with energy-dep. interaction. Formanek, Lombard and Mares (2004); Miyahara and Hyodo (2016). Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 11

12 2. Wave functions from amplitudes ++ Example 1: Stable bound state ++ We define the compositeness X as the norm of the wave function: e.g. --- In the following, we calculate X from the scattering amplitude. The compositeness is unity for energy independent interaction. 0s, from Scatt. Amp. X = 1 (v1 = 0) Hernandez and Mondragon (1984). Deviation of compositeness from unity can be interpreted as a missing-channel part. T. S., Hyodo and Jido, PTEP D04. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 12

13 2. Wave functions from amplitudes ++ Example 2: Unstable resonance state ++ Unstable resonance in KN-πΣ system. --> Calculate wave functions in 2 ways. 1. Solve Schrödinger equation: --> Normalize ψj by hand! Gaussian potential Coupling strength is controlled by x. 2. Solve Lippmann-Schwinger equation: Aoyama et al. (2006). --> Extract WF from the residue: --> --- Without normalizing by hand! Complex scaling method. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 13

14 2. Wave functions from amplitudes ++ Example 2: Unstable resonance state ++ Unstable resonance in KN-πΣ system. --> Calculate wave functions in 2 ways. 1. Solve Schrödinger equation: --> Normalize ψj by hand! Gaussian potential Coupling strength is controlled by x. 2. Solve Lippmann-Schwinger equation: θ = 20 o --> Extract WF from the residue: --> --- Without normalizing by hand! In 1st way: Points. 2nd way: Lines. Coincidence again! --- Our method is valid even for resonances! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 14

15 2. Wave functions from amplitudes ++ Example 2: Unstable resonance state ++ We define the compositeness X as the norm of the wave function: X Z d 3 q (2 ) 3 h qihq i = Z In the following, we calculate X from the scattering amplitude. <-- The compositeness is unity for energy independent interaction. When we consider the energy dependence of the interaction, the compositeness from the scattering amplitude deviates from unity because of missing channel contribution. --- e.g.: g0 2 V miss = E M 0 0 dq P(q) --- θ Indep.! Hernandez and Mondragon (1984). Lines: X from Amp. Points: X = X V/ E Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 15

16 2. Wave functions from amplitudes ++ Lessons from schematic models ++ For a given interaction, we can extract the two-body WF from the scattering amplitude at the pole position, both stable and unstable. Aoyama et al. (2006). T. S., Phys. Rev. C95 (2017) The WF from the scattering amplitude is automatically scaled. The compositeness (= norm of the two-body WF) is unity for a bound state in an energy independent interaction. For an energy dependent interaction, the compositeness deviates from unity, reflecting a missing channel contribution. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 16

17 3. The N* compositeness program ++ What I want to do is ++ For a given interaction, we can calculate two-body wave functions from the scattering amplitude. --- In particular, compositeness (= the norm of the wave function) is automatically normalized! Normalized! Therefore, we can investigate: Compositeness for interesting resonances from amplitudes. Experimental information on the scattering amplitudes available. Construction of detailed interactions possible. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 17

18 3. The N* compositeness program ++ Wave functions for hadrons ++ By using the two-body wave function and compositeness (norm), we can distinguish a certain configuration of hadrons in a model. Hadronic molecules as a bound state of hadrons (cf. deuteron) Ordinary hadrons In the previous studies, we have investigated: Λ(1405). Ξ(1690). N(1535) & N(1650) Evaluated X for these dynamically generated resonances. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 18

19 3. The N* compositeness program ++ Example: compositeness for Λ(1405) ++ Compositeness X for Λ(1405) in the chiral unitary approach. Amplitude taken from: Ikeda, Hyodo and Weise, Phys. Lett. B706, (2011) 63; Nucl. Phys. A881 (2012) 98.!!! Hyodo and Jido ( 12). --- Large KN component for (higher pole) Λ(1405), since XKN is almost unity with small imaginary parts. T. S., Hyodo and Jido, PTEP 2015, 063D04. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 19

20 3. The N* compositeness program ++ The N* compositeness from πn amplitude ++ Next target: Comprehensive analysis of the N* and Δ* resonances from the precise on-shell πn amplitude! --- The precise on-shell πn scattering amplitude is available. Kamano et al., Phys. Rev. C88 (2014) On-shell scattering amplitude on the real energy E: --- Observable! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 20

21 3. The N* compositeness program ++ Many N* resonances ++ Many N* and Δ* resonances from the πn scattering amplitude. Suzuki et al., Phys. Rev. Lett. 104 (2010) There are several interesting N* resonances, such as: PDG. We can now investigate their internal structure in terms of the mesonbaryon component. --- N(1440) is a σn bound state? cf. Jülich group. Rönchen et al. (2013);... Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 21

22 3. The N* compositeness program ++ From on-shell to off-shell amplitude ++ By using the on-shell πn amplitude (<-- observable), I construct the off-shell amplitude, where the N* wave functions live. I take into account bare N* states and appropriate diagrams for the meson-baryon interaction. How much the physical N* are dressed? Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 22

23 3. The N* compositeness program ++ Numerical results ++ Numerical results Sorry, but now on going! If you have your own πn amplitudes as solutions of the Lippmann- Schwinger Eq., you can calculate the N* compositeness in the manner presented here. --- Why don t you join me? Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 23

24 We can extract the two-body WF from the residue of the scattering amplitude at the pole position, both stable and unstable states. Scattering amplitude: 4. Summary The WF from the scattering amplitude is automatically scaled. The compositeness (= norm of the two-body WF) is unity for a bound state in an energy independent interaction. For an energy dependent interaction, the compositeness deviates from unity, reflecting a missing channel contribution. From the precise πn amplitude with appropriate models, we can evaluate the compositeness of the N* and Δ* resonances. In particular, how is the structure of the N(1440) resonance? Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 24

25 Thank you very much for your kind attention! Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 25

26 Appendix Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 26

27 Appendix ++ Compositeness and model (in-)dependence ++ General case: Compositeness are model dependent quantity. Special case: Compositeness for near-threshold poles. --- Compositeness can be expressed with threshold parameters such as scattering length and effective range. Deuteron. observables Weinberg ( 65). f0(980) and a0(980). Baru et al. ( 04), Kamiya-Hyodo, Phys. Rev. C93 (2016) Λ(1405). Not observables Kamiya-Hyodo, Phys. Rev. C93 (2016) Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 27

28 Appendix ++ Compositeness for N(1535) and N(1650) ++ Compositeness X for N(1535) & N(1650) in chiral unitary approach. T. S. T. Arai, J. Yamagata-Sekihara and S. Yasui, Phys. Rev. C93 (2016) For both N* resonances, the missing-channel part Z is dominant. --> N(1535) and N(1650) have large components originating from contributions other than πn, ηn, KΛ, and KΣ. Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 28

29 Appendix ++ Compositeness for Δ(1232) ++ Compositeness X for Δ(1232) in chiral unitary approach.!? The πn compositeness XπN takes large real part! But non-negligible imaginary part as well. --> Large πn component in the Δ(1232) resonance!? Strangeness and charm in hadrons and dense YITP (May 15-26, 2017) 29

Compositeness of Dynamically Generated Resonances

Compositeness of Dynamically Generated Resonances Compositeness of Dynamically Generated Resonances Takayasu SEKIHARA (Japan Atomic Energy Agency) [1] T. S., Phys. Rev. C95 (2017) 025206. [2] T. S., T. Hyodo and D. Jido, PTEP 2015 063D04. [3] T. S., T.

More information

Wave functions and compositeness for hadron resonances from the scattering amplitude

Wave functions and compositeness for hadron resonances from the scattering amplitude Wave functions and compositeness for hadron resonances from the scattering amplitude Takayasu SEKIHARA (RCNP, Osaka Univ.) 1. Introduction 2. Two-body wave functions and compositeness 3. Applications:

More information

Compositeness of the Δ(1232) resonance in πn scatterings

Compositeness of the Δ(1232) resonance in πn scatterings Compositeness of the Δ(1232) resonance in πn scatterings Takayasu SEKIHARA (RCNP, Osaka Univ.) in collaboration with Takashi ARAI (KEK), Junko YAMAGATA-SEKIHARA (Oshima National Coll. of Maritime Tech.)

More information

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2015, May 26th 1 Contents Contents Introduction: compositeness of hadrons Near-threshold

More information

Structure of near-threshold s-wave resonances

Structure of near-threshold s-wave resonances Structure of near-threshold s-wave resonances Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto 203, Sep. 0th Introduction Structure of hadron excited states Various excitations of baryons M

More information

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity Takayasu SEKIHARA (RCNP, Osaka Univ.) in collaboration with Shunzo KUMANO (KEK) 1. Introduction 4. Constraint

More information

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Akinobu Doté (KEK Theory Center, IPS / J-PARC branch) Takashi Inoue (ihon university) Takayuki Myo (Osaka

More information

Construction of K N potential and structure of Λ(1405) based on chiral unitary approach

Construction of K N potential and structure of Λ(1405) based on chiral unitary approach Construction of K N potential and structure of Λ(1405) based on chiral unitary approach Kenta Miyahara Kyoto Univ. Tetsuo Hyodo YITP NSTAR 2015, May Contents 1. Motivation 2. Previous work (construction

More information

Structure and compositeness of hadrons

Structure and compositeness of hadrons Structure and compositeness of hadrons Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2014, Feb. 20th 1 Contents Contents Introduction: structure of Λ(1405) - Comparison of model and

More information

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev Theoretical studies of K - pp Akinobu Doté (KEK Theory Center) 1. Introduction 2. Recent results of various studies of K pp DHW (Variational with Chiral-based) vs AY (Variational with phenomenological)

More information

Satoshi Nakamura (EBAC, JLab)

Satoshi Nakamura (EBAC, JLab) Extraction of P 11 resonances from πn data and its stability (arxiv:11.583) Satoshi Nakamura (EBAC, JLab) EBAC Collaborators H. Kamano (JLab) T. S.-H. Lee (ANL) T. Sato (Osaka U.) Introduction Extraction

More information

What we know about the Λ(1405)

What we know about the Λ(1405) What we know about the Λ(1405) Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2015, Sep. 15th 1 Contents Contents Current status of Λ(1405) and K N interaction - Recent experimental

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Structure and compositeness of hadrons

Structure and compositeness of hadrons Structure and compositeness of hadrons Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2014, Feb. 27th 1 Contents Contents Introduction: structure of Λ(1405) - Comparison of model and

More information

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2014, Nov. 11th 1 Announcement Announcement Dates: Feb - Mar 2015 (5 weeks)! Theme:

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

S-wave exotic resonances induced by chiral interaction

S-wave exotic resonances induced by chiral interaction S-wave exotic resonances induced by chiral interaction Tetsuo Hyodo a D. Jido a, and A. Hosaka b YITP, Kyoto a RCNP, Osaka b 006, Aug. rd 1 Contents Introduction Weinberg-Tomozawa interaction Unitarization

More information

Hadronic few-body systems in chiral dynamics ~ few-body systems in hadron physics ~ D. Jido (Yukawa Institute, Kyoto)

Hadronic few-body systems in chiral dynamics ~ few-body systems in hadron physics ~ D. Jido (Yukawa Institute, Kyoto) Hadronic few-body systems in chiral dynamics ~ few-body systems in hadron physics ~ D. Jido (Yukawa Institute, Kyoto) contents 1. Introduction 2. the Λ(1405) resonance 3. kaonic few-body systems 4. summary

More information

arxiv: v2 [hep-ph] 23 Feb 2016

arxiv: v2 [hep-ph] 23 Feb 2016 Compositeness of baryonic resonances: Applications to the (13), N(1535), and N(1650) resonances Takayasu Sekihara, 1, Takashi Arai, Junko Yamagata-Sekihara, 3 and Shigehiro Yasui 4 1 Research Center for

More information

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.) N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.) Mini workshop on Structure and productions of charmed baryons II KEK Tokai Campus, Tokai, Aug.

More information

Meson-baryon interactions and baryon resonances

Meson-baryon interactions and baryon resonances Meson-baryon interactions and baryon resonances Tetsuo Hyodo Tokyo Institute of Technology supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2011, June 16th 1 Contents Contents

More information

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab) Stability of P 11 Resonances Extracted from πn data [Phys. Rev. C 81, 065207 (2010)] Satoshi Nakamura (Excited Baryon Analysis Center, JLab) Collaborators H. Kamano (Osaka City U.) T. S.-H. Lee (ANL) T.

More information

Elementarity of composite systems

Elementarity of composite systems Workshop Bound states in QCD and beyond 4 th 7 th of March, 05 Schlosshotel Rheinfels, St. Goar, Germany Elementarity of composite systems Hideko Nagahiro,, Atsushi Hosaka Nara Women s University, Japan

More information

Current theoretical topics on K - pp quasi-bound state

Current theoretical topics on K - pp quasi-bound state SNP Meeting @ J-PARC August 3, 215 Current theoretical toics on K - quasi-bound state Yoshinori AKAISHI and Toshimitsu YAMAZAKI "Λ(145) Ansatz" A. Dote et al. nucl U K MeV -5 Σ+π Λ+π -2 K - + 1 2 3r fm

More information

Author(s) Jido, Daisuke; Kanada-En yo, Yoshik. Citation Hyperfine Interactions (2009), 193(

Author(s) Jido, Daisuke; Kanada-En yo, Yoshik. Citation Hyperfine Interactions (2009), 193( TitleBaryon resonances as hadronic molec Author(s) Jido, Daisuke; Kanada-En yo, Yoshik Citation Hyperfine Interactions (2009), 193( Issue Date 2009-09 URL http://hdl.handle.net/2433/109964 2009 Springer.The

More information

TitleHadronic Few-Body Systems in Chiral. Citation Few-Body Systems (2013), 54(7-10):

TitleHadronic Few-Body Systems in Chiral. Citation Few-Body Systems (2013), 54(7-10): TitleHadronic Few-Body Systems in Chiral Author(s) Jido, Daisuke Citation Few-Body Systems (2013), 54(7-10): Issue Date 2013-08 URL http://hdl.handle.net/2433/189862 The final publication is available

More information

arxiv:nucl-th/ v1 27 Nov 2002

arxiv:nucl-th/ v1 27 Nov 2002 1 arxiv:nucl-th/21185v1 27 Nov 22 Medium effects to the N(1535) resonance and η mesic nuclei D. Jido a, H. Nagahiro b and S. Hirenzaki b a Research Center for Nuclear Physics, Osaka University, Ibaraki,

More information

On the two-pole interpretation of HADES data

On the two-pole interpretation of HADES data J-PARC collaboration September 3-5, 03 On the two-pole interpretation of HADES data Yoshinori AKAISHI nucl U K MeV 0-50 Σ+ Λ+ -00 K - + p 3r fm Λ(405) E Γ K = -7 MeV = 40 MeV nucl U K MeV 0-50 Σ+ Λ+ -00

More information

Exotic baryon resonances in the chiral dynamics

Exotic baryon resonances in the chiral dynamics Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a A. Hosaka a, D. Jido b, S.I. Nam a, E. Oset c, A. Ramos d and M. J. Vicente Vacas c a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ.

More information

Dynamical coupled-channels channels study of meson production reactions from

Dynamical coupled-channels channels study of meson production reactions from Dynamical coupled-channels channels study of meson production reactions from EBAC@JLab Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010, May 31th - June 4th, 2010 Outline Motivation

More information

KbarN and KbarNN INTERACTIONS - Theory Status -

KbarN and KbarNN INTERACTIONS - Theory Status - LEANNIS Meeting Frascati, 8/9 April 21 KbarN and KbarNN INTERACTIONS - Theory Status - Wolfram Weise Low-Energy QCD with strange quarks: Chiral SU(3) Dynamics Non-perturbative (coupled-channels) approach

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

arxiv: v3 [nucl-th] 8 Jun 2018

arxiv: v3 [nucl-th] 8 Jun 2018 Single-pole Nature of the Detectable Λ(405) Khin Swe Myint, Yoshinori Akaishi, Maryam Hassanvand and Toshimitsu Yamazaki, arxiv:804.0840v3 [nucl-th] 8 Jun 08 Department of Physics, Mandalay University,

More information

arxiv: v3 [nucl-th] 19 Jul 2012

arxiv: v3 [nucl-th] 19 Jul 2012 Near-threshold scattering and properties of kaonic deuterium arxiv:1201.3173v3 [nucl-th] 19 Jul 2012 Abstract N.. Shevchenko Nuclear Physics Institute, 25068 Řež, Czech Republic We calculated the 1s level

More information

arxiv: v1 [nucl-th] 19 Feb 2018

arxiv: v1 [nucl-th] 19 Feb 2018 for the KNN bound-state search in the J-PARC E15 exeriment arxiv:1802.06781v1 [nucl-th] 19 Feb 2018 Advanced Science Research Center, Jaan Atomic Energy Agency, Shirakata, Tokai, Ibaraki, 319-1195, Jaan

More information

Radiative decays of the axial-vector mesons as dynamically generated resonances

Radiative decays of the axial-vector mesons as dynamically generated resonances New frontiers in QCD 2010 - Exotic Hadron Systems and Dense Matter - 18 February, 2010 @ Yukawa Institute for Theoretical hysics, Kyoto, JN Radiative decays of the axial-vector mesons as dynamically generated

More information

Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models

Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models J. Hrtánková, J. Mare² Nuclear Physics Institute, eº, Czech Republic 55th International Winter Meeting on Nuclear

More information

Feynman diagrams in nuclear physics at low and intermediate energies

Feynman diagrams in nuclear physics at low and intermediate energies «Избранные вопросы теоретической физики и астрофизики». Дубна: ОИЯИ, 2003. С. 99 104. Feynman diagrams in nuclear physics at low and intermediate energies L. D. Blokhintsev Skobeltsyn Institute of Nuclear

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

arxiv: v2 [nucl-th] 15 Mar 2017

arxiv: v2 [nucl-th] 15 Mar 2017 KUNS-8 YITP-1-1 Theoretical study of the Ξ(1) and Ξ(19) resonances in Ξ c π + MB decays Kenta Miyahara Department of Physics Graduate School of Science Kyoto University Kyoto -85 Japan Tetsuo Hyodo Yukawa

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

Θ + and exotic hadrons

Θ + and exotic hadrons Θ + and exotic hadrons Tetsuo Hyodo Tokyo Institute of Technology supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2011, Sep. 29th 1 Contents Contents Introduction Meson-induced

More information

Charm baryon spectroscopy from heavy quark symmetry

Charm baryon spectroscopy from heavy quark symmetry Charm baryon spectroscopy from heavy quark symmetry Phys. Rev. D91, 014031 (2015) Tokyo Institute of Technology Shigehiro YASUI Hadrons and Hadron Interaction in QCD (HHIQCD 2015)@YITP, 16 Feb. 20 Mar.

More information

Light nuclear systems with an antikaon

Light nuclear systems with an antikaon Light nuclear systems with an antikaon Part 1, Dense kaonic nuclei Revisit the study of kaonic nuclei with AMD+G-matrix+Phen. K bar N potential KEK Theory Center / IPNS Akinobu Doté Part 2, Lambda(1405)

More information

arxiv: v2 [nucl-th] 29 Sep 2016

arxiv: v2 [nucl-th] 29 Sep 2016 Determination of the 3 He threshold structure from the low energy pd 3 He reaction arxiv:1609.03399v2 [nucl-th] 29 Sep 2016 Ju-Jun Xie, 1, 2, Wei-Hong Liang, 3, Eulogio Oset, 2, 1 Pawel Moskal, 4 Magdalena

More information

arxiv: v2 [nucl-th] 6 Jul 2011

arxiv: v2 [nucl-th] 6 Jul 2011 YITP-11-66 Coupling vector and pseudoscalar mesons to study baryon resonances K.P.Khemchandani 1a, A.MartínezTorres b, H.Kaneko 1c, H.Nagahiro 1,d, anda.hosaka 1e 1 Research Center for Nuclear Physics

More information

Chiral Model in Nuclear Medium and Hypernuclear Production

Chiral Model in Nuclear Medium and Hypernuclear Production WDS'10 Proceedings of ontributed Papers, Part III, 2 6, 2010. ISBN 978-80-7378-141-5 MATFYZPRESS hiral Model in Nuclear Medium and Hypernuclear Production V. Krejčiřík harles University, Faculty of Mathematics

More information

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U Report on our extended analysis of meson production reactions (ANL-Osaka) H. Kamano, S. Nakamura,

More information

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Jiajun Wu R. Molina E. Oset B. S. Zou Outline Introduction Theory for the new bound states Width and Coupling constant

More information

Relativistic Strong Field Ionization and Compton Harmonics Generation

Relativistic Strong Field Ionization and Compton Harmonics Generation Relativistic Strong Field Ionization and Compton Harmonics Generation Farhad Faisal Fakultaet fuer Physik Universitiaet Bielefeld Germany Collaborators: G. Schlegel, U. Schwengelbeck, Sujata Bhattacharyya,

More information

Experimental Study of the Kaonic Bond State

Experimental Study of the Kaonic Bond State 2008 / 06 / 06~10 Experimental Study of the Kaonic Bond State M. Iwasaki Advanced Meson Science Lab. MESON 2008 @ CRACOW Purpose in perspective manner - to detect quark degree of freedom similar to other

More information

arxiv: v2 [hep-ph] 1 Feb 2018

arxiv: v2 [hep-ph] 1 Feb 2018 Exploratory study of possible resonances in the heavy meson - heavy baryon coupled-channel interactions arxiv:788v [hep-ph] Feb 08 Chao-Wei Shen,,, Deborah Rönchen,, Ulf-G. Meißner, and Bing-Song Zou,

More information

Coupled channel dynamics in Λ and Σ production

Coupled channel dynamics in Λ and Σ production Coupled channel dynamics in Λ and Σ production S. Krewald M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, George Washington

More information

Complex 2D Matrix Model and Internal Structure of Resonances

Complex 2D Matrix Model and Internal Structure of Resonances Complex 2D Matrix Model and Internal Structure of Resonances Kanabu Nawa (RIKEN) In collaboration with Sho Ozaki, Hideko Nagahiro, Daisuke Jido and Atsushi Hosaka [arxiv:1109.0426[hep-ph]] CONTENTS * Nature

More information

Charmed Baryons Productions and decays

Charmed Baryons Productions and decays Charmed Baryons Productions and decays Atsushi Hosaka RCNP, Osaka University Reimei( ), Jan.17-20, 2016 Collaborators: Noumi, Shirotori, Kim, Sadato, Yoshida, Oka, Hiyama, Nagahiro, Yasui PTEP 2014 (2014)

More information

Dynamical understanding of baryon resonances

Dynamical understanding of baryon resonances Dynamical understanding of baryon resonances T. Sato Osaka U Report on our extended analysis of meson production reactions (ANL-Osaka) H. Kamano, S. Nakamura, T. S. H. Lee, T. Sato Phys. Rev. C88 035209(2013)

More information

Prospects of the Hadron Physics at J-PARC

Prospects of the Hadron Physics at J-PARC Journal of Physics: Conference Series Prospects of the Hadron Physics at J-PARC To cite this article: Makoto Oka 2011 J. Phys.: Conf. Ser. 302 012052 Related content - Plans for Hadronic Structure Studies

More information

arxiv:hep-ph/ v3 15 Feb 2007

arxiv:hep-ph/ v3 15 Feb 2007 YITP-06-58, RCNP-Th0609 Study of exotic hadrons in S-wave scatterings induced by chiral interaction in the flavor symmetric limit Tetsuo Hyodo and Daisuke Jido Yukawa Institute for Theoretical Physics,

More information

arxiv: v2 [hep-lat] 14 Nov 2012

arxiv: v2 [hep-lat] 14 Nov 2012 YITP-6 J-PARC-TH 7 Strategy to find the two Λ(15) states from lattice QCD simulations A. Martínez Torres 1, M. Bayar,3, D. Jido 1, and E. Oset 1 Yukawa Institute for Theoretical Physics, Kyoto University,

More information

DYNAMICAL BARYON RESONANCES FROM CHIRAL UNITARITY

DYNAMICAL BARYON RESONANCES FROM CHIRAL UNITARITY DYNAMICAL BARYON RESONANCES Introduction FROM CHIRAL UNITARITY Angels Ramos (University of Barcelona) Model: Unitarized Chiral Perturbation Theory Results: S=-1 (Λ,Σ ), S=-2 (Ξ ) Recent progress: excited

More information

Dynamically generated resonances from the vector octet-baryon decuplet interaction

Dynamically generated resonances from the vector octet-baryon decuplet interaction arxiv:0902.3150v2 [hep-ph] 24 Sep 2009 Dynamically generated resonances from the vector octet-baryon decuplet interaction Sourav Sarkar 1,2, Bao-Xi Sun 1,3, E. Oset 1 and M.J. Vicente Vacas 1 November

More information

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn X Y Z Are they cusp effects? Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn Hadrons and Hadron Interactions in QCD 2015 Feb. 15 Mar. 21, 2015, YITP Based on: FKG, C. Hanhart,

More information

Nucleon resonances from coupled channel reaction model

Nucleon resonances from coupled channel reaction model Nucleon resonances from coupled channel reaction model T. Sato Osaka U Collaborators H. Kamano, S. Nakamura, T. S. H. Lee Purpose of analyzing meson production reaction in coupled channel reaction model

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

Properties of the Λ(1405) Measured at CLAS

Properties of the Λ(1405) Measured at CLAS PANIC 11 Properties of the Λ(145) Measured at CLAS Kei Moriya (Indiana University) advisor: Reinhard Schumacher (Carnegie Mellon University) July 5, 11 Outline 1 Introduction What is the Λ(145)? Chiral

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

arxiv: v2 [nucl-th] 18 Sep 2009

arxiv: v2 [nucl-th] 18 Sep 2009 FZJ-IKP-TH-29-11, HISKP-TH-9/14 Analytic properties of the scattering amplitude and resonances parameters in a meson exchange model M. Döring a, C. Hanhart a,b, F. Huang c, S. Krewald a,b, U.-G. Meißner

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

STRUCTURE AND COMPOSITENESS RESONANCES. Citation International Journal of Modern Phy.

STRUCTURE AND COMPOSITENESS RESONANCES. Citation International Journal of Modern Phy. Title STRUCTURE AND COMPOSITENESS RESONANCES OF HADR Author(s) HYODO, TETSUO Citation International Journal of Modern Phy Issue Date 2013-11-19 URL http://hdl.handle.net/2433/179766 World Scientific Publishing

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

arxiv: v1 [nucl-th] 13 Apr 2011

arxiv: v1 [nucl-th] 13 Apr 2011 Photo- and electroproduction of the K Λ near threshold and effects of the K electromagnetic form factor T. Mart Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia (Dated: January 23,

More information

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017 Conformality Lost in Efimov Physics Abhishek Mohapatra and Eric Braaten Department of Physics, The Ohio State University, Columbus, OH 430, USA arxiv:70.08447v [cond-mat.quant-gas] 3 Oct 07 Dated: October

More information

arxiv: v2 [hep-ph] 26 Nov 2009

arxiv: v2 [hep-ph] 26 Nov 2009 Dynamically generated open charmed baryons beyond the zero range approximation C. E. Jiménez-Tejero 1, A. Ramos 1 and I. Vidaña 2 1 Departament d Estructura i Constituents de la Matèria and Institut de

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

D semi-leptonic and leptonic decays at BESIII

D semi-leptonic and leptonic decays at BESIII Institute of High Energy Physics, Chinese Academy of Sciences E-mail: mahl@ihep.ac.cn During 2010 and 2011, a data sample of 2.92 fb 1 was accumulated at s = 3.773 GeV by the BESIII detector operating

More information

(958)-nucleus bound states and their formations by missing mass spectroscopies

(958)-nucleus bound states and their formations by missing mass spectroscopies YITP workshop on Hadron in Nucleus 31 Oct. 2 Nov. 213, Maskawa Hall, Kyoto University (958)-nucleus bound states and their formations by missing mass spectroscopies Hideko NAGAHIRO (Nara Women s University)

More information

The Nucleon-Nucleon Interaction

The Nucleon-Nucleon Interaction Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 845 The Nucleon-Nucleon Interaction J. Haidenbauer Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany Received on

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Neutron Star and Dense EOS 3.

More information

Coupled-channel Bethe-Salpeter

Coupled-channel Bethe-Salpeter Coupled-channel Bethe-Salpeter approach to pion-nucleon scattering Maxim Mai 01/11/2012 ChPT vs. uchpt + chiral symmetry + crossing symmetry + counterterm renormalization low-energy (ρ, ) perturbative

More information

When Perturbation Theory Fails...

When Perturbation Theory Fails... When Perturbation Theory Fails... Brian Tiburzi (University of Maryland) When Perturbation Theory Fails... SU(3) chiral perturbation theory? Charm quark in HQET, NRQCD? Extrapolations of lattice QCD data?

More information

PoS(Confinement8)107. Strangeness and charm at FAIR

PoS(Confinement8)107. Strangeness and charm at FAIR FIAS. Goethe-Universität Frankfurt am Main, Ruth-Moufang-Str. 1, 6438 Frankfurt am Main, Germany and Theory Group, KVI, University of Groningen, Zernikelaan, 9747 AA Groningen, The Netherlands E-mail:

More information

Pion-Nucleon P 11 Partial Wave

Pion-Nucleon P 11 Partial Wave Pion-Nucleon P 11 Partial Wave Introduction 31 August 21 L. David Roper, http://arts.bev.net/roperldavid/ The author s PhD thesis at MIT in 1963 was a -7 MeV pion-nucleon partial-wave analysis 1. A major

More information

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report 67th Annual Meeting of the Physical Society of Japan 25 March 2012 Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report Wolfram Weise Low-energy QCD: symmetries and symmetry

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

MENU Properties of the Λ(1405) Measured at CLAS. Kei Moriya Reinhard Schumacher

MENU Properties of the Λ(1405) Measured at CLAS. Kei Moriya Reinhard Schumacher MENU 21 Properties of the Λ(145) Measured at CLAS Kei Moriya Reinhard Schumacher Outline 1 Introduction What is the Λ(145)? Theory of the Λ(145) 2 CLAS Analysis Selecting Decay Channels of Interest Removing

More information

Scattering theory I: single channel differential forms

Scattering theory I: single channel differential forms TALENT: theory for exploring nuclear reaction experiments Scattering theory I: single channel differential forms Filomena Nunes Michigan State University 1 equations of motion laboratory Center of mass

More information

Nuclei with Antikaons

Nuclei with Antikaons Nuclei with Antikaons Daniel Gazda Nuclear Physics Institute, Řež/Prague Czech Technical University in Prague Czech Republic together with A. Cieplý, E. Friedman, A. Gal, J. Mareš INT Program 12-3, Seattle,

More information

Study of η N interaction from η/η production data and in-medium η properties. Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China))

Study of η N interaction from η/η production data and in-medium η properties. Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China)) Study of η N interaction from η/η production data and in-medium η properties Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China)) Introduction - Origin of the η mass U A (1) anomaly and

More information

Production of charmed baryons and mesons in antiproton-proton annihilation

Production of charmed baryons and mesons in antiproton-proton annihilation Production of charmed baryons and mesons in antiprotonproton annihilation Institute for Advanced Simulation, Forschungszentrum Jülich, D52425 Jülich Email: j.haidenbauer@fzjuelich.de An estimation for

More information

Cornelius Bennhold George Washington University

Cornelius Bennhold George Washington University Cornelius Bennhold George Washington University The past 7 years Low-lying baryon resonances Missing and exotic (hybrid) resonances How many N* do we need? How many do we have? Resonance form factors The

More information

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k Preprint number: 6.668 Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k arxiv:6.668v [nucl-th Feb M. R. Hadizadeh, Institute of Nuclear and Particle Physics,

More information

arxiv: v1 [nucl-th] 28 Nov 2017

arxiv: v1 [nucl-th] 28 Nov 2017 Charmonium spectral functions in pa collision arxiv:7.0372v [nucl-th] 28 Nov 207 Gy. Wolf, G. Balassa, P. Kovács, M. Zétényi, Wigner RCP, Budapest, 525 POB 49, Hungary Su Houng Lee Department of Physics

More information

Search for the η-mesic Helium bound state with the WASA-at-COSY facility

Search for the η-mesic Helium bound state with the WASA-at-COSY facility Search for the η-mesic Helium bound state with the WASA-at-COSY facility Magdalena Skurzok 1, Wojciech Krzemień 2, Oleksandr Rundel 1 and Pawel Moskal 1 for the WASA-at-COSY Collaboration 1 M. Smoluchowski

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters

Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters Commun. Theor. Phys. 69 (208) 303 307 Vol. 69, No. 3, March, 208 Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters E. Epelbaum, J. Gegelia, 2,3 and

More information