The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location.
|
|
- Gregory Davidson
- 4 years ago
- Views:
Transcription
1 Introduction to the Nyquist criterion The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location. Mapping. If we take a complex number on the s-plane and substitute into a function F(s), another complex number results. e.g. substituting s = 4 + j3 into F(s) = s 2 + 2s + 1 yields 16 + j30. Contour. Consider a collection of points, called a contour A. Contour A can be mapped into Contour B, as shown in the next Figure. Figure above; Mapping contour A through F(s) to contour B. 1
2 Assuming F(s) = (s z 1)(s z 2 ) (s p 1 )(s p 2 ) If we assume a clockwise direction for mapping the points on contour A, the contour B maps in a clockwise direction if F(s) has just one zero. If the zero is enclosed by contour A, then contour B enclose origin. Alternatively, the mapping is in a counterclockwise direction if F(s) has just one pole, and if the pole is enclosed by contour A, then contour B enclose origin. If there is the one pole and one zero is enclosed by contour A, then contour B does not enclose origin. 2
3 Figure above; Examples of contour mapping. 3
4 Consider the system in the Figure below. Figure above; closed loop control system Letting G(s) = N G D G, H(s) = N H D H, We found T(s) = Note that G(s) 1 + G(s)H(s) = N G D H D G D H + N G N H 1 + G(s)H(s) = D GD H + N G N H D G D H 4
5 The poles of 1+G(s)H(s) are the same as the poles of G(s)H(s), the open-looped system, that are known. The zeros of 1 + G(s)H(s) are the same as the poles of T(s), the closedlooped system, that are unknown. Because stable systems have T(s) with poles only in the left half-plane, we apply the concept of contour to use the entire right half-plane as contour A, as shown in the Figure below. Figure above; Contour enclosing right halfplane to determine stability. 5
6 We try to construct contour B via F(s) = G(s)H(s) which is the same as that of 1 + G(s)H(s), except that it is shifted to the right by (1, j0). The mapping is called the Nyquist diagram of G(s)H(s). Assuming that A starts from origin, A is a path traveling up the jω axis, from j0 to j, then a semicircular arc, with radius, followed by a path traveling up the jω axis, from j to origin. So substituting s = jω, with ω changing from 0 to, we obtain part of contour B, which is exactly the polar plot of G(s)H(s). 6
7 Each zero or pole of 1 + G(s)H(s) that is inside contour A (the right half-plane), yields a rotation around ( 1, j0) (clockwise for zero and counterclockwise for pole) for the resultant Nyquist diagram. The total number of counterclockwise revolution, N, around ( 1, j0) is N = P Z, where P is the number of openloop poles,and Z is the number of closed loop poles. Thus we determine that that the number of closed loop poles, Z, in the right half-plane equals the number of open-loop poles, P, that are in the right half-plane minus the number of counterclockwise revolution, N, around 1 of the mapping, i.e. Z = P N. Use Nyquist criterion to determine stability If P = 0 (open loop stable system), for a closed systems to be stable (i.e. Z = 0), we should have N = 0. That is, the contour should not enclose ( 1, j0). This is as shown in next Figure (a). 7
8 On the other hand, another system with P = 0 (open loop stable) has generated two clockwise encirclement of ( 1, j0), (N = 2), as shown in Figure (b) below. Thus Z = P N = 2. The system is unstable with two closed-loop poles in the right hand plane. Figure above; Mapping examples: (a) contour does not enclose closed loop poles; (b) contour does enclose closed loop poles; 8
9 Example: Apply the Nyquist criterion to determine the stability of the following unit-feedback systems with (i) G(s) = s + 3 (s + 2)(s 2 + 2s + 25). (ii) G(s) = (iii) G(s) = s + 20 (s + 2)(s + 7)(s + 50). 500(s 2) (s + 2)(s + 7)(s + 50). Solution: For (i) and (ii), check polar plots in the previous lecture. For both systems we have P = 0 (open loop stable system). The two nyquist plots does not enclose ( 1, j0), (N=0) Thus Z = P N = 0. Both systems (i) and (ii) are stable since there are no close-loop poles in the right half plane. 9
10 For (iii), we run numg=500* [1-2];; deng=conv([1 2],[1 7]); deng=conv(deng,[1 50]); G=tf(numg,deng); nyquist(g); grid on; Nyquist Diagram db 0 db 2 db 1 4 db 4 db 6 db 6 db Imaginary Axis db 20 db 10 db 20 db Real Axis Figure above; The polar plots for G(s) = 500(s 2) (s + 2)(s + 7)(s + 50). We have P = 0 (open loop stable system), but N = 1, so System (iii) is unstable with one closed loop pole in the right half plane. 10
Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year
Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim
Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response
Nyquist Stability Criteria
Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Introduction to
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
The Nyquist Feedback Stability Criterion
ECE137B notes; copyright 2018 The Nyquist Feedback Stability Criterion Mark Rodwell, University of California, Santa Barbara Feedback loop stability A () s AOL ( s) AOL ( s) 1 A ( s) ( s) 1 T ( s) Ns ()
Nyquist Criterion For Stability of Closed Loop System
Nyquist Criterion For Stability of Closed Loop System Prof. N. Puri ECE Department, Rutgers University Nyquist Theorem Given a closed loop system: r(t) + KG(s) = K N(s) c(t) H(s) = KG(s) +KG(s) = KN(s)
Lecture 15 Nyquist Criterion and Diagram
Lecture Notes of Control Systems I - ME 41/Analysis and Synthesis of Linear Control System - ME86 Lecture 15 Nyquist Criterion and Diagram Department of Mechanical Engineering, University Of Saskatchewan,
Control Systems. Frequency Method Nyquist Analysis.
Frequency Method Nyquist Analysis chibum@seoultech.ac.kr Outline Polar plots Nyquist plots Factors of polar plots PolarNyquist Plots Polar plot: he locus of the magnitude of ω vs. the phase of ω on polar
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour
H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )
.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a
ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)
K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
Topic # Feedback Control
Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability
Introduction to Root Locus. What is root locus?
Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response
Robust Control 3 The Closed Loop
Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
Control Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
S I X SOLUTIONS TO CASE STUDIES CHALLENGES. Antenna Control: Stability Design via Gain K s s s+76.39K. T(s) =
S I X Stability SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Stability Design via Gain From the antenna control challenge of Chapter 5, Make a Routh table: 76.39K s 3 +151.32s 2 +198s+76.39K s
Root Locus Techniques
4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since
Control Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control
Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
Analysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
CONTROL SYSTEM STABILITY. CHARACTERISTIC EQUATION: The overall transfer function for a. where A B X Y are polynomials. Substitution into the TF gives:
CONTROL SYSTEM STABILITY CHARACTERISTIC EQUATION: The overall transfer function for a feedback control system is: TF = G / [1+GH]. The G and H functions can be put into the form: G(S) = A(S) / B(S) H(S)
Intro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
3 Stabilization of MIMO Feedback Systems
3 Stabilization of MIMO Feedback Systems 3.1 Notation The sets R and S are as before. We will use the notation M (R) to denote the set of matrices with elements in R. The dimensions are not explicitly
Frequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
Digital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
6.241 Dynamic Systems and Control
6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli
Class 13 Frequency domain analysis
Class 13 Frequency domain analysis The frequency response is the output of the system in steady state when the input of the system is sinusoidal Methods of system analysis by the frequency response, as
AA/EE/ME 548: Problem Session Notes #5
AA/EE/ME 548: Problem Session Notes #5 Review of Nyquist and Bode Plots. Nyquist Stability Criterion. LQG/LTR Method Tuesday, March 2, 203 Outline:. A review of Bode plots. 2. A review of Nyquist plots
x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!
1 Time-Delay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring
ECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
Time Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
FEL3210 Multivariable Feedback Control
FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO
MAE 143B - Homework 9
MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4
MAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
STABILITY OF CLOSED-LOOP CONTOL SYSTEMS
CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control
Control System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
Frequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011
Homework 7 - Solutions
Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
Nonlinear Control. Nonlinear Control Lecture # 18 Stability of Feedback Systems
Nonlinear Control Lecture # 18 Stability of Feedback Systems Absolute Stability + r = 0 u y G(s) ψ( ) Definition 7.1 The system is absolutely stable if the origin is globally uniformly asymptotically stable
ECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)
Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22 - Lecture 4 Step response and pole locations 4 - Review Definition of -transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology
The stability of linear time-invariant feedback systems
The stability of linear time-invariant feedbac systems A. Theory The system is atrictly stable if The degree of the numerator of H(s) (H(z)) the degree of the denominator of H(s) (H(z)) and/or The poles
FREQUENCY RESPONSE ANALYSIS Closed Loop Frequency Response
Closed Loop Frequency Response The Bode plot is generally constructed for an open loop transfer function of a system. In order to draw the Bode plot for a closed loop system, the transfer function has
Outline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT
Definition of Stability
Definition of Stability Transfer function of a linear time-invariant (LTI) system Fs () = b 2 1 0+ b1s+ b2s + + b m m m 1s - - + bms a0 + a1s+ a2s2 + + an-1sn- 1+ ansn Characteristic equation and poles
Theory of Machines and Automatic Control Winter 2018/2019
Theory of Machines and Automatic Control Winter 2018/2019 Lecturer: Sebastian Korczak, PhD, Eng. Institute of Machine Design Fundamentals - Department of Mechanics http://www.ipbm.simr.pw.edu.pl/ Lecture
Digital Control Systems State Feedback Control
Digital Control Systems State Feedback Control Illustrating the Effects of Closed-Loop Eigenvalue Location and Control Saturation for a Stable Open-Loop System Continuous-Time System Gs () Y() s 1 = =
IC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
Software Engineering/Mechatronics 3DX4. Slides 6: Stability
Software Engineering/Mechatronics 3DX4 Slides 6: Stability Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on lecture notes by P. Taylor and M. Lawford, and Control
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
MAE 143B - Homework 9
MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line
INPUT-OUTPUT APPROACH NUMERICAL EXAMPLES
INPUT-OUTPUT APPROACH NUMERICAL EXAMPLES EXERCISE Let us consider the linear dynamical system of order 2 with transfer function with Determine the gain 2 (H) of the input-output operator H associated with
Some special cases
Lecture Notes on Control Systems/D. Ghose/2012 87 11.3.1 Some special cases Routh table is easy to form in most cases, but there could be some cases when we need to do some extra work. Case 1: The first
MCE693/793: Analysis and Control of Nonlinear Systems
MCE693/793: Analysis and Control of Nonlinear Systems Introduction to Describing Functions Hanz Richter Mechanical Engineering Department Cleveland State University Introduction Frequency domain methods
Control of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
The Nyquist Stability Test
Handout X: EE24 Fall 2002 The Nyquist Stability Test.0 Introduction With negative feedback, the closed-loop transfer function A(s) approaches the reciprocal of the feedback gain, f, as the magnitude of
Nyquist Plots / Nyquist Stability Criterion
Nyquist Plots / Nyquist Stability Criterion Given Nyquist plot is a polar plot for vs using the Nyquist contour (K=1 is assumed) Applying the Nyquist criterion to the Nyquist plot we can determine the
Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)
1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of
Active Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
Lecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
Robust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
The Frequency-Response
6 The Frequency-Response Design Method A Perspective on the Frequency-Response Design Method The design of feedback control systems in industry is probably accomplished using frequency-response methods
EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections
Controls Problems for Qualifying Exam - Spring 2014
Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
Automatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward
Lecture 1 Root Locus
Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the
Procedure for sketching bode plots (mentioned on Oct 5 th notes, Pg. 20)
Procedure for sketching bode plots (mentioned on Oct 5 th notes, Pg. 20) 1. Rewrite the transfer function in proper p form. 2. Separate the transfer function into its constituent parts. 3. Draw the Bode
Uncertainty and Robustness for SISO Systems
Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical
The Frequency-response Design Method
Chapter 6 The Frequency-response Design Method Problems and Solutions for Section 6.. (a) Show that α 0 in Eq. (6.2) is given by α 0 = G(s) U 0ω = U 0 G( jω) s jω s= jω 2j and α 0 = G(s) U 0ω = U 0 G(jω)
Chapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,
Module 07 Control Systems Design & Analysis via Root-Locus Method
Module 07 Control Systems Design & Analysis via Root-Locus Method Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March
Essence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop
(Refer Slide Time: 2:11)
Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian institute of Technology, Delhi Lecture - 40 Feedback System Performance based on the Frequency Response (Contd.) The summary
Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus
STABILITY ANALYSIS TECHNIQUES
ECE4540/5540: Digital Control Systems 4 1 STABILITY ANALYSIS TECHNIQUES 41: Bilinear transformation Three main aspects to control-system design: 1 Stability, 2 Steady-state response, 3 Transient response
LECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich
LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following
Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.
ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition
Control Systems. EC / EE / IN. For
Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop
Outline. Control systems. Lecture-4 Stability. V. Sankaranarayanan. V. Sankaranarayanan Control system
Outline Control systems Lecture-4 Stability V. Sankaranarayanan Outline Outline 1 Outline Outline 1 2 Concept of Stability Zero State Response: The zero-state response is due to the input only; all the
CHAPTER # 9 ROOT LOCUS ANALYSES
F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system
(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
Stability of Feedback Control Systems: Absolute and Relative
Stability of Feedback Control Systems: Absolute and Relative Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University Stability: Absolute and Relative
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The
EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform
Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured