Turbine Engineering for Hydropower Plants

Size: px
Start display at page:

Download "Turbine Engineering for Hydropower Plants"

Transcription

1 Turbine Engineering for Hydropower Plants Prof. François Avellan Itaipu Power Plant

2 Basic Concepts Scope Turbine Specific Energy Specific Speed Specifications Pelton Turbines Francis Turbines Outlook Unit 4 Turbine Engineering for Hydropower Plants 2

3 Hydroelectric Power Plant: Storage or Run-of-River Power Station Turbine Engineering for Hydropower Plants 3

4 Hydropower: Turbine Driving an Electrical (Synchronous) Generator Machine Power Output P = ω T ( W) Available Hydraulic Power P ( W ) h = ρq E J s kg m 3 m s Turbine Efficiency 3 J kg T T P= η P h ; η 100 % Driving Power Defined as Positive : P 0 gh Q I I I E gh gh P h dω J = T+ Tel ( Nm ) dt T ω gh QI I = ρq E I I ( 1 J kg ) ( ) = ρq gh gh I I I Basic Concepts 4

5 Rotating train dynamics Rotating train angular momentum equation Synchronous conditions : Power failure : runaway speed Synchronous speed relation : f grid z p n : Grid frequency : Number of poles : Rotating frequency T = T el dω Tél. = 0 = T > 0 dt = 2 fgrid n Hz z p ( ) dω J = T + T dt el ( Nm ) f grid = 2 16 Hz; 50 Hz; 60 Hz 3 Basic Concepts 5 5

6 Discharge - Head Chart of Hydropower Plant Capacity Ph = ρq gh Basic Concepts 6

7 Definition of State Variables Mean Flow Local Specific Energy Discharge: Extensive Variable Q 2 p C ht = + g Z + + Cste J kg ρ 2 C 1 C nda A Pressure ( 3 m s 1 ) Mean Flow Specific Energy: Intensive Variable: 2 P h p C C n gh = + gz + da 0 J kg ρq ρ 2 Q A ( -1 ) Gravity Potential Kinetic n 1 A 1 Σ ( -1 ) V A 2 n 2 On Σ C n= 0 V = A1 Σ A2 Basic Concepts 7

8 gh Q 1 1 Hydraulic System: Specific Energy and Discharge Budgets A gh 1 2 A2 Q Specific Energy Budget Steady Flow? Straight Stream Lines, free of Secondary Flow Flow Budget Discharge Discharge Velocity ( ) gh1 gh2 gh r i = + Q = Q 1 2 A C = A C Basic Concepts 8

9 Runner/Impeller Specific Energy Transfer 1 Q t ω Brillant Extension Project, British Columbia, Canada, Kaplan Turbine CAD Model, PF2 EPFL Test Rig 1 Traversing Discharge Q t ( m 3 s -1 ) Transferred Specific Energy Power Transfer P ρqe Drive: Turbines ( -1 ) gh1 gh1 = Et ± Erb J kg ( ) = W t t t P > 0 Brake: Pumps, Propellers P < 0 Turbine Specific Energy 9

10 gh 2 p C = + gz + ρ 2 Specific Energy Transfer ( -1 J kg ) Reaction 2 2 p 1 p1 C1 C1 Et = + + ± ρ ρ gz gz E 2 2 Water Wheel Displacement Impulse [ ] 1 1 rb Loss ( -1 J kg ) Turbine Specific Energy 10

11 Power Plant Conditions Dimensional Analysis Discharge [ Q] = LT 3 1 ( m 3 s -1 ) Specific Energy 2 2 ML T E gh I ghi = L T = J kg M Unit Characteristic Angular Speed [ ] ( ) 1-1 ω = T s Turbine/Pump Dimension D = L m [ ] ( ) ( ) / Specific Speed 1111

12 Dimensional Analysis Dimensionless Angular Speed Condition Yields Linear System Dimension of Time 1 α 2β = 0 Dimension of Length 3α + 2β = α = ; β = 2 4 Solution α β [ ν] ω = Q E = M T L T L = T L T L T α α 2β 2β Specific Speed ω ν = π Q E (Contd) / 1212

13 Discharge Coefficient ϕ = Cm U Energy Coefficient 2E ψ = U 2 Specific Speed Unit Specific Speed Rotating Speed Dimensional Analysis 2 ϕ ν = = k N ψ ( 1 min ) Discharge Factor Speed factor U k n Specific Speed Cm Q k k Cm U Cm = 2 E U = 2 E 1 (Contd) 2 Q = N = ν S.I. H 3 4 ( ) 1313

14 Selecting Hydraulic Turbines Head Highest eff. 96% 97% Head = H ( m) 3 1 ( ) 1 ( min ) Discharge = Q m s Speed = N 2 f n = z p grid ( Hz) Specific Speed Specific Speed 14

15 Hydro Turbines International Market Breakdown by Types of Turbines GW Installed Capacity in 2012 Modernization Market GW to be built before 2050 Greenfields Project Bulb 2% Kaplan 17% Pump- Turbine 12% Pelton 8% Francis 61% Turbine Specifications 15

16 Matching Turbine Specific Speed to Site Conditions Site Potential Specific Energy Site Specific Energy Data Science: Flow Duration Statistics Average Discharge 1'000 m 3 /s ( Z ) g Z B B ( ) ( -1 ) B r gh = 1 gh1 g Z ZB gh J kg ( 3-1 ) Q Instal. m s Diverted Flow Total Flow % 100 Percentage of time discharge was exceeded Turbine Specifications 16

17 Matching Turbine Specific Speed to Site Conditions Targeted Unit Specific Speed Rated Head Specification of Unit Number Specification of rotating frequency Runaway Speed Limitation E = gh Q nq = N z units H z units Limitation of Apparent Power per Poles 1 instal 3 4 Air cooling < 28 MVA < Water cooling < 35 MVA N p fgrid 60 s = z Turbine Specifications 17

18 500 MVA Generators min -1 1'269 MW Bieudron Power Plant 3 Pelton Turbines 14 poles, 35.7 MVA/pole* Water Cooled 423 MW Pelton* Turbines, 5 injectors 1'883 mwc Head* 25 m 3 /s Discharge D1 = m ~28 t Runner Mass Pelton Turbines 18

19 Impinging Jet on Pelton Buckets FVPM Flow Numerical Simulations Christian VESSAZ, EPFL Doctoral Thesis N 6470, 2014 Pelton Turbines 19

20 Silt Erosion Needle Bucket Needle Severe Erosion Erosion Ripples on Buckets ~2'500 Total Hours of Operation Pelton Turbines Silt Erosion of Turbine Components: 4 x 100 MW Pelton, 900 m Head 20

21 SPHEROS Finite Volume Particle Method Solver Multi Scale Silt Laden Flow Erosion Simulation Copper sample Ø 3 mm slurry jet, 10 m/s LEGUIZAMON Sebastián, EPFL Doctoral Student, CTI Project GPU-SPHEROS Pelton Turbines 21

22 Hydropower Plant Giga Hydropower Plants are Francis Powered Country Capacity (MW) Energy (TWh) Capacity Factor EPFL Model Testing Three Gorges China 22' Storage Itaipú Brazil-Paraguay 14' Storage Xiluodu China 13' Storage Type Belo Monte Brazil 11'233 - Run-of-River Guri (Raúl Leoni) Venezuela 8' Storage Tucurui Brazil 8' Storage Grand Coulee USA 6' Storage Longtan China 6' Storage Xiangjiaba China 6'400 NA NA Storage Krasnoyarsk Russia 6' Storage Robert Bourassa (LG2) Canada 5' Storage Churchill Falls Canada 5' Storage Tucurui Dam, Eletro Norte Francis Turbines 22

23 Xiangjiaba Power Station (Jinsha River, Yunnan) 8 Francis Turbines 825 MW Max. Power 10.5 m Diameter kg What level of p fluctuations to be expected for a 800 MW turbine? 23

24 n ED HYPERBOLE Turbine Case Study Hill Chart and Operating Range Q ED Deep Part Load Part Load Full Load Francis Turbines 24

25 Unsteady Flow in Francis Draft Tube Alligné et al., Journal of Hydraulic Research, Vol. 51, 6, Müller et al., Experiments in Fluids n 54 : 1514, Simon Pasche PhD Work, SNF GRANT N _ Francis Turbines 25

26 Machine Setting Level IEC Definitions IEC Standard, "Hydraulic Turbines, Storage Pumps and Pump-Turbines-Model Acceptance Tests". International Electrotechnical Commission; Geneva, Nov Specific Energy E gh gh > 0 J kg Net Positive Suction Specific Energy pv NPSE ghi gz ρ Setting Level hs = Zref ZB I I ( 1 ) ref ( 1 J kg ) Turbine Specifications 26

27 HYPERBOLE ERC/FP7-ENERGY Grant N HYdropower plants PERformance and flexible Operation"towards Lean integration of new renewable Energies Dynamic Assessment of Francis Turbines & Pump-Turbines 42 Months, EUR 6.3 Mio EUR 4.3 Mio Supported by European Commission 1 st Sept th Feb Consortium coordinated by EPFL 27

28 HYdropower plants PERformance and flexible Operation towards Lean integration of new renewable Energies Headwater reservoir Surge Tank Hydraulic Eng. Tailwater reservoir Mechanical Eng. Electrical Eng. System Approach HYPERBOLE ERC/FP7-ENERGY Grant

29 System Approach Methodology Francis Turbines 29

30 HYPERBOLE Inter blades vortices Deep part load operating conditions Q << QBEP Francis Turbines page 30

31 Deep part load Inter blades vortices HYPERBOLE Visualization Hollow guide vanes with window Boroscope with swiveling prism High Speed Camera High intensity Xenon flash Compact power LED DPL2: n ED = Francis Turbines 31

32 HYPERBOLE Flow Numerical Simulations Deep part load Inter blades vortices Void Fraction 10% Isosurface Francis Turbines 32

33 Hydroelectric Plants Generate 17% of the World Electricity Luciano dos Santos, "Digital Disruption of Hydroelectricity", HYPERBOLE Conference, Porto, February 2-3,

34 THANK YOU FOR YOUR ATTENTION 34

GUIDE VANES EMBEDDED VISUALIZATION TECHNIQUE FOR INVESTIGATING FRANCIS RUNNER INTER-BLADE VORTICES AT DEEP PART LOAD OPERATION

GUIDE VANES EMBEDDED VISUALIZATION TECHNIQUE FOR INVESTIGATING FRANCIS RUNNER INTER-BLADE VORTICES AT DEEP PART LOAD OPERATION 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia GUIDE VANES EMBEDDED VISUALIZATION TECHNIQUE

More information

RANS COMPUTATIONS OF A CAVITATING VORTEX ROPE AT FULL LOAD

RANS COMPUTATIONS OF A CAVITATING VORTEX ROPE AT FULL LOAD 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia RANS COMPUTATIONS OF A CAVITATING VORTEX

More information

ME 316: Thermofluids Laboratory

ME 316: Thermofluids Laboratory ME 316 Thermofluid Laboratory 6.1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ME 316: Thermofluids Laboratory PELTON IMPULSE TURBINE 1) OBJECTIVES a) To introduce the operational principle of an impulse

More information

Reduced scale model testing for prediction of eigenfrequencies and hydro-acoustic resonances in hydropower plants operating in off-design conditions

Reduced scale model testing for prediction of eigenfrequencies and hydro-acoustic resonances in hydropower plants operating in off-design conditions Reduced scale model testing for prediction of eigenfrequencies and hydro-acoustic resonances in hydropower plants operating in off-design conditions A Favrel 1, J Gomes Pereira Junior 1, C Landry 2, S

More information

Hydroelectric Design

Hydroelectric Design INTERAMERICAN UNIVERSITY OF BAYAMON PUERTO RICO Hydroelectric Design Dr. Eduardo G. Pérez Díaz Erik T. Rosado González 5/14/2012 Hydroelectric design project for fluid class. TABLE OF CONTENTS TABLE OF

More information

CIVE HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University

CIVE HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University 1 CIVE 401 - HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information

mywbut.com Hydraulic Turbines

mywbut.com Hydraulic Turbines Hydraulic Turbines Hydro-electric power accounts for up to 0% of the world s electrical generation. Hydraulic turbines come in a variety of shapes determined by the available head and a number of sizes

More information

Author s Accepted Manuscript

Author s Accepted Manuscript Author s Accepted Manuscript Monitoring a Francis Turbine Operating Conditions P. João Gomes, Loïc Andolfatto, François Avellan www.elsevier.com/locate/flowmeasinst PII: DOI: Reference: To appear in: Received

More information

Dynamic Behavior of a 2 Variable Speed Pump- Turbine Power Plant

Dynamic Behavior of a 2 Variable Speed Pump- Turbine Power Plant Paper ID 754 Dynamic Behavior of a Variable Speed Pump- Turbine Power Plant (1) Y. Pannatier, () C. Nicolet, (1) B. Kawkabani (*), (1) J.-J. Simond (*), (1) Ph. Allenbach (*) Member IEEE (1) Ecole Polytechnique

More information

Drafttube modellingfor predictionof pressure fluctuations on prototype

Drafttube modellingfor predictionof pressure fluctuations on prototype Drafttube modellingfor predictionof pressure fluctuations on prototype S. Alligné, C. Landry, C. Nicolet, F. Avellan 3-4 juin 2015 SHF Machines hydrauliques et cavitation Cetim Nantes 74 route de la Jonelière

More information

Reservoir Sedimentation and Its Control

Reservoir Sedimentation and Its Control Reservoir Sedimentation and Its Control GUO, Qingchao Ph.D, Professor of IWHR International Workshop on Management of Flood Control and Disaster Mitigation June 17-30 2010, Beijing, China Contents Why

More information

Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation IOP Conference Series: Earth and Environmental Science OPEN ACCESS Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine

More information

Hydraulic Turbines. Table 6.1 Parameters of hydraulic turbines. Power P (kw) Speed N (rpm)

Hydraulic Turbines. Table 6.1 Parameters of hydraulic turbines. Power P (kw) Speed N (rpm) 6 Hydraulic Turbines Problem 1 There are 10 solved examples and 7 exercise problems (exclude Problems 1, 2, and 10) in this chapter. Prepare a table to mention the values of all the parameters, such as

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60193 Second edition 1999-11 Hydraulic turbines, storage pumps and pump-turbines Model acceptance tests This English-language version is derived from the original bilingual publication

More information

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids INTRODUCTION Hydrodynamic Machines A hydromachine is a device used either for extracting energy from a fluid or to add energy to a fluid. There are many types of hydromachines and Figure 1 below illustrates

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

Numerical Simulation of Pressure Surge with the Method of Characteristics

Numerical Simulation of Pressure Surge with the Method of Characteristics Numerical Simulation of Pressure Surge with the Method of Characteristics R. Fiereder 02.04.2009 Saint Petersburg, Russia Content Motivation Governing Equations Continuity Equation Momentum Equation Method

More information

Experience of Vibration and Noise Measurements of Small Hydro Power Plants

Experience of Vibration and Noise Measurements of Small Hydro Power Plants Experience of Vibration and Noise Measurements of Small Hydro Power Plants Arun Kumar 1, B K Gandhi 2, Pradeep Chandra 3* Indian Institute of Technology Roorkee Roorkee -247 667, India 1 & 3* Alternate

More information

Pump-turbine characteristics for analysis of unsteady flows

Pump-turbine characteristics for analysis of unsteady flows Pump-turbine characteristics for analysis of unsteady flows Z. Giljen 1, M. Nedeljković 2 and Y. G. Cheng 3 1 PhD student, Senior engineer for mechanical works, Business and Technical Development Directorate,

More information

HYDRAULIC TURBINES. Hydraulics and Hydraulic Machines

HYDRAULIC TURBINES. Hydraulics and Hydraulic Machines HYDRAULIC TURBINES Introduction: The device which converts h ydraulic energy into mechanical energy or vice versa is known as Hydraulic Machines. The h ydraulic machines which convert h ydraulic energy

More information

Overload Surge Investigation Using CFD Data

Overload Surge Investigation Using CFD Data International Journal of Fluid Machinery and Systems Vol., No. 4, October-December 009 Original Paper (Invited) Overload Surge Investigation Using CFD Data Felix Flemming 1, Jason Foust 1, Jiri Koutnik

More information

On the upper part load vortex rope in Francis turbine: Experimental investigation

On the upper part load vortex rope in Francis turbine: Experimental investigation Home Search Collections Journals About Contact us My IOPscience On the upper part load vortex rope in Francis turbine: Experimental investigation This article has been downloaded from IOPscience. Please

More information

UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES

UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES IAHR OCTOBER 7-31, FOZ DO IGUASSU RESERVED TO IAHR UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES C. Nicolet Power Vision Engineering Sàrl CH-104

More information

Lecture on Francis Turbine. by Dr. Shibayan Sarkar Department of Mechanical Engg Indian Institute of Technology (ISM), Dhanbad

Lecture on Francis Turbine. by Dr. Shibayan Sarkar Department of Mechanical Engg Indian Institute of Technology (ISM), Dhanbad Lecture on Francis Turbine by Dr. Shibayan Sarkar Department of Mechanical Engg Indian Institute of Technology (ISM), Dhanbad Turbines: Francis (1849) di, Qo Ri ɵ Ra Stay ring Spiral casing π Q = v d 4

More information

CASE STUDY NATHPA JHAKRI, INDIA

CASE STUDY NATHPA JHAKRI, INDIA SEDIMENT MANAGEMENT CASE STUDY NATHPA JHAKRI, INDIA Key project features Name: Nathpa Jhakri Country: India Category: reduce sediment production (watershed management); upstream sediment trapping; bypass

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV

Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV To cite this article: A Favrel

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

HYDRO power plant (HPP) turbine governing has been studied extensively in the

HYDRO power plant (HPP) turbine governing has been studied extensively in the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 23, no. 2, August 2010, 191-198 Suboptimal Design of Turbine Governors for Low Head Hydroturbines Dušan B. Arnautović and Dane D. Džepčeski Abstract: The

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

Institute of Aeronautical Engineering

Institute of Aeronautical Engineering Institute of Aeronautical Engineering Hydraulics & Hydraulic Machinery (ACE011) R16 B.Tech III Year V Semester Prepared by Dr. G. Venkata Ramana Professor& HOD Civil Engineering 1 Unit I OPEN CHANNEL FLOW

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

EXPERIMENTAL EVALUATION OF THE VELOCITY PROFILES AND PERFORMANCE OF A COUNTER ROTATING MICRO-TURBINE BY 2D LASER DOPPLER VELOCIMETRY

EXPERIMENTAL EVALUATION OF THE VELOCITY PROFILES AND PERFORMANCE OF A COUNTER ROTATING MICRO-TURBINE BY 2D LASER DOPPLER VELOCIMETRY 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia EXPERIMENTAL EVALUATION OF THE VELOCITY

More information

CASE STUDY NATHPA JHAKRI, INDIA

CASE STUDY NATHPA JHAKRI, INDIA SEDIMENT MANAGEMENT CASE STUDY NATHPA JHAKRI, INDIA Key project features Name: Nathpa Jhakri Country: India Category: reforestation/revegetation; upstream sediment trapping; bypass channel/tunnel; reservoir

More information

Efficient runner safety assessment during early design phase and root cause analysis

Efficient runner safety assessment during early design phase and root cause analysis IOP Conference Series: Earth and Environmental Science Efficient runner safety assessment during early design phase and root cause analysis To cite this article: Q W Liang et al 2012 IOP Conf. Ser.: Earth

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

Turbines and speed governors

Turbines and speed governors ELEC0047 - Power system dynamics, control and stability Turbines and speed governors Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 31 2 / 31 Steam turbines Turbines

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction to Fluid Machines Well, good

More information

(Refer Slide Time: 0:55)

(Refer Slide Time: 0:55) Fluid Dynamics And Turbo Machines. Professor Dr Dhiman Chatterjee. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part C. Module-2. Lecture-8. Hydraulic Turbines: Pelton Turbine.

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

Contents. Diaphragm in pressure pipe: Steady state head loss evolution and transient phenomena. Nicolas J. Adam Giovanni De Cesare

Contents. Diaphragm in pressure pipe: Steady state head loss evolution and transient phenomena. Nicolas J. Adam Giovanni De Cesare Diaphragm in pressure pipe: Steady state head loss evolution and transient phenomena Nicolas J. Adam Giovanni De Cesare Contents Introduction FMHL pumped-storage plant Experimental set-up Steady head losses

More information

GTU. Shantilal Shah Engineering College, Bhavnagar

GTU. Shantilal Shah Engineering College, Bhavnagar GTU Shantilal Shah Engineering College, Bhavnagar 2 Around 40,000 large reservoirs worldwide used for water supply, power generation, flood control etc. About 1 % of the total storage volume is lost annually

More information

3D numerical simulation of transient processes in hydraulic turbines

3D numerical simulation of transient processes in hydraulic turbines IOP Conference Series: Earth and Environmental Science 3D numerical simulation of transient processes in hydraulic turbines To cite this article: S Cherny et al 010 IOP Conf. Ser.: Earth Environ. Sci.

More information

CHAPTER EIGHT P U M P I N G O F L I Q U I D S

CHAPTER EIGHT P U M P I N G O F L I Q U I D S CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid

More information

SUMMER 14 EXAMINATION

SUMMER 14 EXAMINATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

To investigate the performance of the Pelton Wheel turbine with different range of flow rates and rotational speeds.

To investigate the performance of the Pelton Wheel turbine with different range of flow rates and rotational speeds. Experiment No. 1 PELTON WHEEL TURBINE Objective To investigate the performance of the Pelton Wheel turbine with different range of flow rates and rotational speeds. Summary of theory Pelton Wheel turbine

More information

SEM-2016(03)-II MECHANICAL ENGINEERING. Paper -11. Please read each of the following instructions carefully before. attempting questions.

SEM-2016(03)-II MECHANICAL ENGINEERING. Paper -11. Please read each of the following instructions carefully before. attempting questions. Roll No. Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 8 SEM-2016(03)-II MECHANICAL ENGINEERING Paper -11 Time : 3 Hours ] [ Total Marks : 300 Instructions

More information

Free Surface Influence on Low Head Hydro Power Generation

Free Surface Influence on Low Head Hydro Power Generation IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Free Surface Influence on Low Head Hydro Power Generation To cite this article: Peter F. Pelz and Thibaud Froehlich 016 IOP Conf.

More information

SOE2156: Fluids Lecture 4

SOE2156: Fluids Lecture 4 Turbo SOE2156: s Lecture 4 machine { a device exchanging energy (work) between a uid and a mechanical system. In particular : a turbomachine is a device using a rotating mechanical system. The ow of energy

More information

Experimental investigation of the draft tube inlet flow of a bulb turbine

Experimental investigation of the draft tube inlet flow of a bulb turbine IOP Conference Series: Earth and Environmental Science OPEN ACCESS Experimental investigation of the draft tube inlet flow of a bulb turbine To cite this article: J Vuillemard et al 2014 IOP Conf. Ser.:

More information

Session: For more information:

Session: For more information: Session: For more information: www.hydropower.org/congress San Juan, Puerto Rico www.glmengineers.com 2015 World Hydropower Congress Sustainable Sediment Management and Hydropower Reservoirs 21 May 2015

More information

ScienceDirect Abstract

ScienceDirect Abstract Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 70 ( 2014 ) 1539 1548 12th International Conference on Computing and Control for the Water Industry, CCWI2013 Cross-Flow turbine

More information

Steady state operation simulation of the Francis- 99 turbine by means of advanced turbulence models

Steady state operation simulation of the Francis- 99 turbine by means of advanced turbulence models Journal of Physics: Conference Series PAPER OPEN ACCESS Steady state operation simulation of the Francis- 99 turbine by means of advanced turbulence models To cite this article: A Gavrilov et al 2017 J.

More information

ANALYSIS OF THE GAMM FRANCIS TURBINE DISTRIBUTOR 3D FLOW FOR THE WHOLE OPERATING RANGE AND OPTIMIZATION OF THE GUIDE VANE AXIS LOCATION

ANALYSIS OF THE GAMM FRANCIS TURBINE DISTRIBUTOR 3D FLOW FOR THE WHOLE OPERATING RANGE AND OPTIMIZATION OF THE GUIDE VANE AXIS LOCATION Scientific Bulletin of the Politehnica University of Timisoara Transactions on Mechanics Special issue The 6 th International Conference on Hydraulic Machinery and Hydrodynamics Timisoara, Romania, October

More information

Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone

Flow behaviour analysis of reversible pumpturbine in S characteristic operating zone IOP Conference Series: Earth and Environmental Science Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone To cite this article: S Q Zhang et al 2012 IOP Conf. Ser.:

More information

nozzle which is fitted to a pipe through which the liquid is flowing under pressure.

nozzle which is fitted to a pipe through which the liquid is flowing under pressure. Impact of Jets 1. The liquid comes out in the form of a jet from the outlet of a nozzle which is fitted to a pipe through which the liquid is flowing under pressure. The following cases of the impact of

More information

High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions

High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions IOP Conference Series: Earth and Environmental Science OPEN ACCESS High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions To cite this article: U Jese

More information

Comparison of discharge measurements - Thermodynamic to US Clamp- On, stationary US and Needle Opening Curve

Comparison of discharge measurements - Thermodynamic to US Clamp- On, stationary US and Needle Opening Curve IGHEM 2012 The 9 th International conference on hydraulic efficiency measurements Trondheim, Norway June 27 th - 30 th, 2012 XXXXXX Comparison of discharge measurements - Thermodynamic to US Clamp- On,

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ËÓÐÙØ ÓÒ ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ¾ ¾¼½ Problem 1 (From the reservoir to the grid) The causality diagram

More information

Centrifugal Machines Table of Contents

Centrifugal Machines Table of Contents NLNG Course 017 Table of Contents 1 Introduction and Basic Principles... 1.1 Hydraulic Machines... 1.... 1.3 Pump Geometry... 1.4 Pump Blade Geometry...3 1.5 Diffusers...5 1.6 Pump Losses...6 1.7 Example

More information

State of the art hydraulic turbine model test

State of the art hydraulic turbine model test IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS State of the art hydraulic turbine model test To cite this article: Violaine Fabre et al 2016 IOP Conf. Ser.: Earth Environ. Sci.

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

Dynamic Analysis of Pelton Turbine and Assembly

Dynamic Analysis of Pelton Turbine and Assembly Dynamic Analysis of Pelton Turbine and Assembly Aman Rajak, Prateek Shrestha, Manoj Rijal, Bishal Pudasaini, Mahesh Chandra Luintel Department of Mechanical Engineering, Central Campus, Pulchowk, Institute

More information

Engineering Failure Analysis

Engineering Failure Analysis Engineering Failure Analysis 23 (2012) 27 34 Contents lists available at SciVerse ScienceDirect Engineering Failure Analysis journal homepage: www.elsevier.com/locate/engfailanal Failure investigation

More information

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering MODIFICATIONS TO THE RUNNER BLADE TO IMPROVE OFF-DESIGN EFFICIENCIES OF HYDRAULIC TURBINES A Thesis

More information

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110 CVEN 311-501 Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110 Name: UIN: Instructions: Fill in your name and UIN in the space above. There should be 11 pages including this one.

More information

OPEN CHANNELS (OPEN CHANNEL FLOW AND HYDRAULIC MACHINERY)

OPEN CHANNELS (OPEN CHANNEL FLOW AND HYDRAULIC MACHINERY) OPEN CHANNELS (OPEN CHANNEL FLOW AND HYDRAULIC MACHINERY) UNIT I IARE Dr.G. Venkata Ramana Professor& HOD Civil Engineering Learning Objectives 1. Types of Channels 2. Types of Flows 3. Velocity Distribution

More information

CHAPTER 12 Turbomachinery

CHAPTER 12 Turbomachinery CAER urbomachinery Chapter / urbomachinery 800 / 0 8 8 rad /s, u r 8 8 0 0 m /s, u r 8 8 0 0 8 m /s, rbv, but V u since, n n 0 0 0 0 0 0 m / s V V 0 0 m /s, rb 0 0 0 Vn u 0 8 6 77 m /s, tan tan 0 n t V

More information

The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine

The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine Journal of Physics: Conference Series OPEN ACCESS The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine To cite this article: D eli and H Ondráka 2015 J.

More information

Head loss coefficient through sharp-edged orifices

Head loss coefficient through sharp-edged orifices Head loss coefficient through sharp-edged orifices Nicolas J. Adam, Giovanni De Cesare and Anton J. Schleiss Laboratory of Hydraulic Constructions, Ecole Polytechnique fédérale de Lausanne, Lausanne, Switzerland

More information

CFD approach for design optimization and validation for axial flow hydraulic turbine

CFD approach for design optimization and validation for axial flow hydraulic turbine Indian Journal of Engineering & Materials Sciences Vol. 16, August 009, pp. 9-36 CFD approach for design optimization and validation for axial flow hydraulic turbine Vishnu Prasad, V K Gahlot* & P Krishnamachar

More information

CHAPTER 2 MODELING OF POWER SYSTEM

CHAPTER 2 MODELING OF POWER SYSTEM 38 CHAPTER 2 MODELING OF POWER SYSTEM 2.1 INTRODUCTION In the day to day scenario, power is an essential commodity to the human beings. The demand is more in developed countries and there is increase in

More information

Silt motion simulation using finite volume particle method

Silt motion simulation using finite volume particle method IOP Conference Series: Earth and Environmental Science OPEN ACCESS Silt motion simulation using finite volume particle method To cite this article: E Jahanbakhsh et al 014 IOP Conf. Ser.: Earth Environ.

More information

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

More information

Numerical investigation of the flow behavior into a Francis runner during load rejection

Numerical investigation of the flow behavior into a Francis runner during load rejection IOP Conference Series: Earth and Environmental Science OPEN ACCESS Numerical investigation of the flow behavior into a Francis runner during load rejection To cite this article: P Côté et al 2014 IOP Conf.

More information

Performance Prediction of the Francis-99 Hydroturbine with Comparison to Experiment. Chad Custer, PhD Yuvraj Dewan Artem Ivashchenko

Performance Prediction of the Francis-99 Hydroturbine with Comparison to Experiment. Chad Custer, PhD Yuvraj Dewan Artem Ivashchenko Performance Prediction of the Francis-99 Hydroturbine with Comparison to Experiment Chad Custer, PhD Yuvraj Dewan Artem Ivashchenko Unrestricted Siemens AG 2017 Realize innovation. Agenda Introduction

More information

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS Fluid Machinery As per Revised Syllabus of Leading Universities including APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Dr. S. Ramachandran Prof. R. Devaraj Professors School of Mechanical Engineering Sathyabama

More information

2D Model of Guide Vane for Low Head Hydraulic Turbine: Analytical and Numerical Solution of Inverse Problem

2D Model of Guide Vane for Low Head Hydraulic Turbine: Analytical and Numerical Solution of Inverse Problem Journal of Mechanics Engineering and Automation 4 (4) 95- D DAVID PUBLISHING D Model of Guide Vane for Low Head Hydraulic Turbine: Analytical and Numerical Romuald Puzyrewski and Zbigniew Krzemianowski.

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 07 Analysis of Force on the Bucket of Pelton

More information

Simulation of event-based control

Simulation of event-based control Simulation of event-based control ANGELA VITIELLO Masters Degree Project Stockholm, Sweden Dec 2009 XR-EE-RT 2009:022 Abstract The aim of this thesis is twofold. The first and major one is to develop an

More information

A numerical investigation of tip clearance flow in Kaplan water turbines

A numerical investigation of tip clearance flow in Kaplan water turbines Published in the proceedings of HYDROPOWER INTO THE NEXT CENTURY - III, 1999. ISBN 9522642 9 A numerical investigation of tip clearance flow in Kaplan water turbines M.Sc. H. Nilsson Chalmers University

More information

METHODOLOGY FOR RISK ASSESSMENT OF PART LOAD RESONANCE IN FRANCIS TURBINE POWER PLANT

METHODOLOGY FOR RISK ASSESSMENT OF PART LOAD RESONANCE IN FRANCIS TURBINE POWER PLANT IAHR Int. Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems Barcelona, 8-30 June 006 METHODOLOGY FOR RISK ASSESSMENT OF PART LOAD RESONANCE IN FRANCIS TURBINE POWER PLANT

More information

Subject-wise Tests. Tests will be activated at 6:00 pm on scheduled day

Subject-wise Tests. Tests will be activated at 6:00 pm on scheduled day Subject-wise Tests Tests will be activated at 6:00 pm on scheduled day Test No Test-01 Test-02 SM-1 Economic development in India since independence with emphasis on Andhra Pradesh + Science & Technology

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

ON THE HUB-TO-SHROUD RATIO OF AN AXIAL EXPANSION TURBINE FOR ENERGY RECOVERY

ON THE HUB-TO-SHROUD RATIO OF AN AXIAL EXPANSION TURBINE FOR ENERGY RECOVERY 6 th IAH International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia ON THE HUB-TO-SHOUD ATIO OF AN AXIAL EXPANSION

More information

Experimental and Numerical Computational Fluid Dynamics Analysis on the Flow at Pelton Turbine Nozzle with Various Opening Settings

Experimental and Numerical Computational Fluid Dynamics Analysis on the Flow at Pelton Turbine Nozzle with Various Opening Settings Experimental and Numerical Computational Fluid Dynamics Analysis on the Flow at Pelton Turbine Nozzle with Various Opening Settings Zar Chi Thaung Department of Mechanical Engineering, Technological University

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

MANAGEMENT OF A HYDROELECTRIC MOBILE DAM

MANAGEMENT OF A HYDROELECTRIC MOBILE DAM U.P.B. Sci. Bull., Series D, Vol. 74, Iss. 1, 01 ISSN 1454-358 MANAGEMENT OF A HYDROELECTRIC MOBILE DAM Carmen Anca SAFTA 1, Liliana VASILE The dam management system is made by measurement and control

More information

NUMERICAL INVESTIGATION OF PERFORMANCE OF KAPLAN TURBINE WITH DRAFT TUBE

NUMERICAL INVESTIGATION OF PERFORMANCE OF KAPLAN TURBINE WITH DRAFT TUBE NUMERICAL INVESTIGATION OF PERFORMANCE OF KAPLAN TURBINE WITH DRAFT TUBE Mohamed Adel and Nabil H. Mostafa ABSTRACT Mechanical Power Engineering Department, Engineering Faculty Zagazig University, Zagazig,

More information

Improving the Control System for Pumped Storage Hydro Plant

Improving the Control System for Pumped Storage Hydro Plant 011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (011) (011) IACSIT Press, Singapore Improving the Control System for Pumped Storage Hydro Plant 1 Sa ad. P. Mansoor

More information

THE PRESSURE-TIME MEASUREMENTS PROJECT AT LTU AND NTNU

THE PRESSURE-TIME MEASUREMENTS PROJECT AT LTU AND NTNU THE PRESSURE-TIME MEASUREMENTS PROJECT AT LTU AND NTNU ABSTRACT Pontus P. Jonsson, Luleå University of Technology Jørgen Ramdal, Norwegian University of Science and Technology Michel J. Cervantes, Luleå

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

ME-662 CONVECTIVE HEAT AND MASS TRANSFER

ME-662 CONVECTIVE HEAT AND MASS TRANSFER ME-66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India LECTURE- INTRODUCTION () March 7, 00 / 7 LECTURE- INTRODUCTION

More information

Open channel discharge measurement using the acoustic transit time method a case study

Open channel discharge measurement using the acoustic transit time method a case study Open channel discharge measurement using the acoustic transit time method a case study A. Abgottspon, T. Staubli, N. Gloor etaeval GmbH, 6048 Horw, Switzerland Hochschule Luzern, Technik & Architektur,

More information

Validation of simulation strategies for the flow in a model propeller turbine during a runaway event

Validation of simulation strategies for the flow in a model propeller turbine during a runaway event IOP Conference Series: Earth and Environmental Science OPEN ACCESS Validation of simulation strategies for the flow in a model propeller turbine during a runaway event To cite this article: M Fortin et

More information

Design of Restricted Orifice Surge Tank

Design of Restricted Orifice Surge Tank Design of Restricted Orifice Surge Tank August 3, 13 Contents 1. Necessity of Surge Tank 1. Requirements for Hydraulic Design of Restricted Orifice Surge Tank 1 3. Fundamental Differential Equations 1

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system The Energy Equation for Control Volumes Recall, the First Law of Thermodynamics: where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

More information

Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model Home Search Collections Journals About Contact us My IOPscience Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model This article has been downloaded from IOPscience.

More information