Midterm I  Solutions


 Barry Gilbert
 4 years ago
 Views:
Transcription
1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2008 Professor Chenming Hu Midterm I  Solutions Name: SID: Grad/Undergrad: Closed book. One sheet of notes is allowed. There are 12 pages of this exam including this page. Problem 1 15 Problem 2 30 Problem 3 25 Problem 4 30 Total 100
2 Physical Constants Electronic charge q C Permittivity of vacuum ε F cm 1 Relative permittivity of silicon ε Si /ε Boltzmann s constant k x 105 ev/ K or J K 1 Thermal voltage at T = 300K kt/q V Effective density of states N c 2.8 x cm 3 Effective density of states N v 1.04 x cm 3
3 Problem 1 [15pts] [5pts] (a) Draw qualitatively the FermiDirac distribution at T=300K, T=150K, and T 0K. f(e) 1 T = 300K T = 150K T ~ 0K E f E
4 [10pts] (b) Quantum wells are often used in applications such as semiconductor lasers. In a quantum well, electrons are confined in a thin slab of material, as shown below nm 10 nm 1000 nm The densityofstates, D(E) in an ideal quantumwell is steplike: D(E): states / ev / nm 3 At T 0K, there are states in this system, mark the location of Fermi Level, E f? (In this problem, there is no need to consider spin explicitly since it is already taken into account in D(E).) At 0K, all the states below E f are filled with electrons; all the states above E f are empty. Therefore, Ef N = V i n= V i f( E) D( E) de = V i D( E) de Ec Ec This means the number of electrons in the system, N, equals the area under the D(E) curve up to E f, times the volume of the semiconductor, V. 7 3 V = 10nm 1000nm 1000nm= 10 nm. To determine the location of E f, we divide the system in two regions and calculates the number of states in these regions. 7 (1) 0.005eV < E < 0.02eV 0.4 ( ) 10 = 60000( states) = ( states) (2) 0.02eV < E < 0.045eV ( ) electrons will completely fill region (1); are left for region (2). Region (2) will only be partially filled. The precise location of E f : E 0.02eV = ( f ) E f = 0.03eV Ef ev
5 Problem 2 [30pts] [10pts] (a) A PN junction is fabricated by the process sequence shown below. The cartoons show cross sectional views of the wafer after each processing step. Fill in the names of each process steps shown below: 1. (Starting Wafer) 5. etching. 2. thermal oxidation. 6. resist strip. SiO 2 3. photoresist spincoating photoresist 7. ion implantation. As Ions 4. lithography. 8. Diffusion at 1100C for 60min Process Available: ion implantation, sputtering, resist strip, etching, lithography, chemical mechanical polishing, epitaxy, thermal oxidation
6 [5pts] (b) The starting wafer is Ptype and doped with N A =10 15 cm 3. Find the depletion region width. (You may assume N d >> N a and Φ bi =0.85 V) The implanted Ntype region is usually much more heavily doped than the background Pdoping (10 15 cm 3 ), this is why we can assume N d >> N a. We may use the lightlydoped side doping concentration to calculate W dep. 14 2εφ si bi F / cm 0.85V 4 Wdep = = = cm= 1.05μm qna C 10 cm [5pts] (c) Find the depletion region width when a reverse bias of V R = 4.15V is applied. (Also assume N d >> N a ) The depletion region is widened under reverse bias. 14 ( φ ) 2ε + V F / cm 5V si bi R 4 Wdep = = = cm= 2.56 m qna C 10 cm μ [10pts] (d) If the diode area is 0.01cm 2 1, plot 2 C dep and the slope of the curve, respectively? versus V R. What are the xintercept The depletion capacitance can be calculated using the parallelplate capacitor formula with plate separation W dep. C dep εsi A qnaεsi A = = W 2 2 ( φ + V ) dep bi R Arrange terms: 2 φ + V = C qn ε A ( ) 1 bi R 2 2 dep a si (Here we also assume N d >> N a ) xintercept = Φbi = φ slope: bi 2 2 = qnaε sia C 10 cm F / cm 0.01cm ( ) = = FC i F iv 1/C dep 2 Capacitance data Slope = 2/qNε s A 2 Increasing reverse bias V r R
7 Problem 3. [35pts] The carrier profiles in a forward biased PN diode are shown below. The majority carrier densities for both P and Nside are given. Also shown is the minority carrier density on the Pside. 10 N cm P [5pts] (a) Calculate the bias voltage. From the above graph you can find the doping density. 10, 10 From the minority carrier profile, / 10 /
8 [5pts] (b) Find the minority electron and hole current density 0 and 0. Use 12 /, 35 /, 0.01 and / / [5pts] (c) Add the minority hole concentration profile on the Nside and show N cm P
9 [5pts] (d) Redraw if the electron diffusion constant is 4 times larger. Assume all other conditions are the same. cm P If the diffusion constant is increased by a factor of 4, the diffusion length is doubled. So the minority carrier decay length will double. [5pts] (e) Redraw if 510 cm donors are added to the Pside and show 0. Assume all other conditions are the same. cm P
10 [5pts] (f) Redraw the applied bias voltage is reduced by Assume all other conditions are the same. cm P 10 With a 60mV reduction the minority carrier concentration is reduced by a factor of [5pts] (h) Draw the excess minority carrier distribution if the diode is reverse biased at ~1. N cm P With a reverse bias the excess minority carrier concentration at the edge of the deletion region will be
11 Problem 4. [20pts] You are given an Ntype piece of silicon with /. Assume 300 and there are no acceptor dopants, i.e. 0. cm [5pts] (a) Given that is constant, what is the electron current density? When the Fermi level is constant, the system is in equilibrium. So there will be no current flowing. The diffusion current and drift current will cancel each other out.,, 0 [5pts] (b) Find the electron diffusion current density,. Use 30 /., / 910 / / 910 / 10 / / (or / )
12 [5pts] (c) Derive an expression for the electron drift current density, in terms of., Using Poisson s equation and 1 Therefore, / /, 910 / 9 10 / / 9 10 / 10 / / / / [2pts] (d) Using the total electron current density, find the value of. From,, , / / / [3pts] (e) Numerically verify Einstein s relationship with the values you ve calculated above / / 0.026
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm I Name: Closed book. One sheet of notes is allowed.
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:304:30
More informationFor the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.
Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009.
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Spring 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationChapter 7. The pn Junction
Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a Ptype substrate such that a layer of semiconductor is converted into N type. Converting
More informationConsider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is
CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.
More informationUNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey.
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE 143 Professor Ali Javey Spring 2009 Exam 2 Name: SID: Closed book. One sheet of notes is allowed.
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Midterm I
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Fall 2006 Professor Ali Javey Midterm I Name: 1. Closed book. One sheet of notes is allowed.
More information1st YearComputer Communication EngineeringRUC. 4 PN Junction
4 PN Junction We begin our study of semiconductor devices with the junction for three reasons. (1) The device finds application in many electronic systems, e.g., in adapters that charge the batteries
More information1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :0011:00
1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:0011:00 INSTRUCTIONS: 1. Answer all seven (7) questions.
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Fall 2009.
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Fall 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.
More informationECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:
ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: Depletion Approximation Step Junction Things you should know when you leave Key Questions What is the space charge region? What are the
More informationn N D n p = n i p N A
Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donordoped semiconductor: n N D where N D is the concentration of donor impurity Acceptordoped
More informationECE 340 Lecture 21 : PN Junction II Class Outline:
ECE 340 Lecture 21 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationSession 6: Solid State Physics. Diode
Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationQuiz #1 Practice Problem Set
Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016  No aids except a nonprogrammable calculator  All questions must be answered  All questions
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION
More informationSemiconductor Physics and Devices
The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at
More informationElectrical Characteristics of MOS Devices
Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Thresholdvoltage
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationFundamentals of Semiconductor Physics
Fall 2007 Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics xinwan@zimp.zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Transistor technology evokes new physics The objective of
More informationLecture 04 Review of MOSFET
ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D
More informationECE 340 Lecture 27 : Junction Capacitance Class Outline:
ECE 340 Lecture 27 : Junction Capacitance Class Outline: Breakdown Review Junction Capacitance Things you should know when you leave M.J. Gilbert ECE 340 Lecture 27 10/24/11 Key Questions What types of
More informationECE 440 Lecture 28 : PN Junction II Class Outline:
ECE 440 Lecture 28 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationECE342 Test 2 Solutions, Nov 4, :008:00pm, Closed Book (one page of notes allowed)
ECE342 Test 2 Solutions, Nov 4, 2008 6:008:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
More informationMake sure the exam paper has 9 pages (including cover page) + 3 pages of data for reference
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Spring 2006 EE143 Midterm Exam #1 Family Name First name SID Signature Make sure the exam paper
More informationSchottky Rectifiers Zheng Yang (ERF 3017,
ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 MetalSemiconductor Contact The work function
More informationCLASS 12th. Semiconductors
CLASS 12th Semiconductors 01. Distinction Between Metals, Insulators and SemiConductors Metals are good conductors of electricity, insulators do not conduct electricity, while the semiconductors have
More informationCharge Carriers in Semiconductor
Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms
More informationSemiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. Nr.
Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed
More informationPHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS Tennessee Technological University Wednesday, October 30, 013 1 Introduction Chapter 4: we considered the
More informationECE 305 Exam 3: Spring 2015 March 6, 2015 Mark Lundstrom Purdue University
NAME: PUID: : ECE 305 Exam 3: March 6, 2015 Mark Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula sheet at the end of this exam Following the ECE policy,
More informationJunction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006
Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide
More informationSample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013
Sample Exam # 2 ECEN 3320 Fall 203 Semiconductor Devices October 28, 203 Due November 4, 203. Below is the capacitancevoltage curve measured from a Schottky contact made on GaAs at T 300 K. Figure : Capacitance
More informationSolid State Electronics. Final Examination
The University of Toledo EECS:4400/5400/7400 Solid State Electronic Section elssf08fs.fm  1 Solid State Electronics Final Examination Problems Points 1. 1. 14 3. 14 Total 40 Was the exam fair? yes no
More informationECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University
NAME: PUID: : ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University This is a closed book exam You may use a calculator and the formula sheet Following the ECE policy, the calculator
More informationPHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor
More informationPN Junction
P Junction 20170504 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u
More informationWeek 3, Lectures 68, Jan 29 Feb 2, 2001
Week 3, Lectures 68, Jan 29 Feb 2, 2001 EECS 105 Microelectronics Devices and Circuits, Spring 2001 Andrew R. Neureuther Topics: M: Charge density, electric field, and potential; W: Capacitance of pn
More informationECE305: Spring 2018 Exam 2 Review
ECE305: Spring 018 Exam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75138) Chapter 5 (pp. 1956) Professor Peter Bermel Electrical and Computer Engineering Purdue University,
More informationESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor
Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back
More informationEE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions
EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 pn Junction ptype semiconductor in
More informationSemiconductor Junctions
8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss
More informationElectron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.
Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationBasic Physics of Semiconductors
Basic Physics of Semiconductors Semiconductor materials and their properties PNjunction diodes Reverse Breakdown EEM 205 Electronics I Dicle University, EEE Dr. Mehmet Siraç ÖZERDEM Semiconductor Physics
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture
More informationPN Junction and MOS structure
PN Junction and MOS structure Basic electrostatic equations We will use simple onedimensional electrostatic equations to develop insight and basic understanding of how semiconductor devices operate Gauss's
More informationFundamentals of the Metal Oxide Semiconductor FieldEffect Transistor
Triode Working FET Fundamentals of the Metal Oxide Semiconductor FieldEffect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the
More informationECE PN Junctions and Diodes
ECE 342 2. PN Junctions and iodes Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10
More informationPeak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,
Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier
More information(Refer Slide Time: 03:41)
Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture  25 PN Junction (Contd ) This is the 25th lecture of this course
More informationClassification of Solids
Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples
More informationLecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure
Lecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with
More informationMOS CAPACITOR AND MOSFET
EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure
More informationLecture 2. Introduction to semiconductors Structures and characteristics in semiconductors
Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor pn junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation
More informationLecture 8. Detectors for Ionizing Particles
Lecture 8 Detectors for Ionizing Particles Content Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Interaction of Radiation with Matter General
More informationLecture 12: MOS Capacitors, transistors. Context
Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those
More informationReview of Semiconductor Fundamentals
ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,
More informationpn junction biasing, pn IV characteristics, pn currents Norlaili Mohd. Noh EEE /09
CLASS 6&7 pn junction biasing, pn IV characteristics, pn currents 1 pn junction biasing Unbiased pn junction: the potential barrier is 0.7 V for Si and 0.3 V for Ge. Nett current across the pn junction
More informationReview Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination
Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The MetalSemiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)
More informationMake sure the exam paper has 7 pages (including cover page) + 3 pages of data for reference
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2005 EE143 Midterm Exam #1 Family Name First name SID Signature Make sure the exam paper
More informationMSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University
MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures
More informationStudent Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS
Name: CARLETON UNIVERSITY SELECTE FINAL EXAMINATION QUESTIONS URATION: 6 HOURS epartment Name & Course Number: ELEC 3908 Course Instructors: S. P. McGarry Authorized Memoranda: Nonprogrammable calculators
More information16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:
16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion
More informationChapter 2. The Well. Cross Sections Patterning Design Rules Resistance PN Junction Diffusion Capacitance. Baker Ch. 2 The Well. Introduction to VLSI
Chapter 2 The Well Cross Sections Patterning Design Rules Resistance PN Junction Diffusion Capacitance Joseph A. Elias, Ph.D. Adjunct Professor, University of Kentucky; Modeling MTS, Cypress Semiconductor
More informationLecture 0: Introduction
Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power
More information( )! N D ( x) ) and equilibrium
ECE 66: SOLUTIONS: ECE 66 Homework Week 8 Mark Lundstrom March 7, 13 1) The doping profile for an n type silicon wafer ( N D = 1 15 cm  3 ) with a heavily doped thin layer at the surface (surface concentration,
More informationElectronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)
Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices PN Junctions (Diodes): Physical
More informationSession 0: Review of Solid State Devices. From Atom to Transistor
Session 0: Review of Solid State Devices From Atom to Transistor 1 Objective To Understand: how Diodes, and Transistors operate! p n p+ n p n+ n+ p 2 21 Century Alchemy! Ohm s law resistivity Resistivity
More informationCHAPTER 4: PN P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki
CHAPTER 4: PN P N JUNCTION Part 2 Part 2 Charge Storage & Transient Behavior Junction Breakdown Heterojunction CHARGE STORAGE & TRANSIENT BEHAVIOR Once injected across the junction, the minority carriers
More informationECE 340 Lecture 39 : MOS Capacitor II
ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS CapacitanceVoltage Analysis Things you should know when you leave Key Questions What are the effects
More informationPHYS208 pn junction. January 15, 2010
1 PHYS208 pn junction January 15, 2010 List of topics (1) Density of states FermiDirac distribution Law of mass action Doped semiconductors Dopinglevel pnjunctions 1 Intrinsic semiconductors List of
More informationSemiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs
1 V. Semiconductor Detectors V.1. Principles Semiconductor Detectors are Ionization Chambers Detection volume with electric field Energy deposited positive and negative charge pairs Charges move in field
More informationChap. 11 Semiconductor Diodes
Chap. 11 Semiconductor Diodes Semiconductor diodes provide the best resolution for energy measurements, silicon based devices are generally used for chargedparticles, germanium for photons. Scintillators
More informationan introduction to Semiconductor Devices
an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the MetalOxideSemiconductor FieldEffect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor 
More information6.012 Electronic Devices and Circuits
Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3
More informationSemiconductor Physics. Lecture 6
Semiconductor Physics Lecture 6 Recap pn junction and the depletion region Driven by the need to have no gradient in the fermi level free carriers migrate across the pn junction leaving a region with few
More informationChapter 1 Overview of Semiconductor Materials and Physics
Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B
More informationECE 442. Spring, Lecture 2
ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture 2 Semiconductor physics band structures and charge carriers 1. What are the types of
More informationcollisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature
1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of
More informationThe pn junction. [Fonstad, Ghione]
The pn junction [Fonstad, Ghione] Band diagram On the vertical axis: potential energy of the electrons On the horizontal axis: now there is nothing: later we ll put the position qf s : work function (F
More informationKATIHAL FİZİĞİ MNT510
KATIHAL FİZİĞİ MNT510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationLecture 17  pn Junction. October 11, Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium
6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 171 Lecture 17  pn Junction October 11, 22 Contents: 1. Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium
More informationV BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.
Consider the the band diagram for a homojunction, formed when two bits of the same type of semicondutor (e.g. Si) are doped p and ntype and then brought into contact. Electrons in the two bits have different
More informationSemiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136
CHAPTER 3 Semiconductors Introduction 135 3.1 Intrinsic Semiconductors 136 3.2 Doped Semiconductors 139 3.3 Current Flow in Semiconductors 142 3.4 The pn Junction 148 3.5 The pn Junction with an Applied
More informationEE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level
EE 13 Intro to S Junctions eek 6 Notes Problem 1 hat is the work function? Energy to ecite electron from Fermi level to the vacuum level Electron affinity of 4.5eV Electron affinity of Ge 4.eV orkfunction
More informationQualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes
Qualitative Picture of the Ideal Diode G.R. Tynan UC San Diego MAE 119 Lecture Notes Band Theory of Solids: From Single Attoms to Solid Crystals Isolated Li atom (conducting metal) Has welldefined, isolated
More information