Wednesday, February 21. Today we will begin Course Notes Chapter 5 (Number Theory).

Size: px
Start display at page:

Download "Wednesday, February 21. Today we will begin Course Notes Chapter 5 (Number Theory)."

Transcription

1 Wednesday, February 21 Today we will begin Course Notes Chapter 5 (Number Theory). 1

2 Return to Chapter 5 In discussing Methods of Proof (Chapter 3, Section 2) we introduced the divisibility relation from Chapter 5: Let a, b, be integers; then a b if and only if there is an integer k such that ak = b. We also introduced the modular congruence relation from Chapter 5: For integers a, b, and positive integer m, a b (mod m) if and only if m a b. These relations, and further concepts from number theory, are at the heart of some fundamental ideas in computing, including cryptography. 2

3 The Division Algorithm Let a be an integer and d be a positive integer. Then there are unique integers q and r, with 0 r<d, such that a = qd + r. In the relation a = qd + r, a is called the, d is called the, q is called the, and r is called the. Note that the Division Algorithm isn t really an algorithm, but that is the commonly used name for this theorem. As the following examples suggest, finding q and r for a particular a and d can be done using an algorithmic approach, which is probably the basis for the name. 3

4 EXAMPLE Let a = 61, d = 13; find q and r according to the division algorithm. (You may have already completed this exercise in your head; the following systematic approach indicates the association between this theorem and the word algorithm.) To find q, and then nonnegative r, we can carry out the following sequence of calculations of the form kd for integers k until kd exceeds a = 1 13 = 2 13 = 3 13 = 4 13 = 5 13 = 4

5 EXAMPLE Let a = 21, d = 6; find q and r according to the division algorithm. True/false: q = 3 The approach taken in the previous example can be helpful in the case where a is negative; remember that r must be nonnegative and less than d (= 6). 0 6 = 1 6 = 2 6 = 3 6 = 4 6 = 5

6 An operation derived from the Division Algorithm In the expression a = qd + r we say that r = a modulo d or r = a mod d That is, a mod d is the remainder according to the Division Algorithm when the integer a is divided by the positive integer d. Referring to the results of the previous examples, we say that 61 mod 13 = 21 mod 6 = Beware: most calculators and programming languages have a feature is that like the mod operation (frequently denoted a % d ); exactly how these functions work can vary from one device or language to another, but they tend to not align with the mathematical definition of a mod d, which insists, among other things, that d must be positive and a mod d must be nonnegative and less than d. Note that a mod d is an operation, unlike a b (mod m), which is a relation. The two concepts are connected to one another however. 6

7 Theorem Let a, b, be integers and let m be a positive integer. a b (mod m) if and only if a mod m = b mod m. Here is an example of what this theorem is stating. Let m = 5, a = 28, b = 53. Then a mod m = 28 mod 5 = b mod m = 53 mod 5 = Also note that a b (mod m) because We will prove one direction of the biconditional theorem above. The proof of the other direction is similar. Prove: For integers a, b, and positive integer m, if a mod m = b mod m, then a b (mod m). 7

8 Number theory: more definitions and theorems The greatest common divisor of integers a, b, denoted GCD(a, b), is the largest positive integer d such that d a and d b. The least common multiple of integers a, b, denoted LCM(a, b), is the smallest positive integer d such that a d and b d. An integer p 2 is prime if the only positive divisors of p are 1 and p. An integer n 2 that is not prime is composite. If n is composite, then n is the product of integers greater than 1 but less than n. The Fundamental Theorem of Arithmetic states that every integer n 2 can be expressed as the product of prime factors, and this representation is unique when the prime factors are listed in nondescending order (we will prove part this theorem, after we have studied mathematical induction). Example: 40 = 52 = In middle school you were (probably) taught to use the prime factorizations of a, b to build GCD(a, b) and LCM(a, b). 8

9 Finding gcd(a, b) is an important step in solving many problems. Eventually, we will introduce a much more efficient method (the Euclidean algorithm). There are infinitely many prime numbers. This claim might seem obvious to you, but that fact that a claim seems obvious doesn t guarantee that it is true. A proof guarantees that a claim is true. The following proof is from Euclid, roughly 2000 years ago. He proved the equivalent claim: If S is any finite set of prime numbers, there is at least one prime number not included in S. The proof makes use of the Fundamental Theorem of Arithmetic, and the Division Algorithm. 9

10 There is no known formula or function that will automatically generate prime numbers. Generating very large prime numbers is an important part of public key cryptography. The methods used today involve are probabilistic: stated simplistically, they involve generating a very large, random odd number (easy to do), then applying various tests to decide whether there is a high probability that the number is prime. One formula that, at first, seems to generate prime numbers is: 2 p 1, where p is prime = 3 is prime = 7 is prime = 31 is prime = 127 is prime but, alas = 127 = 2047 = is not prime. A prime number that does have the form 2 p 1 is called a Mersenne Prime. For example, 127 = is a Mersenne prime. 17 is a prime, but not a Mersenne prime = is not a Mersenne prime, because 2047 is not prime. 10

After that, we will introduce more ideas from Chapter 5: Number Theory. Your quiz in recitation tomorrow will involve writing proofs like those.

After that, we will introduce more ideas from Chapter 5: Number Theory. Your quiz in recitation tomorrow will involve writing proofs like those. Wednesday, Oct 17 Today we will finish Course Notes 3.2: Methods of Proof. After that, we will introduce more ideas from Chapter 5: Number Theory. The exercise generator Methods of Proof, 3.2 (also includes

More information

Exercises Exercises. 2. Determine whether each of these integers is prime. a) 21. b) 29. c) 71. d) 97. e) 111. f) 143. a) 19. b) 27. c) 93.

Exercises Exercises. 2. Determine whether each of these integers is prime. a) 21. b) 29. c) 71. d) 97. e) 111. f) 143. a) 19. b) 27. c) 93. Exercises Exercises 1. Determine whether each of these integers is prime. a) 21 b) 29 c) 71 d) 97 e) 111 f) 143 2. Determine whether each of these integers is prime. a) 19 b) 27 c) 93 d) 101 e) 107 f)

More information

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.4 2.6 of Rosen Introduction I When talking

More information

3 The fundamentals: Algorithms, the integers, and matrices

3 The fundamentals: Algorithms, the integers, and matrices 3 The fundamentals: Algorithms, the integers, and matrices 3.4 The integers and division This section introduces the basics of number theory number theory is the part of mathematics involving integers

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

This is a recursive algorithm. The procedure is guaranteed to terminate, since the second argument decreases each time.

This is a recursive algorithm. The procedure is guaranteed to terminate, since the second argument decreases each time. 8 Modular Arithmetic We introduce an operator mod. Let d be a positive integer. For c a nonnegative integer, the value c mod d is the remainder when c is divided by d. For example, c mod d = 0 if and only

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

4 Number Theory and Cryptography

4 Number Theory and Cryptography 4 Number Theory and Cryptography 4.1 Divisibility and Modular Arithmetic This section introduces the basics of number theory number theory is the part of mathematics involving integers and their properties.

More information

Chapter 5. Number Theory. 5.1 Base b representations

Chapter 5. Number Theory. 5.1 Base b representations Chapter 5 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,

More information

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes.

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. INTEGERS PETER MAYR (MATH 2001, CU BOULDER) In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. 1. Divisibility Definition. Let a, b

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Math 131 notes. Jason Riedy. 6 October, Linear Diophantine equations : Likely delayed 6

Math 131 notes. Jason Riedy. 6 October, Linear Diophantine equations : Likely delayed 6 Math 131 notes Jason Riedy 6 October, 2008 Contents 1 Modular arithmetic 2 2 Divisibility rules 3 3 Greatest common divisor 4 4 Least common multiple 4 5 Euclidean GCD algorithm 5 6 Linear Diophantine

More information

The set of integers will be denoted by Z = {, -3, -2, -1, 0, 1, 2, 3, 4, }

The set of integers will be denoted by Z = {, -3, -2, -1, 0, 1, 2, 3, 4, } Integers and Division 1 The Integers and Division This area of discrete mathematics belongs to the area of Number Theory. Some applications of the concepts in this section include generating pseudorandom

More information

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. Congruences Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same

More information

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}.

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. 2 Arithmetic This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. (See [Houston, Chapters 27 & 28]) 2.1 Greatest common divisors Definition 2.16. If a, b are integers, we say

More information

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have Exercise 13. Consider positive integers a, b, and c. (a) Suppose gcd(a, b) = 1. (i) Show that if a divides the product bc, then a must divide c. I give two proofs here, to illustrate the different methods.

More information

Algorithmic number theory. Questions/Complaints About Homework? The division algorithm. Division

Algorithmic number theory. Questions/Complaints About Homework? The division algorithm. Division Questions/Complaints About Homework? Here s the procedure for homework questions/complaints: 1. Read the solutions first. 2. Talk to the person who graded it (check initials) 3. If (1) and (2) don t work,

More information

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24 Direct Proof MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Direct Proof Fall 2014 1 / 24 Outline 1 Overview of Proof 2 Theorems 3 Definitions 4 Direct Proof 5 Using

More information

Intermediate Math Circles February 26, 2014 Diophantine Equations I

Intermediate Math Circles February 26, 2014 Diophantine Equations I Intermediate Math Circles February 26, 2014 Diophantine Equations I 1. An introduction to Diophantine equations A Diophantine equation is a polynomial equation that is intended to be solved over the integers.

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

MTH 346: The Chinese Remainder Theorem

MTH 346: The Chinese Remainder Theorem MTH 346: The Chinese Remainder Theorem March 3, 2014 1 Introduction In this lab we are studying the Chinese Remainder Theorem. We are going to study how to solve two congruences, find what conditions are

More information

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635 COMP239: Mathematics for Computer Science II Prof. Chadi Assi assi@ciise.concordia.ca EV7.635 The Euclidean Algorithm The Euclidean Algorithm Finding the GCD of two numbers using prime factorization is

More information

a the relation arb is defined if and only if = 2 k, k

a the relation arb is defined if and only if = 2 k, k DISCRETE MATHEMATICS Past Paper Questions in Number Theory 1. Prove that 3k + 2 and 5k + 3, k are relatively prime. (Total 6 marks) 2. (a) Given that the integers m and n are such that 3 (m 2 + n 2 ),

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

An Algorithm for Prime Factorization

An Algorithm for Prime Factorization An Algorithm for Prime Factorization Fact: If a is the smallest number > 1 that divides n, then a is prime. Proof: By contradiction. (Left to the reader.) A multiset is like a set, except repetitions are

More information

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a Math 4161 Dr. Franz Rothe December 9, 2013 13FALL\4161_fall13f.tex Name: Use the back pages for extra space Final 70 70 Problem 1. The following assertions may be true or false, depending on the choice

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

The Euclidean Algorithm and Multiplicative Inverses

The Euclidean Algorithm and Multiplicative Inverses 1 The Euclidean Algorithm and Multiplicative Inverses Lecture notes for Access 2009 The Euclidean Algorithm is a set of instructions for finding the greatest common divisor of any two positive integers.

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 10 Page 1 of 8 Number theory (Chapter 4) Review Questions: 1. Does 5 1? Does 1 5? 2. Does (129+63) mod 10 = (129 mod 10)+(63 mod 10)? 3. Does (129+63) mod 10 = ((129 mod 10)+(63

More information

Elementary Properties of the Integers

Elementary Properties of the Integers Elementary Properties of the Integers 1 1. Basis Representation Theorem (Thm 1-3) 2. Euclid s Division Lemma (Thm 2-1) 3. Greatest Common Divisor 4. Properties of Prime Numbers 5. Fundamental Theorem of

More information

For your quiz in recitation this week, refer to these exercise generators:

For your quiz in recitation this week, refer to these exercise generators: Monday, Oct 29 Today we will talk about inverses in modular arithmetic, and the use of inverses to solve linear congruences. For your quiz in recitation this week, refer to these exercise generators: GCD

More information

1 Overview and revision

1 Overview and revision MTH6128 Number Theory Notes 1 Spring 2018 1 Overview and revision In this section we will meet some of the concerns of Number Theory, and have a brief revision of some of the relevant material from Introduction

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

Ma/CS 6a Class 2: Congruences

Ma/CS 6a Class 2: Congruences Ma/CS 6a Class 2: Congruences 1 + 1 5 (mod 3) By Adam Sheffer Reminder: Public Key Cryptography Idea. Use a public key which is used for encryption and a private key used for decryption. Alice encrypts

More information

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory.

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory. CSS322: Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L06, Steve/Courses/2011/S2/CSS322/Lectures/number.tex,

More information

Chapter 2. Divisibility. 2.1 Common Divisors

Chapter 2. Divisibility. 2.1 Common Divisors Chapter 2 Divisibility 2.1 Common Divisors Definition 2.1.1. Let a and b be integers. A common divisor of a and b is any integer that divides both a and b. Suppose that a and b are not both zero. By Proposition

More information

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9.1 Chapter 9 Objectives

More information

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors Math.3336: Discrete Mathematics Primes and Greatest Common Divisors Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II CS 5319 Advanced Discrete Structure Lecture 9: Introduction to Number Theory II Divisibility Outline Greatest Common Divisor Fundamental Theorem of Arithmetic Modular Arithmetic Euler Phi Function RSA

More information

Algebra for error control codes

Algebra for error control codes Algebra for error control codes EE 387, Notes 5, Handout #7 EE 387 concentrates on block codes that are linear: Codewords components are linear combinations of message symbols. g 11 g 12 g 1n g 21 g 22

More information

Ch 4.2 Divisibility Properties

Ch 4.2 Divisibility Properties Ch 4.2 Divisibility Properties - Prime numbers and composite numbers - Procedure for determining whether or not a positive integer is a prime - GCF: procedure for finding gcf (Euclidean Algorithm) - Definition:

More information

Applied Cryptography and Computer Security CSE 664 Spring 2017

Applied Cryptography and Computer Security CSE 664 Spring 2017 Applied Cryptography and Computer Security Lecture 11: Introduction to Number Theory Department of Computer Science and Engineering University at Buffalo 1 Lecture Outline What we ve covered so far: symmetric

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof.

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof. PGSS Discrete Math Solutions to Problem Set #4 Note: signifies the end of a problem, and signifies the end of a proof. 1. Prove that for any k N, there are k consecutive composite numbers. (Hint: (k +

More information

Chapter 3 Basic Number Theory

Chapter 3 Basic Number Theory Chapter 3 Basic Number Theory What is Number Theory? Well... What is Number Theory? Well... Number Theory The study of the natural numbers (Z + ), especially the relationship between different sorts of

More information

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology.

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology. MATH 501 Discrete Mathematics Lecture 6: Number theory Prof. Dr. Slim Abdennadher, slim.abdennadher@guc.edu.eg German University Cairo, Department of Media Engineering and Technology 1 Number theory Number

More information

Some Facts from Number Theory

Some Facts from Number Theory Computer Science 52 Some Facts from Number Theory Fall Semester, 2014 These notes are adapted from a document that was prepared for a different course several years ago. They may be helpful as a summary

More information

Integers and Division

Integers and Division Integers and Division Notations Z: set of integers N : set of natural numbers R: set of real numbers Z + : set of positive integers Some elements of number theory are needed in: Data structures, Random

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-13 Recap Divisibility Prime Number Theorem Euclid s Lemma Fundamental Theorem of Arithmetic Euclidean Algorithm Basic Notions - Section

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today?

Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today? 2 Mod math Modular arithmetic is the math you do when you talk about time on a clock. For example, if it s 9 o clock right now, then it ll be 1 o clock in 4 hours. Clearly, 9 + 4 1 in general. But on a

More information

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4 MATH 25 CLASS 21 NOTES, NOV 7 2011 Contents 1. Groups: definition 1 2. Subgroups 2 3. Isomorphisms 4 1. Groups: definition Even though we have been learning number theory without using any other parts

More information

Cool Results on Primes

Cool Results on Primes Cool Results on Primes LA Math Circle (Advanced) January 24, 2016 Recall that last week we learned an algorithm that seemed to magically spit out greatest common divisors, but we weren t quite sure why

More information

2 Elementary number theory

2 Elementary number theory 2 Elementary number theory 2.1 Introduction Elementary number theory is concerned with properties of the integers. Hence we shall be interested in the following sets: The set if integers {... 2, 1,0,1,2,3,...},

More information

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers: WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Define and use the congruence modulo m equivalence relation Perform computations using modular arithmetic

More information

Modular Arithmetic Instructor: Marizza Bailey Name:

Modular Arithmetic Instructor: Marizza Bailey Name: Modular Arithmetic Instructor: Marizza Bailey Name: 1. Introduction to Modular Arithmetic If someone asks you what day it is 145 days from now, what would you answer? Would you count 145 days, or find

More information

#26: Number Theory, Part I: Divisibility

#26: Number Theory, Part I: Divisibility #26: Number Theory, Part I: Divisibility and Primality April 25, 2009 This week, we will spend some time studying the basics of number theory, which is essentially the study of the natural numbers (0,

More information

Number Theory Proof Portfolio

Number Theory Proof Portfolio Number Theory Proof Portfolio Jordan Rock May 12, 2015 This portfolio is a collection of Number Theory proofs and problems done by Jordan Rock in the Spring of 2014. The problems are organized first by

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Introduction to Number Theory

Introduction to Number Theory Introduction to Number Theory Number theory is about integers and their properties. We will start with the basic principles of divisibility, greatest common divisors, least common multiples, and modular

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Nov 13, 2014 Quiz announcement The second quiz will be held on Thursday,

More information

Mathematics of Cryptography

Mathematics of Cryptography Modulo arithmetic Fermat's Little Theorem If p is prime and 0 < a < p, then a p 1 = 1 mod p Ex: 3 (5 1) = 81 = 1 mod 5 36 (29 1) = 37711171281396032013366321198900157303750656 = 1 mod 29 (see http://gauss.ececs.uc.edu/courses/c472/java/fermat/fermat.html)

More information

Ma/CS 6a Class 2: Congruences

Ma/CS 6a Class 2: Congruences Ma/CS 6a Class 2: Congruences 1 + 1 5 (mod 3) By Adam Sheffer Reminder: Public Key Cryptography Idea. Use a public key which is used for encryption and a private key used for decryption. Alice encrypts

More information

CISC-102 Fall 2017 Week 6

CISC-102 Fall 2017 Week 6 Week 6 page 1! of! 15 CISC-102 Fall 2017 Week 6 We will see two different, yet similar, proofs that there are infinitely many prime numbers. One proof would surely suffice. However, seeing two different

More information

9 Modular Exponentiation and Square-Roots

9 Modular Exponentiation and Square-Roots 9 Modular Exponentiation and Square-Roots Modular arithmetic is used in cryptography. In particular, modular exponentiation is the cornerstone of what is called the RSA system. 9. Modular Exponentiation

More information

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2000 2013 Contents 9 Introduction to Number Theory 63 9.1 Subgroups

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

[Part 2] Asymmetric-Key Encipherment. Chapter 9. Mathematics of Cryptography. Objectives. Contents. Objectives

[Part 2] Asymmetric-Key Encipherment. Chapter 9. Mathematics of Cryptography. Objectives. Contents. Objectives [Part 2] Asymmetric-Key Encipherment Mathematics of Cryptography Forouzan, B.A. Cryptography and Network Security (International Edition). United States: McGraw Hill, 2008. Objectives To introduce prime

More information

Commutative Rings and Fields

Commutative Rings and Fields Commutative Rings and Fields 1-22-2017 Different algebraic systems are used in linear algebra. The most important are commutative rings with identity and fields. Definition. A ring is a set R with two

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 9 September 30, 2015 CPSC 467, Lecture 9 1/47 Fast Exponentiation Algorithms Number Theory Needed for RSA Elementary Number Theory

More information

NUMBER THEORY AND CODES. Álvaro Pelayo WUSTL

NUMBER THEORY AND CODES. Álvaro Pelayo WUSTL NUMBER THEORY AND CODES Álvaro Pelayo WUSTL Talk Goal To develop codes of the sort can tell the world how to put messages in code (public key cryptography) only you can decode them Structure of Talk Part

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 8 February 1, 2012 CPSC 467b, Lecture 8 1/42 Number Theory Needed for RSA Z n : The integers mod n Modular arithmetic GCD Relatively

More information

11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic

11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic 11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic Bezout s Lemma Let's look at the values of 4x + 6y when x and y are integers. If x is -6 and y is 4 we

More information

Number Theory and Graph Theory. Prime numbers and congruences.

Number Theory and Graph Theory. Prime numbers and congruences. 1 Number Theory and Graph Theory Chapter 2 Prime numbers and congruences. By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-1:Primes

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

COT 3100 Applications of Discrete Structures Dr. Michael P. Frank

COT 3100 Applications of Discrete Structures Dr. Michael P. Frank University of Florida Dept. of Computer & Information Science & Engineering COT 3100 Applications of Discrete Structures Dr. Michael P. Frank Slides for a Course Based on the Text Discrete Mathematics

More information

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Warm-up Problems 1. What is a prime number? Give an example of an even prime number and an odd prime number. (a) Circle the prime

More information

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

More information

Number Theory Math 420 Silverman Exam #1 February 27, 2018

Number Theory Math 420 Silverman Exam #1 February 27, 2018 Name: Number Theory Math 420 Silverman Exam #1 February 27, 2018 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name neatly at the top of this page. Write your final answer

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Sacred Heart University piazzan@mail.sacredheart.edu March 29, 2018 Divisibility Divisibility We say a divides b, denoted as a b, if there exists k Z such that ak = b. Example: Consider 2 6. Then k = 3

More information

Clock Arithmetic. 1. If it is 9 o clock and you get out of school in 4 hours, when do you get out of school?

Clock Arithmetic. 1. If it is 9 o clock and you get out of school in 4 hours, when do you get out of school? Clock Arithmetic We are going to learn all about clock addition and the relationship to remainders when you divide numbers. 1 Standard Clock Addition 1. If it is 9 o clock and you get out of school in

More information

Number Theory and Group Theoryfor Public-Key Cryptography

Number Theory and Group Theoryfor Public-Key Cryptography Number Theory and Group Theory for Public-Key Cryptography TDA352, DIT250 Wissam Aoudi Chalmers University of Technology November 21, 2017 Wissam Aoudi Number Theory and Group Theoryfor Public-Key Cryptography

More information

Intermediate Math Circles March 6, 2013 Number Theory I

Intermediate Math Circles March 6, 2013 Number Theory I What is Number Theory? Intermediate Math Circles March 6, 01 Number Theory I A branch of mathematics where mathematicians examine and study patterns found within the natural number set (positive integers).

More information

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions Warm-up Problems 1. What is a prime number? Give an example of an even prime number and an odd prime number. A prime number

More information

CMPUT 403: Number Theory

CMPUT 403: Number Theory CMPUT 403: Number Theory Zachary Friggstad February 26, 2016 Outline Factoring Sieve Multiplicative Functions Greatest Common Divisors Applications Chinese Remainder Theorem Factoring Theorem (Fundamental

More information

CSE20: Discrete Mathematics

CSE20: Discrete Mathematics Spring 2018 Today Greatest Common Divisor (GCD) Euclid s algorithm Proof of Correctness Reading: Chapter 4.3 Primes and GCD Universe: U = N = {0, 1, 2,...} a divides b (written a b) iff k.b = ak Set of

More information

Introduction Integers. Discrete Mathematics Andrei Bulatov

Introduction Integers. Discrete Mathematics Andrei Bulatov Introduction Integers Discrete Mathematics Andrei Bulatov Discrete Mathematics - Integers 9- Integers God made the integers; all else is the work of man Leopold Kroenecker Discrete Mathematics - Integers

More information

Continuing discussion of CRC s, especially looking at two-bit errors

Continuing discussion of CRC s, especially looking at two-bit errors Continuing discussion of CRC s, especially looking at two-bit errors The definition of primitive binary polynomials Brute force checking for primitivity A theorem giving a better test for primitivity Fast

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

REAL NUMBERS. Any positive integer a can be divided by another positive integer b in such a way that it leaves a remainder r that is smaller than b.

REAL NUMBERS. Any positive integer a can be divided by another positive integer b in such a way that it leaves a remainder r that is smaller than b. REAL NUMBERS Introduction Euclid s Division Algorithm Any positive integer a can be divided by another positive integer b in such a way that it leaves a remainder r that is smaller than b. Fundamental

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

Primes and Modular Arithmetic! CSCI 2824, Fall 2014!!

Primes and Modular Arithmetic! CSCI 2824, Fall 2014!! Primes and Modular Arithmetic! CSCI 2824, Fall 2014!!! Scheme version of the algorithm! for finding the GCD (define (gcd a b)! (if!(= b 0)!!!!a!!!!(gcd b (remainder a b))))!! gcd (812, 17) = gcd(17, 13)

More information

Discrete Mathematics and Probability Theory Fall 2018 Alistair Sinclair and Yun Song Note 6

Discrete Mathematics and Probability Theory Fall 2018 Alistair Sinclair and Yun Song Note 6 CS 70 Discrete Mathematics and Probability Theory Fall 2018 Alistair Sinclair and Yun Song Note 6 1 Modular Arithmetic In several settings, such as error-correcting codes and cryptography, we sometimes

More information