Physicists Aim to Classify All Possible Phases of Matter

Size: px
Start display at page:

Download "Physicists Aim to Classify All Possible Phases of Matter"

Transcription

1 Physicists Aim to Classify All Possible Phases of Matter A complete classification could lead to a wealth of new materials and technologies. But some exotic phases continue to resist understanding. By Natalie Wolchover Olena Shmahalo/ In the last three decades, condensed matter physicists have discovered a wonderland of exotic new phases of matter: emergent, collective states of interacting particles that are nothing like the solids, liquids and gases of common experience. The phases, some realized in the lab and others identified as theoretical possibilities, arise when matter is chilled almost to absolute-zero temperature, hundreds of degrees below the point at which water freezes into ice. In these frigid conditions, particles can interact in ways that cause them to

2 shed all traces of their original identities. Experiments in the 1980s revealed that in some situations electrons split en masse into fractions of particles that make braidable trails through space-time; in other cases, they collectively whip up massless versions of themselves. A lattice of spinning atoms becomes a fluid of swirling loops or branching strings; crystals that began as insulators start conducting electricity over their surfaces. One phase that shocked experts when recognized as a mathematical possibility in 2011 features strange, particle-like fractons that lock together in fractal patterns. Now, research groups at Microsoft and elsewhere are racing to encode quantum information in the braids and loops of some of these phases for the purpose of developing a quantum computer. Meanwhile, condensed matter theorists have recently made major strides in understanding the pattern behind the different collective behaviors that can arise, with the goal of enumerating and classifying all possible phases of matter. If a complete classification is achieved, it would not only account for all phases seen in nature so far, but also potentially point the way toward new materials and technologies. Led by dozens of top theorists, with input from mathematicians, researchers have already classified a huge swath of phases that can arise in one or two spatial dimensions by relating them to topology: the math that describes invariant properties of shapes like the sphere and the torus. They ve also begun to explore the wilderness of phases that can arise near absolute zero in 3-D matter.

3 Max Gerber, courtesy of Caltech Development and Institute Relations Xie Chen, a condensed matter theorist at the California Institute of Technology, says the grand goal of the classification program is to enumerate all phases that can possibly arise from particles of any given type. It s not a particular law of physics that these scientists seek, said Michael Zaletel, a condensed matter theorist at Princeton University. It s the space of all possibilities, which is a more beautiful or deeper idea in some ways. Perhaps surprisingly, Zaletel said, the space of all consistent phases is itself a mathematical object that has this incredibly rich structure that we think ends up, in 1-D and 2-D, in one-to-one correspondence with these beautiful topological structures. In the landscape of phases, there is an economy of options, said Ashvin Vishwanath of Harvard University. It all seems comprehensible a stroke of luck that mystifies him. Enumerating phases

4 of matter could have been like stamp collecting, Vishwanath said, each a little different, and with no connection between the different stamps. Instead, the classification of phases is more like a periodic table. There are many elements, but they fall into categories and we can understand the categories. While classifying emergent particle behaviors might not seem fundamental, some experts, including Xiao-Gang Wen of the Massachusetts Institute of Technology, say the new rules of emergent phases show how the elementary particles themselves might arise from an underlying network of entangled bits of quantum information, which Wen calls the qubit ocean. For example, a phase called a string-net liquid that can emerge in a three-dimensional system of qubits has excitations that look like all the known elementary particles. A real electron and a real photon are maybe just fluctuations of the string-net, Wen said. A New Topological Order Before these zero-temperature phases cropped up, physicists thought they had phases all figured out. By the 1950s, they could explain what happens when, for example, water freezes into ice, by describing it as the breaking of a symmetry: Whereas liquid water has rotational symmetry at the atomic scale (it looks the same in every direction), the H20 molecules in ice are locked in crystalline rows and columns. Things changed in 1982 with the discovery of phases called fractional quantum Hall states in an ultracold, two-dimensional gas of electrons. These strange states of matter feature emergent particles with fractions of an electron s charge that take fractions of steps in a one-way march around the perimeter of the system. There was no way to use different symmetry to distinguish those phases, Wen said. A new paradigm was needed. In 1989, Wen imagined phases like the fractional quantum Hall states arising not on a plane, but on different topological manifolds connected spaces such as the surface of a sphere or a torus. Topology concerns global, invariant properties of such spaces that can t be changed by local deformations. Famously, to a topologist, you can turn a doughnut into a coffee cup by simply deforming its surface, since both surfaces have one hole and are therefore equivalent topologically. You can stretch and squeeze all you like, but even the most malleable doughnut will refuse to become a pretzel. Wen found that new properties of the zero-temperature phases were revealed in the different topological settings, and he coined the term topological order to describe the essence of these phases. Other theorists were also uncovering links to topology. With the discovery of many more exotic phases so many that researchers say they can barely keep up it became clear that topology, together with symmetry, offers a good organizing schema. The topological phases only show up near absolute zero, because only at such low temperatures can systems of particles settle into their lowest-energy quantum ground state. In the ground state, the delicate interactions that correlate particles identities effects that are destroyed at higher temperatures link up particles in global patterns of quantum entanglement. Instead of having individual mathematical descriptions, particles become components of a more complicated function that describes all of them at once, often with entirely new particles emerging as the excitations of the global phase. The long-range entanglement patterns that arise are topological, or impervious to local changes, like the number of holes in a manifold.

5 Lucy Reading-Ikkanda/

6 Consider the simplest topological phase in a system called a quantum spin liquid that consists of a 2-D lattice of spins, or particles that can point up, down, or some probability of each simultaneously. At zero temperature, the spin liquid develops strings of spins that all point down, and these strings form closed loops. As the directions of spins fluctuate quantum-mechanically, the pattern of loops throughout the material also fluctuates: Loops of down spins merge into bigger loops and divide into smaller loops. In this quantum-spin-liquid phase, the system s ground state is the quantum superposition of all possible loop patterns. To understand this entanglement pattern as a type of topological order, imagine, as Wen did, that the quantum spin liquid is spilling around the surface of a torus, with some loops winding around the torus s hole. Because of these hole windings, instead of having a single ground state associated with the superposition of all loop patterns, the spin liquid will now exist in one of four distinct ground states, tied to four different superpositions of loop patterns. One state consists of all possible loop patterns with an even number of loops winding around the torus s hole and an even number winding through the hole. Another state has an even number of loops around the hole and an odd number through the hole; the third and fourth ground states correspond to odd and even, and odd and odd, numbers of hole windings, respectively. Which of these ground states the system is in stays fixed, even as the loop pattern fluctuates locally. If, for instance, the spin liquid has an even number of loops winding around the torus s hole, two of these loops might touch and combine, suddenly becoming a loop that doesn t wrap around the hole at all. Long-way loops decrease by two, but the number remains even. The system s ground state is a topologically invariant property that withstands local changes. Future quantum computers could take advantage of this invariant quality. Having four topological ground states that aren t affected by local deformations or environmental error gives you a way to store quantum information, because your bit could be what ground state it s in, explained Zaletel, who has studied the topological properties of spin liquids and other quantum phases. Systems like spin liquids don t really need to wrap around a torus to have topologically protected ground states. A favorite playground of researchers is the toric code, a phase theoretically constructed by the condensed matter theorist Alexei Kitaev of the California Institute of Technology in 1997 and demonstrated in experiments over the past decade. The toric code can live on a plane and still maintain the multiple ground states of a torus. (Loops of spins are essentially able to move off the edge of the system and re-enter on the opposite side, allowing them to wind around the system like loops around a torus s hole.) We know how to translate between the ground-state properties on a torus and what the behavior of the particles would be, Zaletel said. Spin liquids can also enter other phases, in which spins, instead of forming closed loops, sprout branching networks of strings. This is the string-net liquid phase that, according to Wen, can produce the Standard Model of particle physics starting from a 3-D qubit ocean. The Universe of Phases Research by several groups in 2009 and 2010 completed the classification of gapped phases of matter in one dimension, such as in chains of particles. A gapped phase is one with a ground state: a lowest-energy configuration sufficiently removed or gapped from higher-energy states that the system stably settles into it. Only gapped quantum phases have well-defined excitations in the form of particles. Gapless phases are like swirling matter miasmas or quantum soups and remain largely unknown territory in the landscape of phases.

7 For a 1-D chain of bosons particles like photons that have integer values of quantum spin, which means they return to their initial quantum states after swapping positions there is only one gapped topological phase. In this phase, first studied by the Princeton theorist Duncan Haldane, who, along with David Thouless and J. Michael Kosterlitz, won the 2016 Nobel Prize for decades of work on topological phases, the spin chain gives rise to half-spin particles on both ends. Two gapped topological phases exist for chains of fermions particles like electrons and quarks that have halfinteger values of spin, meaning their states become negative when they switch positions. The topological order in all these 1-D chains stems not from long-range quantum entanglement, but from local symmetries acting between neighboring particles. Called symmetry-protected topological phases, they correspond to cocycles of the cohomology group, mathematical objects related to invariants like the number of holes in a manifold. Lucy Reading-Ikkanda/, adapted from figure by Xiao-Gang Wen Two-dimensional phases are more plentiful and more interesting. They can have what some experts consider true topological order: the kind associated with long-range patterns of quantum entanglement, like the fluctuating loop patterns in a spin liquid. In the last few years, researchers have shown that these entanglement patterns correspond to topological structures called tensor categories, which enumerate the different ways that objects can possibly fuse and braid around one another. The tensor categories give you a way [to describe] particles that fuse and braid in a consistent way, said David Pérez-García of Complutense University of Madrid. Researchers like Pérez-García are working to mathematically prove that the known classes of 2-D gapped topological phases are complete. He helped close the 1-D case in 2010, at least under the widely-held assumption that these phases are always well-approximated by quantum field theories mathematical descriptions that treat the particles environments as smooth. These tensor categories are conjectured to cover all 2-D phases, but there is no mathematical proof yet, PérezGarcía said. Of course, it would be much more interesting if one can prove that this is not all. Exotic things are always interesting because they have new physics, and they re maybe useful. Gapless quantum phases represent another kingdom of possibilities to explore, but these impenetrable fogs of matter resist most theoretical methods. The language of particles is not useful, and there are supreme challenges that we are starting to confront, said Senthil Todadri, a condensed matter theorist at MIT. Gapless phases present the main barrier in the quest to understand high-temperature superconductivity, for instance. And they hinder quantum gravity

8 researchers in the it from qubit movement, who believe that not only elementary particles, but also space-time and gravity, arise from patterns of entanglement in some kind of underlying qubit ocean. In it from qubit, we spend much of our time on gapless states because this is where one gets gravity, at least in our current understanding, said Brian Swingle, a theoretical physicist at the University of Maryland. Some researchers try to use mathematical dualities to convert the quantumsoup picture into an equivalent particle description in one higher dimension. It should be viewed in the spirit of exploring, Todadri said. Even more enthusiastic exploration is happening in 3-D. What s already clear is that, when spins and other particles spill from their chains and flatlands and fill the full three spatial dimensions of reality, unimaginably strange patterns of quantum entanglement can emerge. In 3-D, there are things that escape, so far, this tensor-category picture, said Pérez-García. The excitations are very wild. The Haah Code The very wildest of the 3-D phases appeared seven years ago. A talented Caltech graduate student named Jeongwan Haah discovered the phase in a computer search while looking for what s known as the dream code : a quantum ground state so robust that it can be used to securely store quantum memory, even at room temperature. For this, Haah had to turn to 3-D matter. In 2-D topological phases like the toric code, a significant source of error is stringlike operators : perturbations to the system that cause new strings of spins to accidentally form. These strings will sometimes wind new loops around the torus s hole, bumping the number of windings from even to odd or vice versa and converting the toric code to one of its three other quantum ground states. Because strings grow uncontrollably and wrap around things, experts say there cannot be good quantum memories in 2-D.

9 Jeremy Mashburn Jeongwan Haah, a condensed matter theorist now working at Microsoft Research in Redmond, Washington, discovered a bizarre 3-D phase of matter with fractal properties. Haah wrote an algorithm to search for 3-D phases that avoid the usual kinds of stringlike operators. The computer coughed up 17 exact solutions that he then studied by hand. Four of the phases were confirmed to be free of stringlike operators; the one with the highest symmetry was what s now known as the Haah code. As well as being potentially useful for storing quantum memory, the Haah code was also profoundly weird. Xie Chen, a condensed matter theorist at Caltech, recalled hearing the news as a graduate student in 2011, within a month or two of Haah s disorienting discovery. Everyone was totally shocked, she said. We didn t know anything we could do about it. And now, that s been the situation for many years. The Haah code is relatively simple on paper: It s the solution of a two-term energy formula, describing spins that interact with their eight nearest neighbors in a cubic lattice. But the resulting phase strains our imaginations, Todadri said. The code features particle-like entities called fractons that, unlike the loopy patterns in, say, a quantum spin liquid, are nonliquid and locked in place; the fractons can only hop between positions in the lattice if those positions are operated upon in a fractal pattern. That is, you have to inject energy into the system at each corner of, say, a tetrahedron connecting four fractons in order to make them switch positions, but when you zoom in, you see that what you treated as a point-like corner was actually the four corners of a smaller tetrahedron, and you have to inject energy into the corners of that one as well. At a finer scale, you see an even smaller tetrahedron, and so on, all the way down to the finest scale of the lattice. This fractal behavior means that the Haah code never forgets the underlying lattice it comes from, and it can never be approximated by a smoothed-out description of the lattice, as in a quantum field theory. What s more, the number of ground states in the Haah code grows with the size of the underlying lattice a decidedly non-topological property. (Stretch a torus, and it s still a torus.) The quantum state of the Haah code is extraordinarily secure, since a fractal operator that perfectly hits all the marks is unlikely to come along at random. Experts say a realizable version of the code would be of great technological interest. Haah s phase has also generated a surge of theoretical speculation. Haah helped matters along in 2015 when he and two collaborators at MIT discovered many examples of a class of phases now known as fracton models that are simpler cousins of the Haah code. (The first model in this family was introduced by Claudio Chamon of Boston University in 2005.) Chen and others have since been studying the topology of these fracton systems, some of which permit particles to move along lines or sheets within a 3-D volume and might aid conceptual understanding or be easier to realize experimentally. It s opening the door to many more exotic things, Chen said of the Haah code. It s an indication about how little we know about 3-D and higher dimensions. And because we don t yet have a systematic picture of what is going on, there might be a lot of things lying out there waiting to be explored. No one knows yet where the Haah code and its cousins belong in the landscape of possible phases,

10 or how much bigger this space of possibilities might be. According to Todadri, the community has made progress in classifying the simplest gapped 3-D phases, but more exploration is needed in 3-D before a program of complete classification can begin there. What s clear, he said, is that when the classification of gapped phases of matter is taken up in 3-D, it will have to confront these weird possibilities that Haah first discovered. Many researchers think new classifying concepts, and even whole new frameworks, might be necessary to capture the Haah code s fractal nature and reveal the full scope of possibilities for 3-D quantum matter. Wen said, You need a new type of theory, new thinking. Perhaps, he said, we need a new picture of nonliquid patterns of long-range entanglement. We have some vague ideas but don t have a very systematic mathematics to do them, he said. We have some feeling what it looks like. The detailed systematics are still lacking. But that s exciting. This article was reprinted on theatlantic.com.

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

An unification of light and electron

An unification of light and electron An unification of light and electron Xiao-Gang Wen http://dao.mit.edu/ wen Three turning points in my life After 10 years closure, Deng Xiao-Ping reopened universities in 1977. I entered USTC that year.

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

The Quantum Hall Effect

The Quantum Hall Effect The Quantum Hall Effect David Tong (And why these three guys won last week s Nobel prize) Trinity Mathematical Society, October 2016 Electron in a Magnetic Field B mẍ = eẋ B x = v cos!t! y = v sin!t!!

More information

Anything you can do...

Anything you can do... Anything you can do... David Ridout Department of Theoretical Physics Australian National University Founder s Day, October 15, 2010 The Tao of TP Theoretical physicists build mathematical models to (try

More information

Strange phenomena in matter s flatlands

Strange phenomena in matter s flatlands THE NOBEL PRIZE IN PHYSICS 2016 POPULAR SCIENCE BACKGROUND Strange phenomena in matter s flatlands This year s Laureates opened the door on an unknown world where matter exists in strange states. The Nobel

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

A most elegant philosophy about the Theory Of Everything

A most elegant philosophy about the Theory Of Everything A most elegant philosophy about the Theory Of Everything Author: Harry Theunissen (pseudonym) Email: htheunissen61@hotmail.com Abstract: Given a simple set of assumptions, this paper gives an elegant explanation

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

Bose Einstein Condensation

Bose Einstein Condensation April 3, 2017 Quantum Physics becomes visible in the cold Quantum Effects in Macroscopic World at Low Temperature Superconductivity Quantum Hall Effect Bose Einstein Condensation Deep down, all matter

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

15 Skepticism of quantum computing

15 Skepticism of quantum computing 15 Skepticism of quantum computing Last chapter, we talked about whether quantum states should be thought of as exponentially long vectors, and I brought up class BQP/qpoly and concepts like quantum advice.

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire ASTRO 114 Lecture 55 1 Okay. We re now gonna continue discussing and conclude discussing the entire universe. So today we re gonna learn about everything, everything that we know of. There s still a lot

More information

A Topological Model of Particle Physics

A Topological Model of Particle Physics A Topological Model of Particle Physics V. Nardozza June 2018 Abstract A mathematical model for interpreting Newtonian gravity by means of elastic deformation of space is given. Based on this model, a

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? MSC Bethancourt Lecture What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy Prologue We live in a

More information

Realizing non-abelian statistics in quantum loop models

Realizing non-abelian statistics in quantum loop models Realizing non-abelian statistics in quantum loop models Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

About a hundred years ago David Hilbert, a German mathematician. presented twenty-three math puzzles to the International Congress of

About a hundred years ago David Hilbert, a German mathematician. presented twenty-three math puzzles to the International Congress of About a hundred years ago David Hilbert, a German mathematician presented twenty-three math puzzles to the International Congress of Mathematicians. Today, only three remain unsolved. Added to those were

More information

People can't travel to the past, but scientists not so sure about quarks

People can't travel to the past, but scientists not so sure about quarks People can't travel to the past, but scientists not so sure about quarks By Scientific American, adapted by Newsela staff on 10.14.14 Word Count 1,446 Visitors explore an imaginary time machine, part of

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Physics Nov Bose-Einstein Gases

Physics Nov Bose-Einstein Gases Physics 3 3-Nov-24 8- Bose-Einstein Gases An amazing thing happens if we consider a gas of non-interacting bosons. For sufficiently low temperatures, essentially all the particles are in the same state

More information

Mathematicians Tame Rogue Waves, Lighting Up Future of LEDs

Mathematicians Tame Rogue Waves, Lighting Up Future of LEDs Mathematicians Tame Rogue Waves, Lighting Up Future of LEDs The mathematician Svitlana Mayboroda and collaborators have figured out how to predict the behavior of electrons a mathematical discovery that

More information

From Quantum Mechanics to String Theory

From Quantum Mechanics to String Theory From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics: measurements and uncertainty Smashing things together: from Rutherford to the LHC Particle Interactions Quarks

More information

News from NBIA. Condensed Matter Physics: from new materials to quantum technology. time. Mark Rudner

News from NBIA. Condensed Matter Physics: from new materials to quantum technology. time. Mark Rudner News from NBIA Condensed Matter Physics: from new materials to quantum technology Mark Rudner time ~100 years after Bohr, the basic laws and players are established 1913 2013 Image from www.periodni.com

More information

Modern Physics notes Paul Fendley Lecture 1

Modern Physics notes Paul Fendley Lecture 1 Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 1 What is Modern Physics? Topics in this Class Books Their Authors Feynman 1.1 What is Modern Physics? This class is usually called modern

More information

Knots, Coloring and Applications

Knots, Coloring and Applications Knots, Coloring and Applications Ben Webster University of Virginia March 10, 2015 Ben Webster (UVA) Knots, Coloring and Applications March 10, 2015 1 / 14 This talk is online at http://people.virginia.edu/~btw4e/knots.pdf

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? Gents of Texas A&M What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy March 2018 Prologue We live

More information

11/26/2018 Photons, Quasars and the Possibility of Free Will - Scientific American Blog Network. Observations

11/26/2018 Photons, Quasars and the Possibility of Free Will - Scientific American Blog Network. Observations Observations Photons, Quasars and the Possibility of Free Will Flickers of light from the edge of the cosmos help physicists advance the idea that the future is not predetermined By Brian Koberlein on

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

New forms of matter near absolute zero temperature

New forms of matter near absolute zero temperature New forms of matter near absolute zero temperature Wolfgang Ketterle Massachusetts Institute of Technology, Cambridge, USA Abstract. First, I want to make some remarks about my career. In 1990, I made

More information

COPENHAGEN INTERPRETATION:

COPENHAGEN INTERPRETATION: QUANTUM PHILOSOPHY PCES 4.41 Perhaps the most difficult things to understand about QM are (i) how to reconcile our common sense ideas about physical reality with phenomena such as entanglement, & (ii)

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

How to Train Your Photon Dragon

How to Train Your Photon Dragon How to Train Your Photon Dragon Virginia (Gina) Lorenz Department of Physics University of Illinois at Urbana-Champaign Saturday Physics for Everyone, December 5, 2015 Today s Program 10:15 Talk and demos

More information

Talk Science Professional Development

Talk Science Professional Development Talk Science Professional Development Transcript for Grade 5 Scientist Case: The Water to Ice Investigations 1. The Water to Ice Investigations Through the Eyes of a Scientist We met Dr. Hugh Gallagher

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Extra Dimensions in Physics? Shamit Kachru Stanford University

Extra Dimensions in Physics? Shamit Kachru Stanford University Extra Dimensions in Physics? Shamit Kachru Stanford University One of the few bits of fundamental physics that becomes obvious to most of us in childhood: our playing field consists of three spatial dimensions,

More information

arxiv: v3 [quant-ph] 23 Jun 2011

arxiv: v3 [quant-ph] 23 Jun 2011 Feasibility of self-correcting quantum memory and thermal stability of topological order Beni Yoshida Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Topological order of a two-dimensional toric code

Topological order of a two-dimensional toric code University of Ljubljana Faculty of Mathematics and Physics Seminar I a, 1st year, 2nd cycle Topological order of a two-dimensional toric code Author: Lenart Zadnik Advisor: Doc. Dr. Marko Žnidarič June

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? Lunar Society What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy Prologue We live in a time of remarkable

More information

Cosmic Strings and Other Topological Defects. by A. Vilenkin and E. P. S. Shellard. Reviewed by John Preskill. 28 March 1996

Cosmic Strings and Other Topological Defects. by A. Vilenkin and E. P. S. Shellard. Reviewed by John Preskill. 28 March 1996 Cosmic Strings and Other Topological Defects by A. Vilenkin and E. P. S. Shellard Reviewed by John Preskill 28 March 1996 One of the most ironic twists of twentieth century science, and one of the most

More information

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018 Topics: Post-main-sequence stellar evolution, degeneracy pressure, and white dwarfs Summary of reading: Review section 2 of Ch. 17. Read the beginning and first section of Ch. 18 (up through the middle

More information

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States Chapter 8 Quantum Entanglement 8.1 Introduction In our final chapter on quantum mechanics we introduce the concept of entanglement. This is a feature of two-particle states (or multi-particle states) in

More information

Bell s spaceship paradox

Bell s spaceship paradox Bell s spaceship paradox If the two ships start accelerating at the same time, I always see them travelling at the same velocity, and keeping a constant distance... But I said the objects get shorter when

More information

Fermionic topological quantum states as tensor networks

Fermionic topological quantum states as tensor networks order in topological quantum states as Jens Eisert, Freie Universität Berlin Joint work with Carolin Wille and Oliver Buerschaper Symmetry, topology, and quantum phases of matter: From to physical realizations,

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Cosmology Lecture 2 Mr. Kiledjian

Cosmology Lecture 2 Mr. Kiledjian Cosmology Lecture 2 Mr. Kiledjian Lecture 2: Quantum Mechanics & Its Different Views and Interpretations a) The story of quantum mechanics begins in the 19 th century as the physicists of that day were

More information

Condensed Matter Physics: From Stone Age Pottery to Topological Quantum Computing

Condensed Matter Physics: From Stone Age Pottery to Topological Quantum Computing Condensed Matter Physics: From Stone Age Pottery to Topological Quantum Computing Hanno Weitering Department of Physics and Astronomy The Joint Institute for Advanced Materials A physicist s view of the

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

Welcome to the Solid State

Welcome to the Solid State Max Planck Institut für Mathematik Bonn 19 October 2015 The What 1700s 1900s Since 2005 Electrical forms of matter: conductors & insulators superconductors (& semimetals & semiconductors) topological insulators...

More information

An origin of light and electrons a unification of gauge interaction and Fermi statistics

An origin of light and electrons a unification of gauge interaction and Fermi statistics An origin of light and electrons a unification of gauge interaction and Fermi statistics Michael Levin and Xiao-Gang Wen http://dao.mit.edu/ wen Artificial light and quantum orders... PRB 68 115413 (2003)

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking. Felix Yu Theoretical Physics Department Fermilab

The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking. Felix Yu Theoretical Physics Department Fermilab The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking Felix Yu Theoretical Physics Department Fermilab Ask-A-Scientist Public Talk November 3, 2013 Nobel Prize 2013 F. Englert,

More information

The Toric-Boson model and quantum memory at finite temperature

The Toric-Boson model and quantum memory at finite temperature The Toric-Boson model and quantum memory at finite temperature A.H., C. Castelnovo, C. Chamon Phys. Rev. B 79, 245122 (2009) Overview Classical information can be stored for arbitrarily long times because

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Finite Temperature Quantum Memory and Haah s Code

Finite Temperature Quantum Memory and Haah s Code Finite Temperature Quantum Memory and Haah s Code S.M. Kravec 1 1 Department of Physics, University of California at San Diego, La Jolla, CA 92093 This paper addresses the question of whether realizations

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

MATH 308 COURSE SUMMARY

MATH 308 COURSE SUMMARY MATH 308 COURSE SUMMARY Approximately a third of the exam cover the material from the first two midterms, that is, chapter 6 and the first six sections of chapter 7. The rest of the exam will cover the

More information

Introduction: Great Unsolved Problems in mathematics

Introduction: Great Unsolved Problems in mathematics How to survive in more than 3 dimensions? An introduction to the Poincare Conjecture by Vincent v.d. Noort CPO English speaking and writing skills, December 12, 2002. Introduction: Great Unsolved Problems

More information

If I only had a Brane

If I only had a Brane If I only had a Brane A Story about Gravity and QCD. on 20 slides and in 40 minutes. AdS/CFT correspondence = Anti de Sitter / Conformal field theory correspondence. Chapter 1: String Theory in a nutshell.

More information

Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian

Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian Microsoft Station Q Aspen Winter Conference, 3/21/2018 Acknowledgements Collaborators: Zhen Bi (MIT) Alex Thomson (Harvard)

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

An Introduction to Electricity and Circuits

An Introduction to Electricity and Circuits An Introduction to Electricity and Circuits Materials prepared by Daniel Duke 4 th Sept 2013. This document may be copied and edited freely with attribution. This course has been designed to introduce

More information

Life with More Than 4: Extra Dimensions

Life with More Than 4: Extra Dimensions Life with More Than 4: Extra Dimensions Andrew Larkoski 4/15/09 Andrew Larkoski SASS 5 Outline A Simple Example: The 2D Infinite Square Well Describing Arbitrary Dimensional Spacetime Motivations for Extra

More information

Scientists Learn the Ropes on Tying Molecular Knots

Scientists Learn the Ropes on Tying Molecular Knots Scientists Learn the Ropes on Tying Molecular Knots As chemists tie the most complicated molecular knot yet, biophysicists create a periodic table that describes what kinds of knots are possible. By Jordana

More information

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Outline 1. Introduction: phase transitions and order. 2. The Landau symmetry

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Superposition - World of Color and Hardness

Superposition - World of Color and Hardness Superposition - World of Color and Hardness We start our formal discussion of quantum mechanics with a story about something that can happen to various particles in the microworld, which we generically

More information

The Intersection of Chemistry and Biology: An Interview with Professor W. E. Moerner

The Intersection of Chemistry and Biology: An Interview with Professor W. E. Moerner The Intersection of Chemistry and Biology: An Interview with Professor W. E. Moerner Joseph Nicolls Stanford University Professor W.E Moerner earned two B.S. degrees, in Physics and Electrical Engineering,

More information

Stochastic Histories. Chapter Introduction

Stochastic Histories. Chapter Introduction Chapter 8 Stochastic Histories 8.1 Introduction Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical processes often arise in classical physics, as well as in

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Susanne Reffert MY STUDIES. Theoretical/Mathematical Physicist. Many connections between mathematics and physics!

Susanne Reffert MY STUDIES. Theoretical/Mathematical Physicist. Many connections between mathematics and physics! Susanne Reffert MY STUDIES Theoretical/Mathematical Physicist Many connections between mathematics and physics! Susanne Reffert born in Zürich, Switzerland German nationality High School always wanted

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008 Part I Electrostatics 1: Charge and Coulomb s Law July 6, 2008 1.1 What is Electric Charge? 1.1.1 History Before 1600CE, very little was known about electric properties of materials, or anything to do

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Boundary Degeneracy of Topological Order

Boundary Degeneracy of Topological Order Boundary Degeneracy of Topological Order Juven Wang (MIT/Perimeter Inst.) - and Xiao-Gang Wen Mar 15, 2013 @ PI arxiv.org/abs/1212.4863 Lattice model: Toric Code and String-net Flux Insertion What is?

More information

Modern Physics notes Spring 2007 Paul Fendley Lecture 27

Modern Physics notes Spring 2007 Paul Fendley Lecture 27 Modern Physics notes Spring 2007 Paul Fendley fendley@virginia.edu Lecture 27 Angular momentum and positronium decay The EPR paradox Feynman, 8.3,.4 Blanton, http://math.ucr.edu/home/baez/physics/quantum/bells

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

University of Maryland Department of Physics

University of Maryland Department of Physics Spring 3 University of Maryland Department of Physics Laura Lising Physics 1 March 6, 3 Exam #1 nswer all questions on these sheets. Please write clearly and neatly: We can only give you credit for what

More information

The PROMYS Math Circle Problem of the Week #3 February 3, 2017

The PROMYS Math Circle Problem of the Week #3 February 3, 2017 The PROMYS Math Circle Problem of the Week #3 February 3, 2017 You can use rods of positive integer lengths to build trains that all have a common length. For instance, a train of length 12 is a row of

More information

What ideas/theories are physicists exploring today?

What ideas/theories are physicists exploring today? Where are we Headed? What questions are driving developments in fundamental physics? What ideas/theories are physicists exploring today? Quantum Gravity, Stephen Hawking & Black Hole Thermodynamics A Few

More information

Lecture 14, Thurs March 2: Nonlocal Games

Lecture 14, Thurs March 2: Nonlocal Games Lecture 14, Thurs March 2: Nonlocal Games Last time we talked about the CHSH Game, and how no classical strategy lets Alice and Bob win it more than 75% of the time. Today we ll see how, by using entanglement,

More information

Conceptual Explanations: Radicals

Conceptual Explanations: Radicals Conceptual Eplanations: Radicals The concept of a radical (or root) is a familiar one, and was reviewed in the conceptual eplanation of logarithms in the previous chapter. In this chapter, we are going

More information

Experiment 1 Make a Magnet

Experiment 1 Make a Magnet Magnets Here s a riddle. I stick to some things but not to others. I stick but I m not sticky. I attract some things but push other things away and, if allowed to move, I will always point the same way.

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

MITOCW watch?v=nw4vp_upvme

MITOCW watch?v=nw4vp_upvme MITOCW watch?v=nw4vp_upvme The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Atomic Theory. Introducing the Atomic Theory:

Atomic Theory. Introducing the Atomic Theory: Atomic Theory Chemistry is the science of matter. Matter is made up of things called atoms, elements, and molecules. But have you ever wondered if atoms and molecules are real? Would you be surprised to

More information

STATES OF MATTER NOTES..

STATES OF MATTER NOTES.. STATES OF MATTER NOTES.. While you are reading, answer the following which will help you with the States of Matter Project. What is matter (definition): What are the states of matter and what are the characteristics/properties

More information

Manuscript code: BH11160 RECVD: Mon Feb 8 16:14: Resubmission to: Physical Review B Resubmission type: resubmit

Manuscript code: BH11160 RECVD: Mon Feb 8 16:14: Resubmission to: Physical Review B Resubmission type: resubmit 1 of 6 05/17/2012 09:32 AM Date: Mon, 8 Feb 2010 21:14:55 UT From: esub-adm@aps.org To: prbtex@ridge.aps.org CC: wen@dao.mit.edu Subject: [Web] resub BH11160 Gu Subject: BH11160 Manuscript code: BH11160

More information

Topological order from quantum loops and nets

Topological order from quantum loops and nets Topological order from quantum loops and nets Paul Fendley It has proved to be quite tricky to T -invariant spin models whose quasiparticles are non-abelian anyons. 1 Here I ll describe the simplest (so

More information

John H. Palmieri Research description 20 September 2001

John H. Palmieri Research description 20 September 2001 John H. Palmieri Research description 20 September 2001 My research is in stable homotopy theory, which is a subfield of topology, one of the main branches of mathematics. Stable homotopy theory is roughly

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

Simply Relativity Copyright Max Morriss Abstract

Simply Relativity Copyright Max Morriss Abstract Simply Relativity Copyright Max Morriss 2008 Abstract There s something about the probabilistic formulation of Quantum Mechanics that doesn t sit right with me. I began contemplating various ways to visualize

More information