10-704: Information Processing and Learning Fall Lecture 21: Nov 14. sup

Size: px
Start display at page:

Download "10-704: Information Processing and Learning Fall Lecture 21: Nov 14. sup"

Transcription

1 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: Nov 4 Note: hese notes are based on scribed notes from Spring5 offering of this course LaeX template courtesy of UC Berkeley EECS dept Disclaimer: hese notes have not been subjected to the usual scrutiny reserved for formal publications hey may be distributed outside this class only with the permission of the Instructor 2 Minimax Risk and Le Cam s lower bound he minimax risk for class and loss l is R n () = E x Pθ [l ( (x) θ)] θ where is any estimator he upper bound of the minimax risk is given by designing an algorithm and the lower bound of the minimax risk is given by ormation theoretic techniques esting problems focus on specific loss function l ( (x) θ) = { (x) θ} so the minimax risk is R n () = P x θ [ (x) θ] θ In the previous lecture we saw that if there are two parameters θ 0 and θ then Le Cam s method shows that the minimax task is lower bounded by R n ({θ 0 θ }) (a) 2 2 P n θ0 P n θ V 2 2 We saw lower bounds for a simple normal mean testing problem 2 KL(P n θ 0 P n θ ) We also saw that we can use Le Cam s method for composite hypothesis tests using the following two tricks: We can always throw away parameters in the remum and lower bound the risk: P θ [ ] P θ [ ] Any problem with { } loss can be lower bounded by just choosing two parameters θ 0 θ and computing their V or KL 2 We can also separate the parameter space into two regions and mix over these sets P θ [ (x) θ] j {0} P θ [ (x) j] θ j { 2 E θ π 0x P θ [{ (x) 0}] + 2 E θ π x P θ [{ (x) }]} 2 2 P π 0 P π V 2-

2 2-2 Lecture 2: Nov 4 where P π0 (A) = E θ π0 [P θ (A)] π 0 is a distribution on 0 and π is a distribution on his is important for some problems By mixing you can make the distributions much closer together to prove stronger lower bounds But it is often challenging to compute the divergence to mixtures 22 Neyman-Pearson Lemma For simple vs simple tests the optimal statistics is the likelihood ratio test Λ(x) = P 0(x) P (x) (x) = {Λ(x) threshold} and 2 P 0[ (x) 0] + 2 P [ (x) ] = 2 2 P 0 P V Proof: In last class we saw that for any deterministic test : X {0 } with acceptance region A = {x X : (x) = } P 0 ( 0) + P ( ) = P 0 (A) + P (A c ) = P (A) + P 0 (A) (2) he result follows by noticing that this is minimized if A is the region where P 0 (x) P (x) 23 Information heoretic Connections and Fano s Method Another way to think of minimax testing is as a channel decoding problem Given a channel θ X we send θ {0 } and you see the samples X P θ If P 0 is close to P then you will have a high decoding error because when P 0 close to P H(θ X) is big Fano s inequality characterizes this relationship and can be used for proving minimax lower bounds for multiple hypothesis tests Consider the Markov chain θ X Let P e = P[ θ] for any test/decoder Fano s inequality implies that h(p e ) + P e log( ) H(θ X) or P e H(θ X) log 2 log( ) where P e = P θ πx Pθ [ (x) θ] Using the identities from earlier in the course there are many equivalent ways to state this inequality: since I(θ; X) = his is the global Fano s method I(θ; X) + log 2 P e log ( ) π(θ)p θ (X) π(θ)p θ (X) log π(θ) π(θ)p θ (X) = E θ π[kl(p θ P π )] + log 2 log = E θ π [KL(P θ P π )] We can weaken the mixture representation of KL to obtain the local or pairwise Fano method E θ π [KL(P θ P π )] E θθ π [KL(P θ P θ )]

3 Lecture 2: Nov he last step follows from Jensen s inequality since KL divergence is convex in the second argument In this case if we have M hypothesis θ θ M then we obtain (here [M] = M) P θj [ (x) j] P θj [ (x) j] M j [M] j= M 2 ij KL(P θ i P θj ) + log 2 log M 24 Application to testing for nonzero in a -sparse vector in R d H v : X n iid N (µv ) (22) where v {0 } d with only nonzero component here are d hypothesis and each pair has KL(Pi n P j n) = 2nµ 2 he local Fano method then gives which is bounded away from zero if R n () 2nµ2 + log 2 log d µ log d n Note that this rate is achieved for this problem by the largest coordinate of X = n n i= X i (X n ) = arg max X(j) j By Gaussian tail bound and union bound we know that or with probability δ: P[ j X(j) µ(j) ɛ] 2d exp{ 2nɛ 2 } j X(j) log(2d/δ) µ(j) 2n he estimated coordinate ĵ agrees with the true one j if: so that if µ = ω( X(j ) X(k) k X(j ) µ(j ) + µ(j ) µ(k) + µ(k) X(k) µ(j ) µ(k) X(k) µ(k) + µ(j ) X(j ) log(2d/δ) µ 2 2n log(d) n ) this estimator has success probability tending to heorem For the -sparse recovery problem the minimax rate is: log d µ n Actually the same rate holds for the k-sparse problem but it is slightly less obvious Also there are many techniques for proving lower bounds like Le Cam local and global Fano just for testing problems It is important to know about all of these techniques because some are better for some problems

4 2-4 Lecture 2: Nov 4 25 Estimation Problem Now let s turn to estimation problems or more general losses We write: R n () = E [Φ ρ( (X) )] where ρ : R + is a semi-metric Φ : R + R + is a non-decreasing function with Φ(0) = 0 Example: ρ( ) = and Φ(t) = t 2 so we are looking at mean square error his can also cover things like classification performance excess log loss things we have seen before 25 Proving lower bounds Step : Discretization Fix a δ > 0 and find a large set of parameters = {θ i } M i= such that his set is called a 2δ packing in the ρ-metric ρ(θ i θ j ) 2δ i j Step 2: Reduce to esting Consider j uniform([m]) and X P θj Now if you cannot differentiate between θ i and some other θ you will certainly make error Φ(δ) in the estimation problem More formally: Proposition Let {θ j } M j= be a 2δ-packing in the ρ metric hen: R n ( Φ ρ) Φ(δ) Ψ P j unif([m])x n P θ j [Ψ(X n ) j] Proof: Fix an estimator For any fixed θ we have E[Φ(ρ( θ))] E[Φ(δ){ρ( θ) δ}] = Φ(δ)P[ρ( θ) δ] Now define the test Ψ( ) = arg min j ρ( θ j ) If ρ( θ j ) < δ then Ψ( ) = j by 2δ separation and triangle inequality since ρ( θ k ) ρ(θ j θ k ) ρ( θ j ) > 2δ δ = δ he converse of this statement is that if Ψ( ) v then ρ( θ v ) δ θ P[ρ( θ) δ] M Now take an over all Ψ P j [ρ( θ j ) δ] = M j= P j [Ψ( ) j] Step 3: Use Fano or Le Cam to Lower Bound P e in esting Problems We saw how to do this earlier in this lecture and in the previous lecture j= 26 Normal Means Estimation in l 2 Let X n N (v I) v R d he goal is to have E X n (X n ) v 2 2 small Let U be a /2 packing of the unit ball in R d Note that the unit ball in d dimensions has a packing of size at least 2 d in the l 2 metric For each u U let θ u = δu R d for some δ > 0 so that θ u θ u 2 = δ u u 2 δ 2 (23)

5 Lecture 2: Nov Figure 2: If you get θ j instead of θ j then your estimate θ must be far from θ j Also notice that since u u lie in the unit ball θ u θ u δ so the KL between each pair of θ u θ u is KL{P θu P θu } nδ 2 /2 so the Fano s Lemma gives M j= P θj [ (X n ) j] nδ2 /2 + log 2 d log 2 thus lower bound is ( 2 R n ( 2 δ [ ] 2 4) ) E jp θj [ (X n ) j] ( ) ( ) δ 2 nδ2 /2 + log 2 6 d log 2 Now we can choose δ set it to δ 2 = d log 2/(2n) hen for d 2 R n cd/n for some constant c > 0 his is the right parametric rate for this problem 27 Strong data processing inequalities How can we leverage these lower bound techniques to new settings that arise in modern learning problems? One approach is to use strong data processing inequalities as modern learning settings can be thought of as a classical problem with some transformation to the data ie parameter classical data new data (24) θ X Z (25) For d = the problem reduces to testing two simple hypothesis for which we can use Le Cam s method

6 2-6 Lecture 2: Nov 4 Example: Local Differentially private channel: Channel X Z must be differentially private for each data point ie for each data point X i we have distribution Q(Z X) st S xx X Q(Z i S X i = x) Q(Z i S X i = x exp(α) (26) ) We would like to leverage existing technology to get lower bound in these settings for learning with Z Clearly we can use data processing inequality where we get I(θ X) I(θ Z) But this bound is quite loose hus we are interested in strong data processing inequalities where pose we have channel θ X Z and Q(Z X) is the distribution of Z X with certain property we want to show that I(θ; Z) f(q)i(θ; X) where f(q) which yields a much tighter lower bound In the next class we will see that (α 0) differentially private learning leads to α 2 contraction in KL divergence which means the effective sample size goes from n to nα 2 his means that if we had n samples in the differentially private setting it is as if we only had nα 2 samples in the classical setting So we need more samples in the new setting to learn well

Lecture 21: Minimax Theory

Lecture 21: Minimax Theory Lecture : Minimax Theory Akshay Krishnamurthy akshay@cs.umass.edu November 8, 07 Recap In the first part of the course, we spent the majority of our time studying risk minimization. We found many ways

More information

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk)

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk) 10-704: Information Processing and Learning Spring 2015 Lecture 21: Examples of Lower Bounds and Assouad s Method Lecturer: Akshay Krishnamurthy Scribes: Soumya Batra Note: LaTeX template courtesy of UC

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Lecture 17: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 31, 2016 [Ed. Apr 1]

Lecture 17: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 31, 2016 [Ed. Apr 1] ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 3, 06 [Ed. Apr ] In last lecture, we studied the minimax

More information

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses Information and Coding Theory Autumn 07 Lecturer: Madhur Tulsiani Lecture 9: October 5, 07 Lower bounds for minimax rates via multiple hypotheses In this lecture, we extend the ideas from the previous

More information

Lecture 8: Minimax Lower Bounds: LeCam, Fano, and Assouad

Lecture 8: Minimax Lower Bounds: LeCam, Fano, and Assouad 40.850: athematical Foundation of Big Data Analysis Spring 206 Lecture 8: inimax Lower Bounds: LeCam, Fano, and Assouad Lecturer: Fang Han arch 07 Disclaimer: These notes have not been subjected to the

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Lecture 6: September 19

Lecture 6: September 19 36-755: Advanced Statistical Theory I Fall 2016 Lecture 6: September 19 Lecturer: Alessandro Rinaldo Scribe: YJ Choe Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

21.1 Lower bounds on minimax risk for functional estimation

21.1 Lower bounds on minimax risk for functional estimation ECE598: Information-theoretic methods in high-dimensional statistics Spring 016 Lecture 1: Functional estimation & testing Lecturer: Yihong Wu Scribe: Ashok Vardhan, Apr 14, 016 In this chapter, we will

More information

16.1 Bounding Capacity with Covering Number

16.1 Bounding Capacity with Covering Number ECE598: Information-theoretic methods in high-dimensional statistics Spring 206 Lecture 6: Upper Bounds for Density Estimation Lecturer: Yihong Wu Scribe: Yang Zhang, Apr, 206 So far we have been mostly

More information

Lecture 1: September 25

Lecture 1: September 25 0-725: Optimization Fall 202 Lecture : September 25 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Subhodeep Moitra Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture : Mutual Information Method Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar, 06 Ed. Mar 9 Quick review: Assouad s lemma

More information

Lecture 1: Introduction, Entropy and ML estimation

Lecture 1: Introduction, Entropy and ML estimation 0-704: Information Processing and Learning Spring 202 Lecture : Introduction, Entropy and ML estimation Lecturer: Aarti Singh Scribes: Min Xu Disclaimer: These notes have not been subjected to the usual

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 203 Review of Zero-Sum Games At the end of last lecture, we discussed a model for two player games (call

More information

Lecture 14 October 13

Lecture 14 October 13 STAT 383C: Statistical Modeling I Fall 2015 Lecture 14 October 13 Lecturer: Purnamrita Sarkar Scribe: Some one Disclaimer: These scribe notes have been slightly proofread and may have typos etc. Note:

More information

Kernel Density Estimation

Kernel Density Estimation EECS 598: Statistical Learning Theory, Winter 2014 Topic 19 Kernel Density Estimation Lecturer: Clayton Scott Scribe: Yun Wei, Yanzhen Deng Disclaimer: These notes have not been subjected to the usual

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Lecture 17: Primal-dual interior-point methods part II

Lecture 17: Primal-dual interior-point methods part II 10-725/36-725: Convex Optimization Spring 2015 Lecture 17: Primal-dual interior-point methods part II Lecturer: Javier Pena Scribes: Pinchao Zhang, Wei Ma Note: LaTeX template courtesy of UC Berkeley EECS

More information

Lecture 19: Follow The Regulerized Leader

Lecture 19: Follow The Regulerized Leader COS-511: Learning heory Spring 2017 Lecturer: Roi Livni Lecture 19: Follow he Regulerized Leader Disclaimer: hese notes have not been subjected to the usual scrutiny reserved for formal publications. hey

More information

l 1 -Regularized Linear Regression: Persistence and Oracle Inequalities

l 1 -Regularized Linear Regression: Persistence and Oracle Inequalities l -Regularized Linear Regression: Persistence and Oracle Inequalities Peter Bartlett EECS and Statistics UC Berkeley slides at http://www.stat.berkeley.edu/ bartlett Joint work with Shahar Mendelson and

More information

Lecture 15: October 15

Lecture 15: October 15 10-725: Optimization Fall 2012 Lecturer: Barnabas Poczos Lecture 15: October 15 Scribes: Christian Kroer, Fanyi Xiao Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

10-725/36-725: Convex Optimization Spring Lecture 21: April 6

10-725/36-725: Convex Optimization Spring Lecture 21: April 6 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 21: April 6 Scribes: Chiqun Zhang, Hanqi Cheng, Waleed Ammar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

2.1 Laplacian Variants

2.1 Laplacian Variants -3 MS&E 337: Spectral Graph heory and Algorithmic Applications Spring 2015 Lecturer: Prof. Amin Saberi Lecture 2-3: 4/7/2015 Scribe: Simon Anastasiadis and Nolan Skochdopole Disclaimer: hese notes have

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Chapter 4: Asymptotic Properties of the MLE

Chapter 4: Asymptotic Properties of the MLE Chapter 4: Asymptotic Properties of the MLE Daniel O. Scharfstein 09/19/13 1 / 1 Maximum Likelihood Maximum likelihood is the most powerful tool for estimation. In this part of the course, we will consider

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Lecture 26: April 22nd

Lecture 26: April 22nd 10-725/36-725: Conve Optimization Spring 2015 Lecture 26: April 22nd Lecturer: Ryan Tibshirani Scribes: Eric Wong, Jerzy Wieczorek, Pengcheng Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

EECS 598: Statistical Learning Theory, Winter 2014 Topic 11. Kernels

EECS 598: Statistical Learning Theory, Winter 2014 Topic 11. Kernels EECS 598: Statistical Learning Theory, Winter 2014 Topic 11 Kernels Lecturer: Clayton Scott Scribe: Jun Guo, Soumik Chatterjee Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

1 Review of The Learning Setting

1 Review of The Learning Setting COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #8 Scribe: Changyan Wang February 28, 208 Review of The Learning Setting Last class, we moved beyond the PAC model: in the PAC model we

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory In the last unit we looked at regularization - adding a w 2 penalty. We add a bias - we prefer classifiers with low norm. How to incorporate more complicated

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

Lecture 18: March 15

Lecture 18: March 15 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 18: March 15 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Asymptotic efficiency of simple decisions for the compound decision problem

Asymptotic efficiency of simple decisions for the compound decision problem Asymptotic efficiency of simple decisions for the compound decision problem Eitan Greenshtein and Ya acov Ritov Department of Statistical Sciences Duke University Durham, NC 27708-0251, USA e-mail: eitan.greenshtein@gmail.com

More information

1.1 Basis of Statistical Decision Theory

1.1 Basis of Statistical Decision Theory ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 1: Introduction Lecturer: Yihong Wu Scribe: AmirEmad Ghassami, Jan 21, 2016 [Ed. Jan 31] Outline: Introduction of

More information

Minimax risk bounds for linear threshold functions

Minimax risk bounds for linear threshold functions CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 3 Minimax risk bounds for linear threshold functions Lecturer: Peter Bartlett Scribe: Hao Zhang 1 Review We assume that there is a probability

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Lecture 23: November 19

Lecture 23: November 19 10-725/36-725: Conve Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 23: November 19 Scribes: Charvi Rastogi, George Stoica, Shuo Li Charvi Rastogi: 23.1-23.4.2, George Stoica: 23.4.3-23.8, Shuo

More information

Lecture 4: September 19

Lecture 4: September 19 CSCI1810: Computational Molecular Biology Fall 2017 Lecture 4: September 19 Lecturer: Sorin Istrail Scribe: Cyrus Cousins Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Lecture 6: September 22

Lecture 6: September 22 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 6: September 22 Lecturer: Prof. Alistair Sinclair Scribes: Alistair Sinclair Disclaimer: These notes have not been subjected

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

Calibrated Surrogate Losses

Calibrated Surrogate Losses EECS 598: Statistical Learning Theory, Winter 2014 Topic 14 Calibrated Surrogate Losses Lecturer: Clayton Scott Scribe: Efrén Cruz Cortés Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Lecture 6: September 12

Lecture 6: September 12 10-725: Optimization Fall 2013 Lecture 6: September 12 Lecturer: Ryan Tibshirani Scribes: Micol Marchetti-Bowick Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Lecture 6: September 17

Lecture 6: September 17 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 6: September 17 Scribes: Scribes: Wenjun Wang, Satwik Kottur, Zhiding Yu Note: LaTeX template courtesy of UC Berkeley EECS

More information

Active Learning: Disagreement Coefficient

Active Learning: Disagreement Coefficient Advanced Course in Machine Learning Spring 2010 Active Learning: Disagreement Coefficient Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz In previous lectures we saw examples in which

More information

Introduction to Machine Learning (67577) Lecture 3

Introduction to Machine Learning (67577) Lecture 3 Introduction to Machine Learning (67577) Lecture 3 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem General Learning Model and Bias-Complexity tradeoff Shai Shalev-Shwartz

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES CLASSICAL PROBABILITY 2008 2. MODES OF CONVERGENCE AND INEQUALITIES JOHN MORIARTY In many interesting and important situations, the object of interest is influenced by many random factors. If we can construct

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

IFT Lecture 2 Basics of convex analysis and gradient descent

IFT Lecture 2 Basics of convex analysis and gradient descent IF 6085 - Lecture Basics of convex analysis and gradient descent his version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribes: Assya rofimov,

More information

Minimax Rates. Homology Inference

Minimax Rates. Homology Inference Minimax Rates for Homology Inference Don Sheehy Joint work with Sivaraman Balakrishan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman Something like a joke. Something like a joke. What is topological

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

U Logo Use Guidelines

U Logo Use Guidelines Information Theory Lecture 3: Applications to Machine Learning U Logo Use Guidelines Mark Reid logo is a contemporary n of our heritage. presents our name, d and our motto: arn the nature of things. authenticity

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm 1. Feedback does not increase the capacity. Consider a channel with feedback. We assume that all the recieved outputs are sent back immediately

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a) :

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Lecture 16: October 22

Lecture 16: October 22 0-725/36-725: Conve Optimization Fall 208 Lecturer: Ryan Tibshirani Lecture 6: October 22 Scribes: Nic Dalmasso, Alan Mishler, Benja LeRoy Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity 5-859: Information Theory and Applications in TCS CMU: Spring 23 Lecture 8: Channel and source-channel coding theorems; BEC & linear codes February 7, 23 Lecturer: Venkatesan Guruswami Scribe: Dan Stahlke

More information

Lecture 24: August 28

Lecture 24: August 28 10-725: Optimization Fall 2012 Lecture 24: August 28 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Jiaji Zhou,Tinghui Zhou,Kawa Cheung Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

LECTURE 10. Last time: Lecture outline

LECTURE 10. Last time: Lecture outline LECTURE 10 Joint AEP Coding Theorem Last time: Error Exponents Lecture outline Strong Coding Theorem Reading: Gallager, Chapter 5. Review Joint AEP A ( ɛ n) (X) A ( ɛ n) (Y ) vs. A ( ɛ n) (X, Y ) 2 nh(x)

More information

Lecture 11: Polar codes construction

Lecture 11: Polar codes construction 15-859: Information Theory and Applications in TCS CMU: Spring 2013 Lecturer: Venkatesan Guruswami Lecture 11: Polar codes construction February 26, 2013 Scribe: Dan Stahlke 1 Polar codes: recap of last

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

19.1 Maximum Likelihood estimator and risk upper bound

19.1 Maximum Likelihood estimator and risk upper bound ECE598: Information-theoretic methods in high-dimensional statistics Spring 016 Lecture 19: Denoising sparse vectors - Ris upper bound Lecturer: Yihong Wu Scribe: Ravi Kiran Raman, Apr 1, 016 This lecture

More information

Lecture 8: Linear Algebra Background

Lecture 8: Linear Algebra Background CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 8: Linear Algebra Background Lecturer: Shayan Oveis Gharan 2/1/2017 Scribe: Swati Padmanabhan Disclaimer: These notes have not been subjected

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

Lecture 20: November 1st

Lecture 20: November 1st 10-725: Optimization Fall 2012 Lecture 20: November 1st Lecturer: Geoff Gordon Scribes: Xiaolong Shen, Alex Beutel Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

IEOR 265 Lecture 3 Sparse Linear Regression

IEOR 265 Lecture 3 Sparse Linear Regression IOR 65 Lecture 3 Sparse Linear Regression 1 M Bound Recall from last lecture that the reason we are interested in complexity measures of sets is because of the following result, which is known as the M

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information