Constraints on Axion Inflation from the Weak Gravity Conjecture

Size: px
Start display at page:

Download "Constraints on Axion Inflation from the Weak Gravity Conjecture"

Transcription

1 Constraints on Axion Inflation from the Weak Gravity Conjecture T.R., /hep-th T.R., /hep-th Ben Heidenreich, Matt Reece, T.R., In Progress Department of Physics Harvard University Cornell Particle Theory Seminar April 17, 2015

2 Outline Inflation 1 Inflation 2 3

3 Section 1 Inflation

4 The CMB Inflation Figure 1 : The CMB, as measured by the Planck collaboration [1]. Image of last scattering surface, remnant of t = 380, 000 years. Note large-scale homogeneity, large-scale correlations.

5 The Horizon Problem Comoving Particle Horizon: / a 1 2 (1+3w) = ( a a 1/2 RD MD (1) Many causally disconnected patches at last scattering! Figure 2 : Standard Big-Bang model results in the horizon problem.

6 Solution: Inflation Inflation Inflation (violation of SEC w 1, exponential expansion a(t) e Ht, shrinking comoving horizon d(ah) 1 dt < 0) solves this problem: Extra conformal time pushes back standard big bang, allowing time before = 0. Figure 3 : Inflation offers a solution to the horizon problem.

7 Slow-Roll Inflation Inflation can be thought of as the theory of a ball rolling down a hill with friction. Figure 4 : The inflaton rolling down its potential. Slow roll parameters encode relevant features of potential: V = M2 p 2 V 0 ( ) V ( ) 2, V = Mp 2 V 00 ( ) V ( ). (2)

8 Inflationary Observables CMB correlations functions tell us information about the CMB on scales k = ah, where 1/(aH) is the comoving horizon size today. These modes exited the horizon e-folds before inflation ended, at log a end /a Measurable quantities include the ratio of the size of tensor perturbations to the size of scalar perturbations r, and the running of the scalar perturbations with k, n s. These quantities are determined by the slow-roll parameters, r 16 V, n s 1 2 V 6 V. (3)

9 Planck and BICEP2 Data Figure 5 : Planck and BICEP2 measurements give a best fit value of r = r < at 95% CI when lensing+ CDM+noise+dust are taken into account. r > 0 at 92% CI [1, 2, 3].

10 Future Experiments By the end of 2015, r = 0.10 will be a 3 detection, r = 0.05 will be a 2 detection (per Keck data). By 2017, r = 0.10 will be a 5 detection, r < 0.03 will be excluded at 95% CI (per Keck/BICEP3 data). Other upcoming experiments will improve these bounds further still [4].

11 Implications of a Large r A large r implies a large first derivative of the potential, and hence a fast-moving inflaton. r can therefore be related to the size of the traversal during inflation by the Lyth bound [5], & r 1/2 Mp. (4) 0.01 A detectable tensor-to-scalar ratio implies a trans-planckian traversal of the inflaton during the course of its slow-roll.

12 EFT of Inflation Inflation EFT for inflaton [6]: L eff = L l ( )+ X i i c i i (5) When is of order M p, higher dimension terms cannot be neglected. One expects large corrections to the potential on scales M p, destroying the flatness needed for slow-roll inflation. Solution: impose a shift symmetry! + a, potential vanishes.

13 Possible Solution: Axions Shift symmetry broken to discrete subgroup by instanton effects, V ( )= 4 (1 cos f )+( (2) ) 4 (1 cos 2 f )+... (6) (2) 2 M p, so these higher harmonics can be neglected provided M p.

14 Axions in String Theory Axions are ubiquitous in string compactifications, arising from integrating p-forms over p-cycles. Type IIB on Calabi-Yau Z gives N = 2 theory with axions b i, c i, # i, related to the NS-NS 2-form B 2, R-R 2-form C 2, and R-R 4-form C 4 by, B 2 =! i b i, C 2 =! i c i, C 4 = i # i, (7) where {! i } forms a basis of H 1,1 (Z ), { i } forms a basis of H 2,2 (Z ). But...axion decay constants in string theory are constrained to be O(M p ) or smaller [7], making them unsuitable for inflation.

15 Three Popular Solutions: V ø Figure 6 : N-flation [8] Figure 7 : Decay Constant Alignment [9] Figure 8 : Axion Monodromy [10] ø

16 Section 2

17 Global Symmetries in Quantum Gravity Conventional wisdom holds that there are no global symmetries allowed in a consistent theory of quantum gravity [11]: Consider a multi-particle state consisting of many particles of mass m, transforming under a representation r of the global symmetry.

18 Global Symmetries in Quantum Gravity Conventional wisdom holds that there are no global symmetries allowed in a consistent theory of quantum gravity [11]: Take enough particles so as to form a black hole.

19 Global Symmetries in Quantum Gravity Conventional wisdom holds that there are no global symmetries allowed in a consistent theory of quantum gravity [11]: Let the black hole decay via Hawking radiation.

20 Global Symmetries in Quantum Gravity Conventional wisdom holds that there are no global symmetries allowed in a consistent theory of quantum gravity [11]: When the Schwarzschild radius is O(l p ), the Hawking process stops, leaving a stable black hole remnant still charged under the global symmetry.

21 Global Symmetries in Quantum Gravity Conventional wisdom holds that there are no global symmetries allowed in a consistent theory of quantum gravity [11]: Such remnants spell trouble, for they violate the covariant entropy bound/will drive the renormalized Newton s constant to 0 [12].

22 The weak gravity conjecture proceeds along the same lines for U(1) gauge symmetries that are almost" global i.e. have g 1. Extremal black hole of charge Q = M (in appropriate units) cannot decay if no state has charge to mass ratio q/m 1 in appropriate units (otherwise any emitted radiation would push it past extremality ) naked singularity). In other words, [13] Any consistent theory with a U(1) gauge field admitting a UV completion with gravity must contain a state with charge to mass ratio q/m 1 in appropriate units.

23 (cont.) The weak gravity conjecture also applies to magnetically charged black holes and magnetic monopoles: m mag. g mag M p 1 g el M p. The mass of a monopole is at least the order of the energy stored in its magnetic field, m mag & gel 2. Thus,. g el M p (8)

24 The Generalized Weak Gravity Conjecture We have so far dealt with 1-form gauge fields in 4d. It is natural to generalize this to arbitrary p-forms and d spacetime dimensions. The Generalized Weak Gravity Conjecture Consider a p-form Abelian gauge field in any number of dimensions d. Then, there exist electrically and magnetically charged p 1 and d p 1 dimensional objects with tensions, g 2 1/2 1 1/2 T el., T mag. G N g 2. G N

25 Axions and the Weak Gravity Conjecture Consider the case of a 0-form (i.e. an axion) in 4d. The generalized WGC then says that there must exist a 1-dimensional object (instanton) with tension, T. M p. (9) f But, this is just the instanton action S, which shows up in the potential as V e S cos /f +... (10) Thus, the generalized WGC applied to 0-form fields gives precisely the result of [7]: axion decay constants larger than M p are forbidden.

26 The N-Species Weak Gravity Conjecture Suppose we have not 1, but N 1-form gauge fields. Naïvely, would expect the WGC to postulate the existence of a particle of mass m i, charge q i with q i /m i < 1/M p for i = 1,...,N. Instead, find a more stringent condition: the charge-to-mass vectors ±~z i := ± ~ q i m i M p, ~q i =(q 1i,...,q Ni ) must span the unit ball [14].

27 The N-Species Weak Gravity Conjecture (cont.) Figure 9 : The N-species weak gravity conjecture holds that the convex hull of the charge-to-mass vectors ±~z i = ± ~q i m i M p must contain the N-dimensional unit ball.

28 Section 3

29 The N-Species Axion WGC So far, we have seen two extensions of the WGC: The generalized" WGC generalized the WGC to arbitrary p-form gauge fields (at the expense of losing direct contact with black hole remnants). The N-species" WGC extended the WGC to N-species of 1-form gauge fields (still using constraints from black hole remnants). It is natural to consider: what happens when we put these two together to form the N-species, 0-form WGC (N0WGC)?

30 Axion Inflation Models and the N0WGC The Main Point Vanilla" models of N-flation and decay constant alignment are both ruled out by the N0WGC.

31 N-flation and the N0WGC Consider a theory with N axions i and decay constants f i. Set the instanton action S i & 1 for each of the axions. The N0WGC is then the condition that the charge vectors ~z i := Mp f i S i ~e i contain the unit ball, NX fi S 2 i < 1. Or, r = i=1 NX i=1 M p f 2 i! 1/2. M p

32 Decay Constant Alignment and the N0WGC Consider a theory with just two axions and non-diagonal decay constant matrix, V e S 1 cos( 1 f f 12 )+e S 2 cos( 1 f f 22 ). Set the instanton action S i & 1 for each of the axions. The N0WGC is then the condition that the charge vectors ±~z i = ± P M p j f ij S i ~e j contain the unit ball, ( ~z 1 2 1)( ~z 2 2 1) (1 + ~z 1 ~z 2 ) 2. Which yields, after some calculation, r. M p.

33 Why should the 0-form WGC be true? The problems with black hole remnants also apply to general p-branes in general d dimensions except p = 0 (no Hawking process without time). Simple studies of axion moduli spaces in string theory agree with this bound [16, 17, 18]. But, can relate 0-form version to 1-form version in string theory using the duality web [15].

34 Example: Extranatural Inflation [19, 20] 5d theory with U(1) gauge field compactified on circle of radius R gives axion in 4d. Charged particle of mass m 5 in 5d gives instanton of action m 5 R, decay constant f, V e S inst cos /f Ordinary 1-form WGC in 5d is g 5 1 m 5 (M (5) p ). 3/2 In terms of 4d quantities this becomes f apple M p 2 S inst.

35 Loopholes in the N0WGC Figure 10 : A model with three charge vectors and two axions. Although the generalized weak gravity conjecture still constrains the size of moduli space, one could achieve a large inflaton traversal as long as the potential contributions from ~z 3 dominate those from ~z 2.

36 Loopholes in the N0WGC (cont.) A strong" form of the N0WGC holds that the particles of minimal action should satisfy the convex hull condition, which would close the loophole (but is it true?). In extranatural inflation, the requirement S > 1 is not necessary, leaving f unbounded. But the magnetic WGC can close this loophole in some cases.

37 Conclusions Inflation The N0WGC rules out vanilla models of N-flation and axion decay constant alignment. It is possible to relate this conjecture to the ordinary WGC, which derives from arguments regarding black hole remnants. There are loopholes which would allow natural inflation consistent with the N0WGC, and there are (unverified) conjectures that would close these loopholes. More work is needed to understand these mysterious conjectures and their applications to axions (axion monodromy inflation?). Forthcoming experimental data should shed light on axion inflation stay tuned!

38 For Further Reading I P.A.R. Ade et al. (Planck collaboration) (2013), arxiv: [astro-ph]. P.A.R. Ade et al. (Planck, BICEP2 collaboration) (2015) arxiv: [astro-ph]. P.A.R. Ade et al. (Planck collobration) (2013), arxiv: [astro-ph]. P. Creminelli, D.L. Nacir, M. Simonović, G. Trevisan, and M. Zaldarriaga (2015), arxiv: [astro-ph]. D.H. Lyth, Phys.Rev.Lett. 78, 1861 (1997), arxiv: [hep-ph].

39 For Further Reading II C. Cheung et al., JHEP 0803:014, (2008) arxiv: [hep-th]. T. Banks, M. Dine, P.J. Fox, and E. Gorbatov, JCAP 0306, 001 (2003), arxiv: [hep-th]. S. Dimopoulos, S. Kachru, J. McGreevy, and J.G. Wacker, JCAP 0808, 003 (2008), arxiv: [hep-th]. J.E. Kim, H.P. Nilles, M. Peloso, JCAP 0501, 005 (2005), arxiv: [hep-ph]. L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D (2010), arxiv:0808:0706 [hep-th].

40 For Further Reading III T. Banks and N. Seiberg, Phys.Rev.D 83, (2011), arxiv: [hep-th]. L. Susskind, (1995), arxiv: [hep-th]. N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, JHEP 0706, 060 (2007), arxiv: [hep-th]. C. Cheung and G.N. Remmen, Phys. Rev. Lett. 113, (2014), arxiv: [hep-ph]. J. Brown, W. Cottrell, G. Shiu and P. Soler, (2015), arxiv: [hep-th]. T. Rudelius, (2014), arxiv: [hep-th]. T. Rudelius, (2015), arxiv: [hep-th].

41 For Further Reading IV T. Bachlechner, C. Long, L. McAllister, (2014), arxiv: [hep-th]. N. Arkani-Hamed, H.C. Cheng, P. Creminelli, and L. Randall, Phys. Rev. Lett. 90, (2003), arxiv: /hep-th. A. de la Fuente, P. Saraswat, and R. Sundrum, (2014), arxiv: [hep-th].

An Introduction to the Weak Gravity Conjecture and Cosmology

An Introduction to the Weak Gravity Conjecture and Cosmology An Introduction to the Weak Gravity Conjecture and Cosmology Tom Rudelius T.R., 1409.5793/hep-th, 1503.00795/hep-th Ben Heidenreich, Matt Reece, T.R., 1506.03447/hep-th, 1509.06374/hep-th Department of

More information

Axion Inflation and the Lattice Weak Gravity Conjecture. Tom Rudelius Harvard/IAS

Axion Inflation and the Lattice Weak Gravity Conjecture. Tom Rudelius Harvard/IAS Axion Inflation and the Lattice Weak Gravity Conjecture Tom Rudelius Harvard/IAS Based On 1409.5793/hep-th, 1503.00795/hep-th 1506.03447/hep-th, 1509.06374/hep-th with Ben Heidenreich, Matthew Reece To

More information

Axion Inflation and the Lattice Weak Gravity Conjecture. Tom Rudelius IAS

Axion Inflation and the Lattice Weak Gravity Conjecture. Tom Rudelius IAS Axion Inflation and the Lattice Weak Gravity Conjecture Tom Rudelius IAS Based On 1409.5793/hep-th, 1503.00795/hep-th 1506.03447/hep-th, 1509.06374/hep-th with Ben Heidenreich, Matthew Reece To appear

More information

Natural Inflation and Quantum Gravity

Natural Inflation and Quantum Gravity Natural Inflation and Quantum Gravity Raman Sundrum University of Maryland Based on arxiv:1412.3457 (to appear in PRL) with Anton de la Fuente and Prashant Saraswat 1 Natural Inflation and Quantum Gravity

More information

Exploring the Weak Gravity Conjecture

Exploring the Weak Gravity Conjecture Exploring the Weak Gravity Conjecture Matthew Reece Harvard University Based on 1506.03447, 1509.06374, 1605.05311, 1606.08437 with Ben Heidenreich and Tom Rudelius. & 161n.nnnnn with Grant Remmen, Thomas

More information

Effects of the field-space metric on Spiral Inflation

Effects of the field-space metric on Spiral Inflation Effects of the field-space metric on Spiral Inflation Josh Erlich College of William & Mary digitaldante.columbia.edu Miami 2015 December 20, 2015 The Cosmic Microwave Background Planck collaboration Composition

More information

Inflation in String Theory. mobile D3-brane

Inflation in String Theory. mobile D3-brane Inflation in String Theory mobile D3-brane Outline String Inflation as an EFT Moduli Stabilization Examples of String Inflation Inflating with Branes Inflating with Axions (Inflating with Volume Moduli)

More information

Primordial Gravitational Waves in String Theory

Primordial Gravitational Waves in String Theory Primordial Gravitational Waves in String Theory Susha Parameswaran University of Liverpool String Phenomenology 2016 20th June 2016 Based on: Phys.Lett. B759 (2016) 402-409, Karta Kooner, S.L.P. and Ivonne

More information

The Weak Gravity Conjecture through the eyes of Cosmic Strings and Axionic Black Holes. Outline The magnetic Weak Gravity Conjecture for axions

The Weak Gravity Conjecture through the eyes of Cosmic Strings and Axionic Black Holes. Outline The magnetic Weak Gravity Conjecture for axions The Weak Gravity Conjecture through the eyes of Cosmic Strings and Axionic Black Holes Arthur Hebecker (Heidelberg) based on work with Philipp Henkenjohann and Lukas Witkowski and with Pablo Soler Outline

More information

Inflation in heterotic supergravity models with torsion

Inflation in heterotic supergravity models with torsion Inflation in heterotic supergravity models with torsion Stephen Angus IBS-CTPU, Daejeon in collaboration with Cyril Matti (City Univ., London) and Eirik Eik Svanes (LPTHE, Paris) (work in progress) String

More information

Effective field theory for axion monodromy inflation

Effective field theory for axion monodromy inflation Effective field theory for axion monodromy inflation Albion Lawrence Brandeis University Based on work in progress with Nemanja Kaloper and L.orenzo Sorbo Outline I. Introduction and motivation II. Scalar

More information

arxiv: v4 [hep-th] 8 Sep 2014

arxiv: v4 [hep-th] 8 Sep 2014 CTPU-14-04 Natural inflation with multiple sub-planckian axions Kiwoon Choi, a, Hyungjin Kim, a,b, and Seokhoon Yun a,b, a Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),

More information

Quantum Gravity Constraints on Large Field Inflation

Quantum Gravity Constraints on Large Field Inflation Corfu2017, September 24, 2017 p.1/23 Quantum Gravity Constraints on Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München Bhg, Valenzuela, Wolf, arxiv:1703.05776 Frequently asked

More information

The effective field theory of axion monodromy

The effective field theory of axion monodromy The effective field theory of axion monodromy Albion Lawrence, Brandeis University arxiv:1101.0026 with Nemanja Kaloper (UC Davis) and Lorenzo Sorbo (U Mass Amherst) arxiv:1105.3740 with Sergei Dubovsky

More information

arxiv: v1 [hep-th] 26 Mar 2015

arxiv: v1 [hep-th] 26 Mar 2015 Planckian Axions and the Weak Gravity Conjecture Thomas C. Bachlechner, Cody Long, and Liam McAllister arxiv:1503.07853v1 [hep-th] 26 Mar 2015 Department of Physics, Cornell University, Ithaca, NY 14853

More information

Aligned Natural Inflation

Aligned Natural Inflation Aligned Natural Inflation, Mainz, September 2014 p. 1/42 Aligned Natural Inflation Hans Peter Nilles Physikalisches Institut Universität Bonn Aligned Natural Inflation, Mainz, September 2014 p. 2/42 Outline

More information

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

What is(n t) the Strong Form of the Weak Gravity Conjecture

What is(n t) the Strong Form of the Weak Gravity Conjecture What is(n t) the Strong Form of the Weak Gravity Conjecture Ben Heidenreich (Perimeter InsAtute) String Pheno 2017, July 3, 2017 Mo#va#on Complete QGs Swampland all gravita)onal EFTs 01/25 Example: No

More information

Naturally inflating on steep potentials through electromagnetic dissipation

Naturally inflating on steep potentials through electromagnetic dissipation Naturally inflating on steep potentials through electromagnetic dissipation Lorenzo Sorbo UMass Amherst IPhT IPMU, 05/02/14 M. Anber, LS, PRD 2010, PRD 2012 V(φ) INFLATION very early Universe filled by

More information

QCD axions with high scale inflation

QCD axions with high scale inflation QCD axions with high scale inflation Kiwoon Choi (COSMO 2014, Chicago) The IBS Center for Theoretical Physics of the Universe Outline * Introduction * Cosmological constraints on the QCD axion Before BICEP2

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

String Moduli Stabilization and Large Field Inflation

String Moduli Stabilization and Large Field Inflation Kyoto, 12.12.2016 p.1/32 String Moduli Stabilization and Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München based on joint work with A.Font, M.Fuchs, D. Herschmann, E. Plauschinn,

More information

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München An up-date on Brane Inflation Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München Leopoldina Conference, München, 9. October 2008 An up-date on Brane Inflation Dieter Lüst, LMU (Arnold

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

Searching for Signatures of Fundamental Physics in the CMB. Raphael Flauger

Searching for Signatures of Fundamental Physics in the CMB. Raphael Flauger Searching for Signatures of Fundamental Physics in the CMB Raphael Flauger StringPheno, Blacksburg, VA, July 5, 2017 Introduction Cosmological observations can reveal important information about fundamental

More information

Inflation Daniel Baumann

Inflation Daniel Baumann Inflation Daniel Baumann University of Amsterdam Florence, Sept 2017 Cosmological structures formed by the gravitational collapse of primordial density perturbations. gravity 380,000 yrs 13.8 billion yrs

More information

arxiv:hep-ph/ v1 8 Feb 2000

arxiv:hep-ph/ v1 8 Feb 2000 Gravity, Particle Physics and their Unification 1 J. M. Maldacena Department of Physics Harvard University, Cambridge, Massachusetts 02138 arxiv:hep-ph/0002092v1 8 Feb 2000 1 Introduction Our present world

More information

arxiv: v2 [hep-th] 11 Jul 2014

arxiv: v2 [hep-th] 11 Jul 2014 Aligned Natural Inflation in String Theory Cody Long, Liam McAllister, and Paul McGuirk Department of Physics, Cornell University, Ithaca, New York, 4853, USA We propose a scenario for realizing super-planckian

More information

Cosmology with pseudo Nambu-Goldstone Bosons

Cosmology with pseudo Nambu-Goldstone Bosons Cosmology with pseudo Nambu-Goldstone Bosons Lorenzo Sorbo UMass Amherst Workshop on Cosmology and Strings Trieste, 13/07/07 with M. Anber, K. Dutta, N. Kaloper A COSMOLOGICAL CONSTANT! (10-3 ev ) 4 is

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Signatures of Axion Monodromy Inflation

Signatures of Axion Monodromy Inflation Signatures of Axion Monodromy Inflation Gang Xu Cornell University based on arxiv:0907.2916 with Flauger, McAllister, Pajer and Westphal McGill University December 2009 Gang Xu Signatures of Axion Monodromy

More information

arxiv: v1 [hep-th] 16 Mar 2015

arxiv: v1 [hep-th] 16 Mar 2015 MAD-TH-15-04 arxiv:1503.04783v1 [hep-th] 16 Mar 2015 Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation Jon Brown, William Cottrell, Gary Shiu and Pablo Soler Department of

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

Large Field Inflation, Ignobly

Large Field Inflation, Ignobly Large Field Inflation, Ignobly Nemanja Kaloper UC Davis with A. Lawrence (Brandeis) & L. Sorbo (UMass), arxiv: 1101.0026 (JCAP), arxiv:0810.5346 (PRD), arxiv:0811.1989 (PRL) Inflation: intro Interactions,

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. Abstract

Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. Abstract HUTP-05/A0057 hep-th/0601001 The String Landscape, Black Holes and Gravity as the Weakest Force arxiv:hep-th/0601001v2 21 Feb 2006 Nima Arkani-Hamed, Luboš Motl, Alberto Nicolis and Cumrun Vafa E-mail:

More information

m 2 φ 2 bite the dust? A closer look at ns and r Raphael Flauger

m 2 φ 2 bite the dust? A closer look at ns and r Raphael Flauger Did m 2 φ 2 bite the dust? A closer look at ns and r Raphael Flauger Cosmology with the CMB and its Polarization, University of Minnesota, January 15, 2015 The Cosmic Microwave Background COBE EBEX WMAP

More information

Primordial Black Holes Dark Matter from Axion Inflation

Primordial Black Holes Dark Matter from Axion Inflation Primordial Black Holes Dark Matter from Axion Inflation Francesco Muia University of Oxford Based on: PBH Dark Matter from Axion Inflation V. Domcke, FM, M. Pieroni & L. T. Witkowski arxiv: 1704.03464

More information

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004 An introduction to brane world cosmology Andreas Müller Theory group LSW http://www.lsw.uni-heidelberg.de/users/amueller Advanced seminar LSW Heidelberg 03/03/2004 Overview principles bulk and brane extradimensions

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

The Axidental Universe

The Axidental Universe The Axidental Universe Matthew Kleban Center for Cosmology and Particle Physics New York University Ultralight Dark Matter and Axions September 2018, Swampy Vistas/IFT Madrid Based on: Work with T. Bachlechner,

More information

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS 1 BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS Based on : - W.Buchmuller, E.D., L.Heurtier and C.Wieck, arxiv:1407.0253 [hep-th], JHEP 1409 (2014) 053. - W.Buchmuller, E.D., L.Heurtier, A.Westphal,

More information

COSMOLOGY IN HIGHER DIMENSIONS

COSMOLOGY IN HIGHER DIMENSIONS COSMOLOGY IN HIGHER DIMENSIONS 1. Introduction 2. Overview of Higher Dimensional Cosmology 3. Cosmology in Higher Dimensions 4. String Frame 5. Summary Kei-ichi MAEDA Waseda University 1. INTRODUCTION

More information

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama Research Center for the Early Universe (RESCEU) Department of Physics Jun ichi Yokoyama time size Today 13.8Gyr Why is Our Universe Big, dark energy Old, and full of structures? galaxy formation All of

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Axion monodromy and inflation

Axion monodromy and inflation Axion monodromy and inflation Albion Lawrence, Brandeis/NYU arxiv:1101.0026 with Nemanja Kaloper (UC Davis), AL, and Lorenzo Sorbo (U Mass Amherst) Silverstein and Westphal, arxiv:0803.3085 McAllister,

More information

The String Landscape and the Swampland

The String Landscape and the Swampland HUTP-05/A043 The String Landscape and the Swampland arxiv:hep-th/0509212v2 6 Oct 2005 Cumrun Vafa Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA Abstract Recent developments

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 27, 2016 NATIONAL TSING HUA UNIVERSITY OUTLINE Big

More information

Dante s Waterfall: A Hybrid Model of Inflation

Dante s Waterfall: A Hybrid Model of Inflation Dante s Waterfall: A Hybrid Model of Inflation Anuraag Sensharma April 24, 2015 Abstract: Given recent observational results from the BICEP2 and Planck collaborations regarding the ratio of power in tensor

More information

String-Theory: Open-closed String Moduli Spaces

String-Theory: Open-closed String Moduli Spaces String-Theory: Open-closed String Moduli Spaces Heidelberg, 13.10.2014 History of the Universe particular: Epoch of cosmic inflation in the early Universe Inflation and Inflaton φ, potential V (φ) Possible

More information

Holographic methods for cosmology. Gonzalo Torroba Stanford University

Holographic methods for cosmology. Gonzalo Torroba Stanford University Holographic methods for cosmology Gonzalo Torroba Stanford University Observations and Theoretical Challenges in Primordial Cosmology KITP, UCSB, April 2013 Members of the collaboration Matt Dodelson Shunji

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Relaxion for the EW scale hierarchy

Relaxion for the EW scale hierarchy Relaxion for the EW scale hierarchy Kiwoon Choi (KIAS Pheno, 2016) Outline Introduction Cosmological relaxation of the EW scale Hierarchical relaxion scales with multiple axions Clockwork relaxion & UV

More information

TeV-scale Black Holes

TeV-scale Black Holes University of Arizona SH, Ben Koch and Marcus Bleicher: hep-ph/0507138, hep-ph/0507140 Black Holes as Physics Meeting Point General Relativity Thermodynamics Quantum Field Theory String Theory Black Holes

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

A Chern-Simons Pandemic

A Chern-Simons Pandemic A Chern-Simons Pandemic M. Montero ITF, Utrecht University Stringpheno 2017 Virginia Tech, Jul 6th 2017 Based on: A Chern-Simons Pandemic, MM, A. Uranga, I. Valenzuela, 1702.06147 Introduction Swampland

More information

Contents. Part I The Big Bang and the Observable Universe

Contents. Part I The Big Bang and the Observable Universe Contents Part I The Big Bang and the Observable Universe 1 A Historical Overview 3 1.1 The Big Cosmic Questions 3 1.2 Origins of Scientific Cosmology 4 1.3 Cosmology Today 7 2 Newton s Universe 13 2.1

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Theoretical implications of detecting gravitational waves

Theoretical implications of detecting gravitational waves Theoretical implications of detecting gravitational waves Ghazal Geshnizjani Department of Applied Mathematics University of Waterloo ggeshniz@uwaterloo.ca In collaboration with: William H. Kinney arxiv:1410.4968

More information

A Consistency Relation for Power Law Inflation in DBI Models

A Consistency Relation for Power Law Inflation in DBI Models Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0703248v2 15 Jun 2007 A Consistency Relation for Power Law Inflation in DBI Models Micha l Spaliński So ltan Institute for Nuclear Studies ul.

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

Evolution of Scalar Fields in the Early Universe

Evolution of Scalar Fields in the Early Universe Evolution of Scalar Fields in the Early Universe Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2015 September 17th, 2015 Advisor: Alexander Kusenko Collaborator:

More information

Phases of Axion Inflation

Phases of Axion Inflation Phases of Axion Inflation Wieland Staessens (JdC) based on 17xx.xxxxx (1503.01015, 1503.02965 [hep-th]) with G. Shiu Instituto de Física Teórica UAM/CSIC Madrid StringPheno 2017, IFT-UAM/CSIC, 04 July

More information

Prospects for Inflation from String Theory

Prospects for Inflation from String Theory Prospects for Inflation from String Theory Hassan Firouzjahi IPM IPM School on Early Universe Cosmology, Tehran, Dec 7-11, 2009 Outline Motivation for Inflation from String Theory A quick Review on String

More information

Black holes and the renormalisation group 1

Black holes and the renormalisation group 1 Black holes and the renormalisation group 1 Kevin Falls, University of Sussex September 16, 2010 1 based on KF, D. F. Litim and A. Raghuraman, arxiv:1002.0260 [hep-th] also KF, D. F. Litim; KF, G. Hiller,

More information

Inflation and Cosmic Strings in Heterotic M-theory

Inflation and Cosmic Strings in Heterotic M-theory Inflation and Cosmic Strings in Heterotic M-theory Melanie Becker Texas A&M July 31st, 2006 Talk at the Fourth Simons Workshop in Mathematics and Physics Stony Brook University, July 24 - August 25, 2006

More information

Good things from Brane Backreaction

Good things from Brane Backreaction Good things from Brane Backreaction Codimension-2 Backreaction as a counterexample to almost everything w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool:

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

Classification of dynamical intersecting brane solutions

Classification of dynamical intersecting brane solutions Classification of dynamical intersecting brane solutions Kunihito Uzawa Osaka City University (H. Kodama, K. Uzawa; JHEP 0602:2006 [arxiv: hep-th/0512104] ) (P. Binetruy, M. Sasaki, K. Uzawa, arxiv:0712.3615,

More information

Brane Backreaction: antidote to no-gos

Brane Backreaction: antidote to no-gos Brane Backreaction: antidote to no-gos Getting de Sitter (and flat) space unexpectedly w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool: high codim back-reaction

More information

Inflation and String Theory

Inflation and String Theory Inflation and String Theory Juan Maldacena Strings 2015, Bangalore Based on: Arkani Hamed and JM, JM and Pimentel Inflation is the leading candidate for a theory that produces the primordial fluctuations.

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

Black Hole Microstate Counting using Pure D-brane Systems

Black Hole Microstate Counting using Pure D-brane Systems Black Hole Microstate Counting using Pure D-brane Systems HRI, Allahabad, India 11.19.2015 UC Davis, Davis based on JHEP10(2014)186 [arxiv:1405.0412] and upcoming paper with Abhishek Chowdhury, Richard

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton

Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton Lorenzo Sorbo UMass Amherst Padova, 17/02/2011 LS, 1101.1525 Plan of the talk Inflation, radiative stability and pseudo-nambu-goldstone

More information

On Power Law Inflation in DBI Models

On Power Law Inflation in DBI Models Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0702196v2 26 Apr 2007 On Power Law Inflation in DBI Models Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681 Warszawa,

More information

Implications of the Bicep2 Results (if the interpretation is correct) Antonio Riotto Geneva University & CAP

Implications of the Bicep2 Results (if the interpretation is correct) Antonio Riotto Geneva University & CAP Implications of the Bicep2 Results (if the interpretation is correct) Antonio Riotto Geneva University & CAP La Sapienza, Roma, 12/6/2014 Plan of the talk Short introduction to cosmological perturbations

More information

Proof of the Weak Gravity Conjecture from Black Hole Entropy

Proof of the Weak Gravity Conjecture from Black Hole Entropy Proof of the Weak Gravity Conjecture from Black Hole Entropy Grant N. Remmen Berkeley Center for Theoretical Physics Miller Institute for Basic Research in Science University of California, Berkeley arxiv:1801.08546

More information

Flipped GUT Inflation

Flipped GUT Inflation Flipped GUT Inflation Technische Universität Dortmund Wei- Chih Huang 09.18.2015 IOP Academia Sinica arxiv:1412.1460, 15XX.XXXX with John Ellis, Julia Harz, Tomás E. Gonzalo Outline BICEP2 excitement and

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

The Dark Universe from Higher Dimensions and Strings

The Dark Universe from Higher Dimensions and Strings Transregional Collaborative Research Centre TRR 33: The Dark Universe The Dark Universe from Higher Dimensions and Strings related to: Project A1: Quintessence, Branes and Higher Dimensions (Nilles, Wetterich)

More information

On the Geometry of the String Landscape. and the Swampland

On the Geometry of the String Landscape. and the Swampland CALT-68-2600, HUTP-06/A017 On the Geometry of the String Landscape arxiv:hep-th/0605264v1 26 May 2006 and the Swampland Hirosi Ooguri 1 and Cumrun Vafa 2 1 California Institute of Technology Pasadena,

More information

Towards a holographic formulation of cosmology

Towards a holographic formulation of cosmology Towards a holographic formulation of cosmology Gonzalo Torroba Stanford University Topics in holography, supersymmetry and higher derivatives Mitchell Institute, Texas A&M, April 2013 During the last century,

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania Workshop: Status and Future of Inflationary Theory! University of Chicago, August 22-24, 2014 Questions Haven t been thinking

More information

Inflationary model building, reconstructing parameters and observational limits

Inflationary model building, reconstructing parameters and observational limits Inflationary model building, reconstructing parameters and observational limits Sayantan Choudhury Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata Date: 30/09/2014 Contact: sayanphysicsisi@gmail.com

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun Axion Cold Dark Matter with High Scale Inflation Eung Jin Chun Outline The Strong CP problem & the axion solution. Astro and cosmological properties of the axion. BICEP2 implications on the axion CDM.

More information

A Model of Holographic Dark Energy

A Model of Holographic Dark Energy A Model of Holographic Dark Energy arxiv:hep-th/0403127v4 13 Aug 2004 Miao Li Institute of Theoretical Physics Academia Sinica, P.O. Box 2735 Beijing 100080, China and Interdisciplinary Center of Theoretical

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Cosmic Strings. Joel Meyers

Cosmic Strings. Joel Meyers Cosmic Strings Joel Meyers Outline History and Motivations Topological Defects Formation of Cosmic String Networks Cosmic Strings from String Theory Observation and Implications Conclusion History In the

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Lecture notes 20: Inflation

Lecture notes 20: Inflation Lecture notes 20: Inflation The observed galaxies, quasars and supernovae, as well as observations of intergalactic absorption lines, tell us about the state of the universe during the period where z

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara A Holographic Description of Black Hole Singularities Gary Horowitz UC Santa Barbara Global event horizons do not exist in quantum gravity: String theory predicts that quantum gravity is holographic:

More information