Chapter 5.1: Induction

Size: px
Start display at page:

Download "Chapter 5.1: Induction"

Transcription

1 Chapter.1: Induction Monday, July 1 Fermat s Little Theorem Evaluate the following: 1. 1 (mod ) 1 ( ) 1 1 (mod ). (mod 7) ( ) 8 ) (mod ). 77 (mod 19). 18 (mod 1) 77 ( 18 ) 1 1 (mod 19) 18 1 (mod ) and 18 (mod ), so solving the simultaneous equations (by whatever method you like) gives 18 (mod 1).. (mod 1) (mod ) and (mod 7), so solving the two equations gives (mod 1) (mod ) (mod ) and (mod 11), so solving the two equations gives (mod ). (Hard) A composite number n is called a Carmichael number b n 1 1 (mod n) for every number b such that gcd(b, n) 1 (their existence is unfortunate, since it means that we cannot use FLT to tell for certain whether a number is prime). Prove: There is one and only one Carmichael number of the form p q, where p and q are prime numbers. We know that if n pq is a Carmichael number and gcd(b, n) 1 then b pq 1 1 (mod pq) b pq 1 1 (mod ) b pq 1 1 (mod p) b pq 1 1 (mod q) Using Fermat s Little Theorem on the last three equations in turn gives us pq 1 p 1 pq 1 q 1 pq 1 1

2 The first just tells us that p and q must be odd. Then since pq 1 pq q + q 1 q(p 1) + q 1 (and similarly pq 1 p(q 1) + p 1), we can conclude p 1 q 1 q 1 p 1 Suppose (without loss of generality) that p < q. Then since q 1 p 1 < q 1, we know that either q 1 p 1 or (q 1) p 1. The first possibility would give q p, contradicting the given that p was prime. Therefore (q 1) p 1. We can then substitute this into the first statment: p 1 q 1 q + ((q 1))+ (p 1)+, so (p 1) 9 p + 1/, or p 9p + 1, or p 9p + 1 (p ) p + 9. Since p p + 9 means that p p + 9, we must have p 11. Since p, checking the other cases, 7, and 11 show that p 11 is the only option. Therefore q 17, and the only Carmichael number of the form pq is Induction 1. Prove that n n(n + 1)(n + 1) for n 0. Base case: it works for n 0 since 0 0(0 + 1)(0 + )/. Inductive step. Suppose that the formula works for n. Then ( n ) + (n + 1) n(n + 1)(n + 1)/ + n + n + 1 ( ) n(n + 1). Prove that n for n 0. Base case: it works for n 0. Inductive step: suppose it works for n. Then n + n + n + n + 1n + n + 9n + 1n + (n + 1)(n + )(n + ) ( n ) + (n + 1) n (n + 1) + n + n + n + 1 n + n + n + n + 1n + 1n + n + n + 1n + 1n + (n + 1) (n + ). Prove that 1 1! +! + + n n! (n + 1)! 1 for n 1. Base case: it works for n 1. Inductive step: suppose it works for n. Then (1 1! +! + + n n!) + (n + 1) (n + 1)! (n + 1)! 1 + [(n + ) (n + 1)! (n + 1)!] (n + )! 1

3 . Find a closed form for n k1 ( 1)k k and prove that it is correct. The first few terms are 1,,, 10, 1,..., so guess that the formula is ( 1) n n(n + 1)/. Base case: The formula works for n 1. Inductive step: suppose that it works for n. Then ( 1) k k k1 n ( 1) k k + ( 1) (n + 1) k1. For what integers is n n true? Prove it. True for n 0, n 1, but also for n 10. Base case: Inductive step: suppose that n n. Then ( 1) n n(n + 1)/ + ( 1) (n + n + 1) ( 1) n + n + n n ( 1) n + n + (n + 1)(n + ) ( 1) n n + n n + n n + 10n n + n + n + 1 (n + 1) The step n + n n + 10n relied on the fact that n 10.

4 From to many 1. Given that ab ba, prove that a n b ba n for all n 1. (Original problem had a typo.) Base case: a 1 b ba 1 was given, so it works for n 1. Inductive step: if a n b ba n, then a b a(a n b) aba n baa n ba.. Given that ab ba, prove that a n b m b m a n for all n, m 1 (let n be arbitrary, then use the previous result and induction on m). Base case: if m 1 then a n b ba n was given by the result of the previous problem. Inductive step: if a n b m b m a n then a n b m+1 a n b m b b m a n b b m ba n b m+1 a n.. Given: if a b (mod m) and c d (mod m) then a + c b + d (mod m). Prove: if a i b i (mod m) for i 1,,..., n, then n a i n b i (mod m). Base case: When n the formula a + c b + d (mod m) was already given. Inductive step: Supposing the formula works for n, we get n a i ( a i ) + a n b i + b. (Calculus) Suppose we know that d dx x 1 and that for any functions f and g, (fg) f g + fg. Prove that d dx xn nx n 1 for all n 1. d Base case: when n 1, dx x1 1 1 x 0. d Inductive step: If dx xn nx n 1, then. Prove: n A i n A i. b i d dx x (x x n ) x x n + (x n ) x x n + nx n 1 x (n + 1)x n Base case: When n A B A B is given by one of DeMorgan s Laws.

5 Inductive step: Suppose the formula works for n. Then A i n A i A n A i A n A i A A i Recursion 1. Define a sequence a n by a 0 1, a 1 and a n a n 1 + a n for n. Find a. Prove that a n n+ + ( 1) n. a 0 a 1 a a a a a Base case for proof by induction: The formula works for n 0 and n 1. Inductive step: Suppose that the formula works for n AND n + 1. Then a n+ a + a n n+ + ( 1) n+ + ( 1) n n+ + ( 1) n+ + n+ + ( 1) n Note that this time we needed to use the formula for both a and a n, so we needed to prove two base cases.. Define a sequence a n by a 0 1, a n a n if n 1. Find a non-recursive formula for a n and prove that it is correct. The sequence goes 1,, 7, 1, 1,... guess that it is equal to 1. Prove the base case: it works for n 0. Inductive step: If it works for n, then a a n + 1 ( 1) + 1 n+ + 1 n+ 1.

6 . Prove: gcd(f, f n ) 1 for all n 0. Proof: gcd(f 0, f 1 ) gcd(0, 1) 1 for the base case n 0. Inductive step: use the fact that gcd(a, b) gcd(a b, b). Then if the proposition holds for n, we have gcd(f n+, f ) gcd(f n+ f, f ) gcd(f n, f ) 1.. Prove that f 1 + f + + f n f n f for n 1. Base case: it works for n 1 since f f 1 f. Inductive step: if the formula holds for n, then (f 1 + f + + f n) + f f n f + f f f (f n + f ) f f n+. Prove that f 1 + f + + f n 1 f n for n 1. (Original problem had a typo.) Base case: f 1 1 f when n 1. Inductive step: if the formula holds for n, then. Show that f f n 1 f n ( 1) n for n 1. (f 1 + f + + f n 1 ) + f f n + f f n+ Base case: when n 1, we have f f 0 f ( 1) 1. Inductive step: If the formula holds for n then f n+ f n f (f n + f )f n f f n + f f n f f n + f (f n f ) f n + f ( f n 1 ) (f f n 1 f n) ( 1) n ( 1) 7. Prove that f n (α n β n )/, where α (1 + )/ and β (1 )/. (Hint: both α and β satisfy the equation x x + 1). Proof: It holds for f 0 and f 1, base cases n 0 and n 1. Inductive step: if it holds for n AND n + 1 then f n+ f + f n α β + αn β n αn (α + 1) β n (β + 1) αn+ β n+

7 8. Prove that f m+n f m 1 f n + f m f. (fix n arbitrarily, then use induction on m) Base case: when m 1 the formula becomes f f 0 f n + f 1 f, which is true because f 0 0 and f 1 1. Inductive step: Suppose the formula holds for m. Then f (m+1)+n f m+() f m 1 f + f m f n+ f m 1 f + (f m f + f m f n ) (f m 1 + f m )f + f m f n f m f n + f m+1 f f (m+1) 1 f n + f m+1 f 9. Prove (now using induction on n) that f m f mn for all n 1. Base case: When n 1 this is just f m f m, which is clearly true. Inductive step: suppose f m f mn. Then f m() f mn+m f mn 1 f m + f mn f m+1. Since f m and (by the inductive hypothesis) f mn are both divisible by f m, the linear combination (and therefore f m() ) is also divible by f m. 10. Prove that gcd(f m, f n ) f gcd(m,n). Let n qm + r. Since f m f qm (from the previous problem), we know that gcd(f m, f n ) gcd(f m, f qm+r ) gcd(f m, f qm 1 f r + f qm f r+1 ) gcd(f m, f qm 1 f r ), Then since f m f qm but gcd(f qm, f qm 1 ) 1, we can conclude that gcd(f m, f n ) gcd(f m, f qm 1 f r ) gcd(f m, f r ). This allows us to use a process similar to the Euclidean Algorithm and continue until we hit the greatest common divisor. In particular, this means that if p is a prime number, then f p shares a common divisor with f n if and only if p n (and if p n then f p f n ). In particlar, we know that f, so (since is prime), the even Fibonacci numbers will be precisely those of the form f k for k Z. 7

Induction. Induction. Induction. Induction. Induction. Induction 2/22/2018

Induction. Induction. Induction. Induction. Induction. Induction 2/22/2018 The principle of mathematical induction is a useful tool for proving that a certain predicate is true for all natural numbers. It cannot be used to discover theorems, but only to prove them. If we have

More information

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006 Divisibility in the Fibonacci Numbers Stefan Erickson Colorado College January 27, 2006 Fibonacci Numbers F n+2 = F n+1 + F n n 1 2 3 4 6 7 8 9 10 11 12 F n 1 1 2 3 8 13 21 34 89 144 n 13 14 1 16 17 18

More information

Senior Math Circles Cryptography and Number Theory Week 2

Senior Math Circles Cryptography and Number Theory Week 2 Senior Math Circles Cryptography and Number Theory Week 2 Dale Brydon Feb. 9, 2014 1 Divisibility and Inverses At the end of last time, we saw that not all numbers have inverses mod n, but some do. We

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

1 Overview and revision

1 Overview and revision MTH6128 Number Theory Notes 1 Spring 2018 1 Overview and revision In this section we will meet some of the concerns of Number Theory, and have a brief revision of some of the relevant material from Introduction

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

2301 Assignment 1 Due Friday 19th March, 2 pm

2301 Assignment 1 Due Friday 19th March, 2 pm Show all your work. Justify your solutions. Answers without justification will not receive full marks. Only hand in the problems on page 2. Practice Problems Question 1. Prove that if a b and a 3c then

More information

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}.

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. 2 Arithmetic This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. (See [Houston, Chapters 27 & 28]) 2.1 Greatest common divisors Definition 2.16. If a, b are integers, we say

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Problem Set 5 Solutions Section 4.. Use mathematical induction to prove each of the following: a) For each natural number n with n, n > + n. Let P n) be the statement n > + n. The base case, P ), is true

More information

Homework 3, solutions

Homework 3, solutions Homework 3, solutions Problem 1. Read the proof of Proposition 1.22 (page 32) in the book. Using simialr method prove that there are infinitely many prime numbers of the form 3n 2. Solution. Note that

More information

a the relation arb is defined if and only if = 2 k, k

a the relation arb is defined if and only if = 2 k, k DISCRETE MATHEMATICS Past Paper Questions in Number Theory 1. Prove that 3k + 2 and 5k + 3, k are relatively prime. (Total 6 marks) 2. (a) Given that the integers m and n are such that 3 (m 2 + n 2 ),

More information

5: The Integers (An introduction to Number Theory)

5: The Integers (An introduction to Number Theory) c Oksana Shatalov, Spring 2017 1 5: The Integers (An introduction to Number Theory) The Well Ordering Principle: Every nonempty subset on Z + has a smallest element; that is, if S is a nonempty subset

More information

12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z.

12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z. Math 3, Fall 010 Assignment 3 Solutions Exercise 1. Find all the integral solutions of the following linear diophantine equations. Be sure to justify your answers. (i) 3x + y = 7. (ii) 1x + 18y = 50. (iii)

More information

2. THE EUCLIDEAN ALGORITHM More ring essentials

2. THE EUCLIDEAN ALGORITHM More ring essentials 2. THE EUCLIDEAN ALGORITHM More ring essentials In this chapter: rings R commutative with 1. An element b R divides a R, or b is a divisor of a, or a is divisible by b, or a is a multiple of b, if there

More information

Fibonacci Numbers. Justin Stevens. Lecture 5. Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10

Fibonacci Numbers. Justin Stevens. Lecture 5. Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10 Fibonacci Numbers Lecture 5 Justin Stevens Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10 Outline 1 Fibonacci Numbers Justin Stevens Fibonacci Numbers (Lecture 5) 2 / 10 Fibonacci Numbers The Fibonacci

More information

Chapter 1. Number of special form. 1.1 Introduction(Marin Mersenne) 1.2 The perfect number. See the book.

Chapter 1. Number of special form. 1.1 Introduction(Marin Mersenne) 1.2 The perfect number. See the book. Chapter 1 Number of special form 1.1 Introduction(Marin Mersenne) See the book. 1.2 The perfect number Definition 1.2.1. A positive integer n is said to be perfect if n is equal to the sum of all its positive

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

NOTES ON INTEGERS. 1. Integers

NOTES ON INTEGERS. 1. Integers NOTES ON INTEGERS STEVEN DALE CUTKOSKY The integers 1. Integers Z = {, 3, 2, 1, 0, 1, 2, 3, } have addition and multiplication which satisfy familar rules. They are ordered (m < n if m is less than n).

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups 4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

More information

Proofs. Methods of Proof Divisibility Floor and Ceiling Contradiction & Contrapositive Euclidean Algorithm. Reading (Epp s textbook)

Proofs. Methods of Proof Divisibility Floor and Ceiling Contradiction & Contrapositive Euclidean Algorithm. Reading (Epp s textbook) Proofs Methods of Proof Divisibility Floor and Ceiling Contradiction & Contrapositive Euclidean Algorithm Reading (Epp s textbook) 4.3 4.8 1 Divisibility The notation d n is read d divides n. Symbolically,

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 1 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 2 Section 5.1 3 Section Summary Mathematical Induction Examples of

More information

8. Given a rational number r, prove that there exist coprime integers p and q, with q 0, so that r = p q. . For all n N, f n = an b n 2

8. Given a rational number r, prove that there exist coprime integers p and q, with q 0, so that r = p q. . For all n N, f n = an b n 2 MATH 135: Randomized Exam Practice Problems These are the warm-up exercises and recommended problems taken from all the extra practice sets presented in random order. The challenge problems have not been

More information

MATH 145 Algebra, Solutions to Assignment 4

MATH 145 Algebra, Solutions to Assignment 4 MATH 145 Algebra, Solutions to Assignment 4 1: a) Find the inverse of 178 in Z 365. Solution: We find s and t so that 178s + 365t = 1, and then 178 1 = s. The Euclidean Algorithm gives 365 = 178 + 9 178

More information

Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali TAs: Kim, Woo Young: Deeparnab Chakrabarty:

Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali TAs: Kim, Woo Young: Deeparnab Chakrabarty: Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali TAs: Kim, Woo Young: wooyoung@cc.gatech.edu, Deeparn Chakrarty: deepc@cc.gatech.edu Section 3.7 Problem 10: Prove that 3p 2 is irrational

More information

The Euclidean Algorithm

The Euclidean Algorithm MATH 324 Summer 2006 Elementary Number Theory Notes on the Euclidean Algorithm Department of Mathematical and Statistical Sciences University of Alberta The Euclidean Algorithm Given two positive integers

More information

Theory of RSA. Hiroshi Toyoizumi 1. December 8,

Theory of RSA. Hiroshi Toyoizumi 1. December 8, Theory of RSA Hiroshi Toyoizumi 1 December 8, 2005 1 E-mail: toyoizumi@waseda.jp 2 Introduction This is brief introduction of number theory related to the so-called RSA cryptography. This handout is based

More information

Notes for Recitation 6

Notes for Recitation 6 6.042/18.062J Mathematics for Computer Science February 18, 2005 Srini Devadas and Eric Lehman Notes for Recitation 6 1 The Pulverizer We saw in lecture that the greatest common divisor (GCD) of two numbers

More information

CMSC Discrete Mathematics SOLUTIONS TO SECOND MIDTERM EXAM November, 2005

CMSC Discrete Mathematics SOLUTIONS TO SECOND MIDTERM EXAM November, 2005 CMSC-37110 Discrete Mathematics SOLUTIONS TO SECOND MIDTERM EXAM November, 2005 Instructor: László Babai Ryerson 164 e-mail: laci@cs This exam contributes 20% to your course grade. 1. (6 points) Let a

More information

Mathematics for Computer Science Exercises for Week 10

Mathematics for Computer Science Exercises for Week 10 Mathematics for Computer Science Exercises for Week 10 Silvio Capobianco Last update: 7 November 2018 Problems from Section 9.1 Problem 9.1. Prove that a linear combination of linear combinations of integers

More information

Applied Cryptography and Computer Security CSE 664 Spring 2017

Applied Cryptography and Computer Security CSE 664 Spring 2017 Applied Cryptography and Computer Security Lecture 11: Introduction to Number Theory Department of Computer Science and Engineering University at Buffalo 1 Lecture Outline What we ve covered so far: symmetric

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

1. (16 points) Circle T if the corresponding statement is True or F if it is False.

1. (16 points) Circle T if the corresponding statement is True or F if it is False. Name Solution Key Show All Work!!! Page 1 1. (16 points) Circle T if the corresponding statement is True or F if it is False. T F The sequence {1, 1, 1, 1, 1, 1...} is an example of an Alternating sequence.

More information

Greatest Common Divisor MATH Greatest Common Divisor. Benjamin V.C. Collins, James A. Swenson MATH 2730

Greatest Common Divisor MATH Greatest Common Divisor. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Greatest Common Divisor Benjamin V.C. Collins James A. Swenson The world s least necessary definition Definition Let a, b Z, not both zero. The largest integer d such that d a and d b is called

More information

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory.

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory. CSS322: Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L06, Steve/Courses/2011/S2/CSS322/Lectures/number.tex,

More information

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24 Direct Proof MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Direct Proof Fall 2014 1 / 24 Outline 1 Overview of Proof 2 Theorems 3 Definitions 4 Direct Proof 5 Using

More information

Exercises Exercises. 2. Determine whether each of these integers is prime. a) 21. b) 29. c) 71. d) 97. e) 111. f) 143. a) 19. b) 27. c) 93.

Exercises Exercises. 2. Determine whether each of these integers is prime. a) 21. b) 29. c) 71. d) 97. e) 111. f) 143. a) 19. b) 27. c) 93. Exercises Exercises 1. Determine whether each of these integers is prime. a) 21 b) 29 c) 71 d) 97 e) 111 f) 143 2. Determine whether each of these integers is prime. a) 19 b) 27 c) 93 d) 101 e) 107 f)

More information

Induction and recursion. Chapter 5

Induction and recursion. Chapter 5 Induction and recursion Chapter 5 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms Mathematical Induction Section 5.1

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

Solutions to Practice Final 3

Solutions to Practice Final 3 s to Practice Final 1. The Fibonacci sequence is the sequence of numbers F (1), F (2),... defined by the following recurrence relations: F (1) = 1, F (2) = 1, F (n) = F (n 1) + F (n 2) for all n > 2. For

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013 Fall 2013 Student Responsibilities Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Proof Worksheets Attendance: Strongly Encouraged Overview 3.6 Integers and Algorithms 3.7

More information

Introduction to Number Theory

Introduction to Number Theory INTRODUCTION Definition: Natural Numbers, Integers Natural numbers: N={0,1,, }. Integers: Z={0,±1,±, }. Definition: Divisor If a Z can be writeen as a=bc where b, c Z, then we say a is divisible by b or,

More information

Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm

Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm April 11, 2010 1 Algebra We start by discussing algebraic structures and their properties. This is presented in more depth than what we

More information

Name CMSC203 Fall2008 Exam 2 Solution Key Show All Work!!! Page (16 points) Circle T if the corresponding statement is True or F if it is False.

Name CMSC203 Fall2008 Exam 2 Solution Key Show All Work!!! Page (16 points) Circle T if the corresponding statement is True or F if it is False. Name CMSC203 Fall2008 Exam 2 Solution Key Show All Work!!! Page ( points) Circle T if the corresponding statement is True or F if it is False T F GCD(,0) = 0 T F For every recursive algorithm, there is

More information

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd()

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd() Student Responsibilities Week 8 Mat 2345 Week 8 Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Induction Proof Worksheets Attendance: Strongly Encouraged Fall 2013 Week

More information

Do not open this exam until you are told to begin. You will have 75 minutes for the exam.

Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Math 2603 Midterm 1 Spring 2018 Your Name Student ID # Section Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Check that you have a complete exam. There are 5

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

Number Theory Notes Spring 2011

Number Theory Notes Spring 2011 PRELIMINARIES The counting numbers or natural numbers are 1, 2, 3, 4, 5, 6.... The whole numbers are the counting numbers with zero 0, 1, 2, 3, 4, 5, 6.... The integers are the counting numbers and zero

More information

Introduction to Abstract Mathematics

Introduction to Abstract Mathematics Introduction to Abstract Mathematics Notation: Z + or Z >0 denotes the set {1, 2, 3,...} of positive integers, Z 0 is the set {0, 1, 2,...} of nonnegative integers, Z is the set {..., 1, 0, 1, 2,...} of

More information

CS280, Spring 2004: Prelim Solutions

CS280, Spring 2004: Prelim Solutions CS280, Spring 2004: Prelim Solutions 1. [3 points] What is the transitive closure of the relation {(1, 2), (2, 3), (3, 1), (3, 4)}? Solution: It is {(1, 2), (2, 3), (3, 1), (3, 4), (1, 1), (2, 2), (3,

More information

NUMBER THEORY AND CODES. Álvaro Pelayo WUSTL

NUMBER THEORY AND CODES. Álvaro Pelayo WUSTL NUMBER THEORY AND CODES Álvaro Pelayo WUSTL Talk Goal To develop codes of the sort can tell the world how to put messages in code (public key cryptography) only you can decode them Structure of Talk Part

More information

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set 1 Mathematical Induction We assume that the set Z of integers are well defined, and we are familiar with the addition, subtraction, multiplication, and division. In particular, we assume the following

More information

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635 COMP239: Mathematics for Computer Science II Prof. Chadi Assi assi@ciise.concordia.ca EV7.635 The Euclidean Algorithm The Euclidean Algorithm Finding the GCD of two numbers using prime factorization is

More information

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have Exercise 23. (a) Solve the following congruences: (i) x 101 7 (mod 12) Answer. We have φ(12) = #{1, 5, 7, 11}. Since gcd(7, 12) = 1, we must have gcd(x, 12) = 1. So 1 12 x φ(12) = x 4. Therefore 7 12 x

More information

1. Given the public RSA encryption key (e, n) = (5, 35), find the corresponding decryption key (d, n).

1. Given the public RSA encryption key (e, n) = (5, 35), find the corresponding decryption key (d, n). MATH 135: Randomized Exam Practice Problems These are the warm-up exercises and recommended problems taken from all the extra practice sets presented in random order. The challenge problems have not been

More information

Arithmetic Algorithms, Part 1

Arithmetic Algorithms, Part 1 Arithmetic Algorithms, Part 1 DPV Chapter 1 Jim Royer EECS January 18, 2019 Royer Arithmetic Algorithms, Part 1 1/ 15 Multiplication à la Français function multiply(a, b) // input: two n-bit integers a

More information

3 Finite continued fractions

3 Finite continued fractions MTH628 Number Theory Notes 3 Spring 209 3 Finite continued fractions 3. Introduction Let us return to the calculation of gcd(225, 57) from the preceding chapter. 225 = 57 + 68 57 = 68 2 + 2 68 = 2 3 +

More information

1. Algebra 1.7. Prime numbers

1. Algebra 1.7. Prime numbers 1. ALGEBRA 30 1. Algebra 1.7. Prime numbers Definition Let n Z, with n 2. If n is not a prime number, then n is called a composite number. We look for a way to test if a given positive integer is prime

More information

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is LARGE PRIME NUMBERS 1. Fermat Pseudoprimes Fermat s Little Theorem states that for any positive integer n, if n is prime then b n % n = b for b = 1,..., n 1. In the other direction, all we can say is that

More information

2015 Hypatia Contest

2015 Hypatia Contest The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 015 Hypatia Contest Thursday, April 16, 015 (in North America and South America) Friday, April 17, 015 (outside of North America

More information

Quiz 3 Reminder and Midterm Results

Quiz 3 Reminder and Midterm Results Quiz 3 Reminder and Midterm Results Reminder: Quiz 3 will be in the first 15 minutes of Monday s class. You can use any resources you have during the quiz. It covers all four sections of Unit 3. It has

More information

CHARACTERIZATION OF THE STRONG DIVISIBILITY PROPERTY FOR GENERALIZED FIBONACCI POLYNOMIALS

CHARACTERIZATION OF THE STRONG DIVISIBILITY PROPERTY FOR GENERALIZED FIBONACCI POLYNOMIALS #A14 INTEGERS 18 (2018) CHARACTERIZATION OF THE STRONG DIVISIBILITY PROPERTY FOR GENERALIZED FIBONACCI POLYNOMIALS Rigoberto Flórez 1 Department of Mathematics and Computer Science, The Citadel, Charleston,

More information

INDUCTION AND RECURSION. Lecture 7 - Ch. 4

INDUCTION AND RECURSION. Lecture 7 - Ch. 4 INDUCTION AND RECURSION Lecture 7 - Ch. 4 4. Introduction Any mathematical statements assert that a property is true for all positive integers Examples: for every positive integer n: n!

More information

Olympiad Number Theory Through Challenging Problems

Olympiad Number Theory Through Challenging Problems Olympiad Number Theory Justin Stevens Page 1 Olympiad Number Theory Through Challenging Problems Authors Justin Stevens Editor and L A TEX Manager David Altizio Dedicated to my sister. Justin Contents

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

. In particular if a b then N(

. In particular if a b then N( Gaussian Integers II Let us summarise what we now about Gaussian integers so far: If a, b Z[ i], then N( ab) N( a) N( b). In particular if a b then N( a ) N( b). Let z Z[i]. If N( z ) is an integer prime,

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers:

The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers: Divisibility Euclid s algorithm The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers: Divide the smaller number into the larger, and

More information

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z:

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z: Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some z Z Notation: b Fact: for all, b, c Z:, 1, and 0 0 = 0 b and b c = c b and c = (b + c) b and b = ±b 1

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

Ma/CS 6a Class 4: Primality Testing

Ma/CS 6a Class 4: Primality Testing Ma/CS 6a Class 4: Primality Testing By Adam Sheffer Reminder: Euler s Totient Function Euler s totient φ(n) is defined as follows: Given n N, then φ n = x 1 x < n and GCD x, n = 1. In more words: φ n is

More information

Math.3336: Discrete Mathematics. Mathematical Induction

Math.3336: Discrete Mathematics. Mathematical Induction Math.3336: Discrete Mathematics Mathematical Induction Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic Chapter 1 The Fundamental Theorem of Arithmetic 1.1 Primes Definition 1.1. We say that p N is prime if it has just two factors in N, 1 and p itself. Number theory might be described as the study of the

More information

2k n. k=0. 3x 2 7 (mod 11) 5 4x 1 (mod 9) 2 r r +1 = r (2 r )

2k n. k=0. 3x 2 7 (mod 11) 5 4x 1 (mod 9) 2 r r +1 = r (2 r ) MATH 135: Randomized Exam Practice Problems These are the warm-up exercises and recommended problems take from the extra practice sets presented in random order. The challenge problems have not been included.

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

Ch 4.2 Divisibility Properties

Ch 4.2 Divisibility Properties Ch 4.2 Divisibility Properties - Prime numbers and composite numbers - Procedure for determining whether or not a positive integer is a prime - GCF: procedure for finding gcf (Euclidean Algorithm) - Definition:

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya

Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya Resources: Kenneth Rosen,

More information

Number Theory Proof Portfolio

Number Theory Proof Portfolio Number Theory Proof Portfolio Jordan Rock May 12, 2015 This portfolio is a collection of Number Theory proofs and problems done by Jordan Rock in the Spring of 2014. The problems are organized first by

More information

Homework 7 Solutions, Math 55

Homework 7 Solutions, Math 55 Homework 7 Solutions, Math 55 5..36. (a) Since a is a positive integer, a = a 1 + b 0 is a positive integer of the form as + bt for some integers s and t, so a S. Thus S is nonempty. (b) Since S is nonempty,

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

More information

Induction and Recursion

Induction and Recursion . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Induction and Recursion

More information

SIX PROOFS OF THE INFINITUDE OF PRIMES

SIX PROOFS OF THE INFINITUDE OF PRIMES SIX PROOFS OF THE INFINITUDE OF PRIMES ALDEN MATHIEU 1. Introduction The question of how many primes exist dates back to at least ancient Greece, when Euclid proved the infinitude of primes (circa 300

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

18 Divisibility. and 0 r < d. Lemma Let n,d Z with d 0. If n = qd+r = q d+r with 0 r,r < d, then q = q and r = r.

18 Divisibility. and 0 r < d. Lemma Let n,d Z with d 0. If n = qd+r = q d+r with 0 r,r < d, then q = q and r = r. 118 18. DIVISIBILITY 18 Divisibility Chapter V Theory of the Integers One of the oldest surviving mathematical texts is Euclid s Elements, a collection of 13 books. This book, dating back to several hundred

More information

PROBLEM SET 1 SOLUTIONS 1287 = , 403 = , 78 = 13 6.

PROBLEM SET 1 SOLUTIONS 1287 = , 403 = , 78 = 13 6. Math 7 Spring 06 PROBLEM SET SOLUTIONS. (a) ( pts) Use the Euclidean algorithm to find gcd(87, 0). Solution. The Euclidean algorithm is performed as follows: 87 = 0 + 78, 0 = 78 +, 78 = 6. Hence we have

More information

Math 283 Spring 2013 Presentation Problems 4 Solutions

Math 283 Spring 2013 Presentation Problems 4 Solutions Math 83 Spring 013 Presentation Problems 4 Solutions 1. Prove that for all n, n (1 1k ) k n + 1 n. Note that n means (1 1 ) 3 4 + 1 (). n 1 Now, assume that (1 1k ) n n. Consider k n (1 1k ) (1 1n ) n

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Lecture 4: Number theory

Lecture 4: Number theory Lecture 4: Number theory Rajat Mittal IIT Kanpur In the next few classes we will talk about the basics of number theory. Number theory studies the properties of natural numbers and is considered one of

More information