E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

Size: px
Start display at page:

Download "E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30"

Transcription

1 Vector Mechnics for Engineers: Dynmics nnouncement Reminders Wednesdy s clss will strt t 1:00PM. Summry of the chpter 11 ws posted on website nd ws sent you by emil. For the students, who needs hrdcopy, plese come to the front tble. Homework 1.9 (7th) or 1.10 (8th) 1.17 (7th) or 1.18 (8th) 1. (7th) or 1.4 (8th) 1.5 (7th) or 1.7 (8th) 1.36 (7th) or 1.38 (8th) Due, next Wednesdy, 07/19/006! 1-30

2 Vector Mechnics for Engineers: Dynmics Smple Problem 11.1 SOLUTION: Evlute time t for q = 30 o. Evlute rdil nd ngulr positions, nd first nd second derivtives t time t. Rottion of the rm bout O is defined by q = 0.15t where q is in rdins nd t in seconds. Collr slides long the rm such tht r = t where r is in meters. Clculte velocity nd ccelertion in cylindricl coordintes. Evlute ccelertion with respect to rm. fter the rm hs rotted through 30 o, determine () the totl velocity of the collr, (b) the totl ccelertion of the collr, nd (c) the reltive ccelertion of the collr with respect to the rm. - 30

3 Vector Mechnics for Engineers: Dynmics Review of lst clss nd introduction of this clss ---- Rod Mp Finished Dynmics Unfinished Prticles Dels with Rigid body Curviliner motion Rectngulr coord. Curviliner Coord. Polr/Cylindr. Coord. Kinemtics Determintion of motion Sole prticle & three bsic problems Reltive Motion (P) Dependent Motion Rectiliner motion Kinetics Newton s lw of motion Dynmic Trnsltionl motion equilibrium Eq. Rottion Chpter

4 CHPTER 11 VECTOR MECHNICS FOR ENGINEERS: DYNMICS Ferdinnd P. eer E. Russell Johnston, Jr. Lecture Notes: Dr. Gngyi Zhou UC Irvine Jul 10th, 006 Kinetics of Prticles Prt : Force method

5 Vector Mechnics for Engineers: Dynmics Newton s Second Lw of Motion ---moving objects with constnt mss Newton s Second Lw: If the resultnt force cting on prticle is not zero, the prticle will hve n ccelertion proportionl to the mgnitude of resultnt nd in the direction of the resultnt. When prticle of mss m is cted upon by force the ccelertion of the prticle must stisfy F m (Mthemtic expression ) Remrks: If force cting on prticle is zero, prticle will not ccelerte, i.e., it will remin sttionry or continue on stright line t constnt velocity. Cution: ccelertion must be evluted with respect to Newtonin frme of reference, i.e., one tht is not ccelerting or rotting. F, 5-30

6 Vector Mechnics for Engineers: Dynmics Newton s Second Lw of Motion ---moving objects with vrible mss Consider how Rocket lunches: (1) Rockets propel outwrds high pressure gses; () The mss of Rockets decreses (3) Rockets re moving object with decresing mss Replcing the ccelertion by the derivtive of the velocity yields d dl F m v dt dt L liner momentum of the prticle generl form Liner Momentum Conservtion Principle: If the resultnt force on prticle is zero, the liner momentum of the prticle remins constnt in both mgnitude nd direction. 6-30

7 Vector Mechnics for Engineers: Dynmics Systems of Units Of the units for the four primry dimensions (force, mss, length, nd time), three my be chosen rbitrrily. The fourth must be comptible with Newton s nd Lw. Interntionl System of Units (SI Units): bse units re the units of length (m), mss (kg), nd time (second). The unit of force is derived, 1N 1kg m 1 s kg m 1 s U.S. Customry Units: bse units re the units of force (lb), length (m), nd time (second). The unit of mss is derived, 1lb 1lbm 3.ft s 1lb 1slug 1ft s lbs 1 ft 7-30

8 Vector Mechnics for Engineers: Dynmics Equtions of Motion Rectngulr Coord. Newton s second lw provides F m Solution for prticle motion is fcilitted by resolving vector eqution into sclr component equtions, e.g., for rectngulr components, Fxi Fy j Fzk m xi yj zk Fx mx Fy my Fz d x d y Fx m Fy m Fz dt For tngentil nd norml components, F F t t m t dv m dt F F n n m dt n v m m m z d z dt Curviliner Coord. 8-30

9 Vector Mechnics for Engineers: Dynmics Dynmic Equilibrium lternte expression of Newton s second lw, virtul F m 0 force m inertil vector With the inclusion of the inertil vector, the system of forces cting on the prticle is equivlent to zero. The prticle is in dynmic equilibrium. Methods developed for prticles in sttic equilibrium my be pplied, e.g., coplnr forces my be represented with closed vector polygon. 9-30

10 Vector Mechnics for Engineers: Dynmics Summry on Newton s nd lw Two expressions d Constnt mss: F=m; Generl form: mv F dt dv m v dt In Coordintes The components of force vectors cn be fully determined by the ssocite components of ccelertion vectors through Newton s lw. dm dt Force to induce velocity chnge Converting dynmic problem to sttic problem: Only by Inertil force ( virtul force opposite to ccelertions) Physicl mening: Force is the key to chnge motion. Force to induce mss chnge 10-30

11 Vector Mechnics for Engineers: Dynmics Steps to solve dynmic problems though Newton s nd lw Step 1: How mny prticles? Step : Setup coordintes Step 3: Determintion of motion for ech prticles 3.1, Kinemtics 3., Decomposition of forces on ech prticle long ech xis of coordintes 3.3, Dynmic equtions for ech prticle long ech xis of coordintes Step 4: Look up the solutions from the bove determined motions

12 Vector Mechnics for Engineers: Dynmics Smple Problem 1.1 SOLUTION: Resolve the eqution of motion for the block into two rectngulr component equtions. 00-lb block rests on horizontl plne. Find the mgnitude of the force P required to give the block n ccelertion or 10 ft/s to the right. The coefficient of kinetic friction between the block nd plne is m k 0.5. Unknowns consist of the pplied force P nd the norml rection N from the plne. The two equtions my be solved for these unknowns. 1-30

13 Vector Mechnics for Engineers: Dynmics Smple Problem 1.1 y O m F x W g lbs 6.1 ft m N k 0.5N 00lb 3.ft s SOLUTION: Resolve the eqution of motion for the block into two rectngulr component equtions. F x m : F y P cos30 0.5N 0 : 6.1lbs ft 10ft s 6.1lb N Psin30 00lb 0 Unknowns consist of the pplied force P nd the norml rection N from the plne. The two equtions my be solved for these unknowns. N Psin30 00lb P cos Psin30 00lb 6.1lb P 151lb 13-30

14 Vector Mechnics for Engineers: Dynmics Smple Problem 1.3 SOLUTION: The two blocks shown strt from rest. The horizontl plne nd the pulley re frictionless, nd the pulley is ssumed to be of negligible mss. Determine the ccelertion of ech block nd the tension in the cord. Write the kinemtic reltionships for the dependent motions nd ccelertions of the blocks. Write the equtions of motion for the blocks nd pulley. Combine the kinemtic reltionships with the equtions of motion to solve for the ccelertions nd cord tension

15 Vector Mechnics for Engineers: Dynmics Smple Problem 1.3 O y x SOLUTION: Write the kinemtic reltionships for the dependent motions nd ccelertions of the blocks. Write equtions of motion for blocks nd pulley. F m x y T 1 F m F y y m : 100kg : 300kg 9.81m s T 300kg T T 1 x g T m m 940N - C C T 1 0 : kg 15-30

16 Vector Mechnics for Engineers: Dynmics Smple Problem 1.3 O y x Combine kinemtic reltionships with equtions of motion to solve for ccelertions nd cord tension. y T T T 1 1 x 100kg 940N - 940N - 300kg 1 T T 1 300kg 1 T N 150kg 100kg m 1 100kg T 1 s 4.0m 1680 N s 840 N 16-30

17 Vector Mechnics for Engineers: Dynmics Smple Problem 1.4 SOLUTION: The block is constrined to slide down the wedge. Therefore, their motions re dependent. Express the ccelertion of block s the ccelertion of wedge plus the ccelertion of the block reltive to the wedge. The 1-lb block strts from rest nd slides on the 30-lb wedge, which is supported by horizontl surfce. Neglecting friction, determine () the ccelertion of the wedge, nd (b) the ccelertion of the block reltive to the wedge. Write the equtions of motion for the wedge nd block. Solve for the ccelertions

18 Vector Mechnics for Engineers: Dynmics Smple Problem 1.4 y x SOLUTION: The block is constrined to slide down the wedge. Therefore, their motions re dependent. Write equtions of motion for wedge nd block. F m : F F x x y N 1 0.5N sin30 m W N m 1 x W m m sin30 y g cos30 : W g cos30 cos30 g sin30 m sin30: W cos30 30 W g sin

19 Vector Mechnics for Engineers: Dynmics Smple Problem 1.4 Solve for the ccelertions. 0.5N1 W g N 1 W cos30 W g sin30 W g W cos30 W g gw cos30 W W sin30 3. ft s 1lbcos30 30lb 1lbsin ft sin30 s cos30 g sin ft s cos30 3. ft s sin30 0.5ft s 19-30

20 Vector Mechnics for Engineers: Dynmics Smple Problem 1.5 The bob of -m pendulum describes n rc of circle in verticl plne. If the tension in the cord is.5 times the weight of the bob for the position shown, find the velocity nd ccelertion of the bob in tht position. SOLUTION: Resolve the eqution of motion for the bob into tngentil nd norml components. Solve the component equtions for the norml nd tngentil ccelertions. Solve for the velocity in terms of the norml ccelertion. 0-30

21 Vector Mechnics for Engineers: Dynmics Smple Problem 1.5 SOLUTION: Resolve the eqution of motion for the bob into tngentil nd norml components. Solve the component equtions for the norml nd tngentil ccelertions. F : mg sin30 m t m t Fn m n : t g sin30.5mg n g t t.5 cos30 4.9m mg cos30 m n n s 16.03m Solve for velocity in terms of norml ccelertion. n v v n m 16.03m s v 5.66m s s 1-30

22 Vector Mechnics for Engineers: Dynmics Smple Problem 1.6 SOLUTION: The cr trvels in horizontl circulr pth with norml component of ccelertion directed towrd the center of the pth.the forces cting on the cr re its weight nd norml rection from the rod surfce. Determine the rted speed of highwy curve of rdius = 400 ft bnked through n ngle q = 18 o. The rted speed of bnked highwy curve is the speed t which cr should trvel if no lterl friction force is to be exerted t its wheels. Resolve the eqution of motion for the cr into verticl nd norml components. Solve for the vehicle speed. - 30

23 Vector Mechnics for Engineers: Dynmics Smple Problem 1.6 SOLUTION: The cr trvels in horizontl circulr pth with norml component of ccelertion directed towrd the center of the pth.the forces cting on the cr re its weight nd norml rection from the rod surfce. Resolve the eqution of motion for the cr into verticl nd norml components. F y 0 : R cosq W 0 W R cosq Fn m n : Rsinq W g W sinq cosq Solve for the vehicle speed. v g tnq n W g 3. ft s 400ft tn18 v v 64.7ft s 44.1mi h 3-30

24 Vector Mechnics for Engineers: Dynmics Smple Problem 1.15 lock weights 80lb, nd block weights 16lb. The coefficients of friction between ll surfces of contct re u s =0. nd u k =0.15. Knowing tht P=0, determine () the ccelertion of block, (b) the tension in the cord. 4-30

25 Vector Mechnics for Engineers: Dynmics Smple Problem 1.40 The 0.5kg flyblls of centrifugl governor revolve t constnt speed v in the horizontl circle of 150mm rdius shown. Neglecting the mss of links,c,d, nd DE nd requiring tht the links support only tensile forces, determine the rnge of the llowble vlues of v so tht the mgnetitudes of the forces in the links do not exceed 75N 5-30

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law ME 141 Engineering Mechnics Lecture 10: Kinetics of prticles: Newton s nd Lw Ahmd Shhedi Shkil Lecturer, Dept. of Mechnicl Engg, BUET E-mil: sshkil@me.buet.c.bd, shkil6791@gmil.com Website: techer.buet.c.bd/sshkil

More information

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //16 1:36 AM Chpter 11 Kinemtics of Prticles 1 //16 1:36 AM First Em Wednesdy 4//16 3 //16 1:36 AM Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion

More information

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //15 11:1 M Chpter 11 Kinemtics of Prticles 1 //15 11:1 M Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion of bodies under the ction of forces It is

More information

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. 1/31/18 1:33 PM Chpter 11 Kinemtics of Prticles 1 1/31/18 1:33 PM First Em Sturdy 1//18 3 1/31/18 1:33 PM Introduction Mechnics Mechnics = science which describes nd predicts conditions of rest or motion

More information

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc Physics 170 Summry of Results from Lecture Kinemticl Vribles The position vector ~r(t) cn be resolved into its Crtesin components: ~r(t) =x(t)^i + y(t)^j + z(t)^k. Rtes of Chnge Velocity ~v(t) = d~r(t)=

More information

Physics Honors. Final Exam Review Free Response Problems

Physics Honors. Final Exam Review Free Response Problems Physics Honors inl Exm Review ree Response Problems m t m h 1. A 40 kg mss is pulled cross frictionless tble by string which goes over the pulley nd is connected to 20 kg mss.. Drw free body digrm, indicting

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html

More information

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1 Version 001 HW#6 - Circulr & ottionl Motion rts (00223) 1 This print-out should hve 14 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Circling

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGI OIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. escription

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A uniform circulr disc hs mss m, centre O nd rdius. It is free to rotte bout fixed smooth horizontl xis L which lies in the sme plne s the disc nd which is tngentil to the disc t the point A. The disc

More information

Correct answer: 0 m/s 2. Explanation: 8 N

Correct answer: 0 m/s 2. Explanation: 8 N Version 001 HW#3 - orces rts (00223) 1 his print-out should hve 15 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Angled orce on Block 01 001

More information

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

Year 12 Mathematics Extension 2 HSC Trial Examination 2014 Yer Mthemtics Etension HSC Tril Emintion 04 Generl Instructions. Reding time 5 minutes Working time hours Write using blck or blue pen. Blck pen is preferred. Bord-pproved clcultors my be used A tble of

More information

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2 Physics 319 Clssicl Mechnics G. A. Krfft Old Dominion University Jefferson Lb Lecture Undergrdute Clssicl Mechnics Spring 017 Sclr Vector or Dot Product Tkes two vectors s inputs nd yields number (sclr)

More information

Mathematics Extension Two

Mathematics Extension Two Student Number 04 HSC TRIAL EXAMINATION Mthemtics Etension Two Generl Instructions Reding time 5 minutes Working time - hours Write using blck or blue pen Bord-pproved clcultors my be used Write your Student

More information

KINETICS OF RIGID BODIES PROBLEMS

KINETICS OF RIGID BODIES PROBLEMS KINETICS OF RIID ODIES PROLEMS PROLEMS 1. The 6 kg frme C nd the 4 kg uniform slender br of length l slide with negligible friction long the fied horizontl br under the ction of the 80 N force. Clculte

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES 1. TRANSLATION Figure shows rigid body trnslting in three-dimensionl spce. Any two points in the body, such s A nd B, will move long prllel stright lines if

More information

Dynamics Applying Newton s Laws Accelerated Frames

Dynamics Applying Newton s Laws Accelerated Frames Dynmics Applying Newton s Lws Accelerted Frmes Ln heridn De Anz College Oct 18, 2017 Lst time Circulr motion nd force Centripetl force Exmples Non-uniform circulr motion Overview one lst circulr motion

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Forces and Accelerations. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Forces and Accelerations. Seventh Edition CHAPTER CHAPTER 16 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinnd P. Beer E. Ruell Johnton, Jr. Lecture Note: J. Wlt Oler Tex Tech Univerity Plne Motion of Rigid Bodie: Force nd Accelertion Content Introduction

More information

JURONG JUNIOR COLLEGE

JURONG JUNIOR COLLEGE JURONG JUNIOR COLLEGE 2010 JC1 H1 8866 hysics utoril : Dynmics Lerning Outcomes Sub-topic utoril Questions Newton's lws of motion 1 1 st Lw, b, e f 2 nd Lw, including drwing FBDs nd solving problems by

More information

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Centroids and Centers of Gravity.

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Centroids and Centers of Gravity. 5 Distributed CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Wlt Oler Texs Tech Universit Forces: Centroids nd Centers of Grvit Contents Introduction

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bord-pproved clcultors my be used A tble of stndrd

More information

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย )

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย ) MEE 14 (Dynmics) Tuesdy 8.30-11.0 Dr. Sortos Tntideerit (สรทศ ต นต ธ รว ทย ) sortos@oep.go.th Lecture Notes, Course updtes, Extr problems, etc No Homework Finl Exm (Dte & Time TBD) 1/03/58 MEE14 Dynmics

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

Physics 207 Lecture 7

Physics 207 Lecture 7 Phsics 07 Lecture 7 Agend: Phsics 07, Lecture 7, Sept. 6 hpter 6: Motion in (nd 3) dimensions, Dnmics II Recll instntneous velocit nd ccelertion hpter 6 (Dnmics II) Motion in two (or three dimensions)

More information

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg Lecture 8 Applictions of the ewton s Lws Problem-Solving ctics http://web.njit.edu/~sireno/ ewton s Lws I. If no net force ocects on body, then the body s velocity cnnot chnge. II. he net force on body

More information

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion Lecture 5 Physics 2A Olg Dudko UCSD Physics Tody: Motion in mny dimensions: Circulr motion. Newton s Lws of Motion. Lws tht nswer why questions bout motion. Forces. Inerti. Momentum. Uniform Circulr Motion

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines Msschusetts Institute of Technology Deprtment of Physics 8.0T Fll 004 Study Guide Finl Exm The finl exm will consist of two sections. Section : multiple choice concept questions. There my be few concept

More information

FULL MECHANICS SOLUTION

FULL MECHANICS SOLUTION FULL MECHANICS SOLUION. m 3 3 3 f For long the tngentil direction m 3g cos 3 sin 3 f N m 3g sin 3 cos3 from soling 3. ( N 4) ( N 8) N gsin 3. = ut + t = ut g sin cos t u t = gsin cos = 4 5 5 = s] 3 4 o

More information

Chapter 5 Exercise 5A

Chapter 5 Exercise 5A Chpter Exercise Q. 1. (i) 00 N,00 N F =,00 00 =,000 F = m,000 = 1,000 = m/s (ii) =, u = 0, t = 0, s =? s = ut + 1 t = 0(0) + 1 ()(00) = 00 m Q.. 0 N 100 N F = 100 0 = 60 F = m 60 = 10 = 1 m/s F = m 60

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

Dynamics and control of mechanical systems. Content

Dynamics and control of mechanical systems. Content Dynmics nd control of mechnicl systems Dte Dy 1 (01/08) Dy (03/08) Dy 3 (05/08) Dy 4 (07/08) Dy 5 (09/08) Dy 6 (11/08) Content Review of the bsics of mechnics. Kinemtics of rigid bodies plne motion of

More information

SOLUTIONS TO CONCEPTS CHAPTER 10

SOLUTIONS TO CONCEPTS CHAPTER 10 SOLUTIONS TO CONCEPTS CHPTE 0. 0 0 ; 00 rev/s ; ; 00 rd/s 0 t t (00 )/4 50 rd /s or 5 rev/s 0 t + / t 8 50 400 rd 50 rd/s or 5 rev/s s 400 rd.. 00 ; t 5 sec / t 00 / 5 8 5 40 rd/s 0 rev/s 8 rd/s 4 rev/s

More information

Homework: 5, 9, 19, 25, 31, 34, 39 (p )

Homework: 5, 9, 19, 25, 31, 34, 39 (p ) Hoework: 5, 9, 19, 5, 31, 34, 39 (p 130-134) 5. A 3.0 kg block is initilly t rest on horizontl surfce. A force of gnitude 6.0 nd erticl force P re then pplied to the block. The coefficients of friction

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Multiple Choice ( 6 Points Ech ): F pp = 40 N 20 kg Q = 60 O m s,k = 0 1. A 20 kg box is pulled long frictionless floor with n pplied force of 40 N. The pplied force mkes n ngle of 60 degrees with the

More information

A wire. 100 kg. Fig. 1.1

A wire. 100 kg. Fig. 1.1 1 Fig. 1.1 shows circulr cylinder of mss 100 kg being rised by light, inextensible verticl wire. There is negligible ir resistnce. wire 100 kg Fig. 1.1 (i) lculte the ccelertion of the cylinder when the

More information

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM) Slide 1 / 71 Slide 2 / 71 P Physics 1 irculr Motion 2015-12-02 www.njctl.org Topics of Uniform irculr Motion (UM) Slide 3 / 71 Kinemtics of UM lick on the topic to go to tht section Period, Frequency,

More information

Problems (Motion Relative to Rotating Axes)

Problems (Motion Relative to Rotating Axes) 1. The disk rolls without slipping on the roblems (Motion Reltie to Rotting xes) horizontl surfce, nd t the instnt represented, the center O hs the elocity nd ccelertion shown in the figure. For this instnt,

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy.

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy. HW Solutions # 5-8.01 MIT - Prof. Kowlski Friction, circulr dynmics, nd Work-Kinetic Energy. 1) 5.80 If the block were to remin t rest reltive to the truck, the friction force would need to cuse n ccelertion

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: and Centers of Gravity. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS VECTOR MECHANICS FOR ENGINEERS: and Centers of Gravity. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGrw-Hill Compnies, Inc. All rights reserved. Eighth E CHAPTER 5 Distriuted VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Wlt Oler Tes Tech

More information

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4 Phy 231 Sp 3 Hoework #8 Pge 1 of 4 8-1) rigid squre object of negligible weight is cted upon by the forces 1 nd 2 shown t the right, which pull on its corners The forces re drwn to scle in ters of the

More information

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability ESCI 343 Atmospheric Dynmics II Lesson 14 Inertil/slntwise Instbility Reference: An Introduction to Dynmic Meteorology (3 rd edition), J.R. Holton Atmosphere-Ocen Dynmics, A.E. Gill Mesoscle Meteorology

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane.

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane. Plne curiliner motion is the motion of prticle long cured pth which lies in single plne. Before the description of plne curiliner motion in n specific set of coordintes, we will use ector nlsis to describe

More information

Simple Harmonic Motion I Sem

Simple Harmonic Motion I Sem Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

More information

PREVIOUS EAMCET QUESTIONS

PREVIOUS EAMCET QUESTIONS CENTRE OF MASS PREVIOUS EAMCET QUESTIONS ENGINEERING Two prticles A nd B initilly t rest, move towrds ech other, under mutul force of ttrction At n instnce when the speed of A is v nd speed of B is v,

More information

PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS 211 MIDTERM I 21 April 2004 PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

Distributed Forces: Centroids and Centers of Gravity

Distributed Forces: Centroids and Centers of Gravity Distriuted Forces: Centroids nd Centers of Grvit Introduction Center of Grvit of D Bod Centroids nd First Moments of Ares nd Lines Centroids of Common Shpes of Ares Centroids of Common Shpes of Lines Composite

More information

Physics 105 Exam 2 10/31/2008 Name A

Physics 105 Exam 2 10/31/2008 Name A Physics 105 Exm 2 10/31/2008 Nme_ A As student t NJIT I will conduct myself in professionl mnner nd will comply with the proisions of the NJIT Acdemic Honor Code. I lso understnd tht I must subscribe to

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles Method of Loclistion nd Controlled Ejection of Swrms of Likely Chrged Prticles I. N. Tukev July 3, 17 Astrct This work considers Coulom forces cting on chrged point prticle locted etween the two coxil,

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 139 Slide 2 / 139 P Physics C - Mechnics Dynmics - pplictions of Newtons Lws 2015-12-03 www.njctl.org Tble of Contents Slide 3 / 139 Click on the topic to go to tht section Introduction Sliding

More information

Plates on elastic foundation

Plates on elastic foundation Pltes on elstic foundtion Circulr elstic plte, xil-symmetric lod, Winkler soil (fter Timoshenko & Woinowsky-Krieger (1959) - Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler

More information

Numerical Problems With Solutions(STD:-XI)

Numerical Problems With Solutions(STD:-XI) Numericl Problems With Solutions(STD:-XI) Topic:-Uniform Circulr Motion. An irplne executes horizontl loop of rdius 000m with stedy speed of 900kmh -. Wht is its centripetl ccelertion? Ans:- Centripetl

More information

Solutions to Supplementary Problems

Solutions to Supplementary Problems Solutions to Supplementry Problems Chpter 8 Solution 8.1 Step 1: Clculte the line of ction ( x ) of the totl weight ( W ).67 m W = 5 kn W 1 = 16 kn 3.5 m m W 3 = 144 kn Q 4m Figure 8.10 Tking moments bout

More information

DYNAMICS. Kinematics of Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinematics of Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHTER 15 VECTOR MECHNICS FOR ENGINEERS: YNMICS Ferdinnd. eer E. Russell Johnston, Jr. hillip J. Cornwell Lecture Notes: rin. Self Cliforni olytechnic Stte Uniersity Kinemtics of Rigid odies 013

More information

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane.

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane. Plne curiliner motion is the motion of prticle long cured pth which lies in single plne. Before the description of plne curiliner motion in n specific set of coordintes, we will use ector nlsis to describe

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

PROBLEM SOLUTION

PROBLEM SOLUTION PROLEM 15.11 The 18-in.-rdius flywheel is rigidly ttched to 1.5-in.-rdius shft tht cn roll long prllel rils. Knowing tht t the instnt shown the center of the shft hs velocity of 1. in./s nd n ccelertion

More information

Purpose of the experiment

Purpose of the experiment Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen

More information

AP Physics C - Mechanics. Introduction. Sliding Blocks. Slide 1 / 139 Slide 2 / 139. Slide 3 / 139. Slide 4 / 139. Slide 5 / 139.

AP Physics C - Mechanics. Introduction. Sliding Blocks. Slide 1 / 139 Slide 2 / 139. Slide 3 / 139. Slide 4 / 139. Slide 5 / 139. Slide 1 / 139 Slide 2 / 139 P Physics C - Mechnics Dynmics - pplictions of Newtons Lws 2015-12-03 www.njctl.org Slide 3 / 139 Slide 4 / 139 Tble of Contents Click on the topic to go to tht section Introduction

More information

First Semester Review Calculus BC

First Semester Review Calculus BC First Semester Review lculus. Wht is the coordinte of the point of inflection on the grph of Multiple hoice: No lcultor y 3 3 5 4? 5 0 0 3 5 0. The grph of piecewise-liner function f, for 4, is shown below.

More information

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3.

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3. PROLEM 15.105 A 5-m steel bem is lowered by mens of two cbles unwinding t the sme speed from overhed crnes. As the bem pproches the ground, the crne opertors pply brkes to slow the unwinding motion. At

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects;

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects; Honors Physics Centripetl Pcket 1. 4.00-kg sne whirled t end 2.00-m rope in horizontl circle t speed 15.0 m/s. Ignoring grvittionl effects;. Clculte centripetl ccelertion B. Clculte centripetl force. 2.

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Problems Blinn Collee - Physic425 - Terry Honn Problem E.1 () Wht is the centripetl (rdil) ccelertion of point on the erth's equtor? (b) Give n expression for the centripetl ccelertion s function

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

2A1A Vector Algebra and Calculus I

2A1A Vector Algebra and Calculus I Vector Algebr nd Clculus I (23) 2AA 2AA Vector Algebr nd Clculus I Bugs/queries to sjrob@robots.ox.c.uk Michelms 23. The tetrhedron in the figure hs vertices A, B, C, D t positions, b, c, d, respectively.

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ Jee-Advnced Dte: --7 Time: 09:00 AM to :00 Noon 0_P Model M.Mrks: 0 KEY SHEET CHEMISTRY C D 3 D B 5 A 6 D 7 B 8 AC 9 BC 0 ABD ABD A 3 C D 5 B 6 B 7 9 8 9 0 7 8 3 3 6 PHYSICS B 5 D

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

Sample Problems for the Final of Math 121, Fall, 2005

Sample Problems for the Final of Math 121, Fall, 2005 Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

Physics 110. Spring Exam #1. April 16, Name

Physics 110. Spring Exam #1. April 16, Name Physics 110 Spring 010 Exm #1 April 16, 010 Nme Prt Multiple Choice / 10 Problem #1 / 7 Problem # / 7 Problem #3 / 36 Totl / 100 In keeping with the Union College policy on cdemic honesty, it is ssumed

More information

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Ninth E CHPTER VECTOR MECHNICS OR ENGINEERS: DYNMICS edinnd P. ee E. Russell Johnston, J. Lectue Notes: J. Wlt Ole Texs Tech Univesity Kinetics of Pticles: Newton s Second Lw The McGw-Hill Copnies, Inc.

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

SAINT IGNATIUS COLLEGE

SAINT IGNATIUS COLLEGE SAINT IGNATIUS COLLEGE Directions to Students Tril Higher School Certificte 0 MATHEMATICS Reding Time : 5 minutes Totl Mrks 00 Working Time : hours Write using blue or blck pen. (sketches in pencil). This

More information

SECTION B Circular Motion

SECTION B Circular Motion SECTION B Circulr Motion 1. When person stnds on rotting merry-go-round, the frictionl force exerted on the person by the merry-go-round is (A) greter in mgnitude thn the frictionl force exerted on the

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings Chpter 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings When, in the cse of tilted coordinte system, you brek up the

More information

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions USD Phys 4 Intro Mechnics Winter 06 h 4 Solutions 0. () he 0.0 k box restin on the tble hs the free-body dir shown. Its weiht 0.0 k 9.80 s 96 N. Since the box is t rest, the net force on is the box ust

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Harman Outline 1A1 Integral Calculus CENG 5131

Harman Outline 1A1 Integral Calculus CENG 5131 Hrmn Outline 1A1 Integrl Clculus CENG 5131 September 5, 213 III. Review of Integrtion A.Bsic Definitions Hrmn Ch14,P642 Fundmentl Theorem of Clculus The fundmentl theorem of clculus shows the intimte reltionship

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects;

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects; AP Physics Centripetl Pcket 1. A 4.00-kg stone is whirled t end 2.00-m rope in horizontl circle t speed 15.0 m/s. Ignoring grvittionl effects; A. Clculte centripetl ccelertion B. Clculte centripetl force.

More information

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen Vorticity We hve previously discussed the ngulr velocity s mesure of rottion of body. This is suitble quntity for body tht retins its shpe but fluid cn distort nd we must consider two components to rottion:

More information

Trigonometric Functions

Trigonometric Functions Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information